Find the Values of $p$ and $q$ such that $int_0^{infty} x^pln(1+x)^q dx$ Converges or Diverges.
$begingroup$
The question is to find the value values of $p$ and $q$ such that the improper integral converges or diverges. My friend indeed found some values of $p$ and $q$ such that it converges, but after many trials, I am still getting divergent for all values. Via L'Hospital, we have the following:
$$lim_{x to 0} x^cln(1+x)^q = infty space text{when} space c < 0$$
$$lim_{x to 0} x^cln(1+x)^q = 0 space text{when} space c > 0$$
$$lim_{x to infty} x^cln(1+x)^q = infty space text{when} space c > 0$$
$$lim_{x to infty} x^cln(1+x)^q = 0 space text{when} space c < 0$$
Thus,
$$int_1^{infty} x^pln(1+x)^q dx = int_1^{infty} x^{p-c}x^cln(1+x)^q dx > int_1^{infty} x^{p-c} dx$$
which diverges when $p > -1$. Here, we set $c = frac{1}{2}(p+1) > 0$. On the other hand,
$$int_0^1 x^pln(1+x)^q dx = int_0^1 x^{p-c}x^cln(1+x)^q dx > int_0^1 x^{p-c} dx$$
which diverges when $p < -1$. Here, we set $c = frac{1}{2}(p+1) < 0$. Thus, the integral diverges whenever $p ne –1$. Then, let $p = -1$.
$$int_0^{infty} frac{1}{x}ln(1+x)^q dx = int_0^1 frac{1}{x}ln(1+x)^q dx + int_1^{infty} frac{1}{x}ln(1+x)^q dx $$
$$ ge int_0^1 frac{1}{x+1}ln(1+x)^q dx + int_1^{infty} frac{1}{x+1}ln(1+x)^q dx $$
The first summand diverges when $q < -1$ and the second diverges when $q > -1$. Finally, let $ p = -1$ and $q = -1$. The integral $int_0^{infty} frac{1}{xln(1+x)} dx ≥ int_0^{infty} frac{1}{(x+1)ln(1+x)} dx$ diverges on both ends. Did I make a mistake?
real-analysis improper-integrals
$endgroup$
add a comment |
$begingroup$
The question is to find the value values of $p$ and $q$ such that the improper integral converges or diverges. My friend indeed found some values of $p$ and $q$ such that it converges, but after many trials, I am still getting divergent for all values. Via L'Hospital, we have the following:
$$lim_{x to 0} x^cln(1+x)^q = infty space text{when} space c < 0$$
$$lim_{x to 0} x^cln(1+x)^q = 0 space text{when} space c > 0$$
$$lim_{x to infty} x^cln(1+x)^q = infty space text{when} space c > 0$$
$$lim_{x to infty} x^cln(1+x)^q = 0 space text{when} space c < 0$$
Thus,
$$int_1^{infty} x^pln(1+x)^q dx = int_1^{infty} x^{p-c}x^cln(1+x)^q dx > int_1^{infty} x^{p-c} dx$$
which diverges when $p > -1$. Here, we set $c = frac{1}{2}(p+1) > 0$. On the other hand,
$$int_0^1 x^pln(1+x)^q dx = int_0^1 x^{p-c}x^cln(1+x)^q dx > int_0^1 x^{p-c} dx$$
which diverges when $p < -1$. Here, we set $c = frac{1}{2}(p+1) < 0$. Thus, the integral diverges whenever $p ne –1$. Then, let $p = -1$.
$$int_0^{infty} frac{1}{x}ln(1+x)^q dx = int_0^1 frac{1}{x}ln(1+x)^q dx + int_1^{infty} frac{1}{x}ln(1+x)^q dx $$
$$ ge int_0^1 frac{1}{x+1}ln(1+x)^q dx + int_1^{infty} frac{1}{x+1}ln(1+x)^q dx $$
The first summand diverges when $q < -1$ and the second diverges when $q > -1$. Finally, let $ p = -1$ and $q = -1$. The integral $int_0^{infty} frac{1}{xln(1+x)} dx ≥ int_0^{infty} frac{1}{(x+1)ln(1+x)} dx$ diverges on both ends. Did I make a mistake?
real-analysis improper-integrals
$endgroup$
add a comment |
$begingroup$
The question is to find the value values of $p$ and $q$ such that the improper integral converges or diverges. My friend indeed found some values of $p$ and $q$ such that it converges, but after many trials, I am still getting divergent for all values. Via L'Hospital, we have the following:
$$lim_{x to 0} x^cln(1+x)^q = infty space text{when} space c < 0$$
$$lim_{x to 0} x^cln(1+x)^q = 0 space text{when} space c > 0$$
$$lim_{x to infty} x^cln(1+x)^q = infty space text{when} space c > 0$$
$$lim_{x to infty} x^cln(1+x)^q = 0 space text{when} space c < 0$$
Thus,
$$int_1^{infty} x^pln(1+x)^q dx = int_1^{infty} x^{p-c}x^cln(1+x)^q dx > int_1^{infty} x^{p-c} dx$$
which diverges when $p > -1$. Here, we set $c = frac{1}{2}(p+1) > 0$. On the other hand,
$$int_0^1 x^pln(1+x)^q dx = int_0^1 x^{p-c}x^cln(1+x)^q dx > int_0^1 x^{p-c} dx$$
which diverges when $p < -1$. Here, we set $c = frac{1}{2}(p+1) < 0$. Thus, the integral diverges whenever $p ne –1$. Then, let $p = -1$.
$$int_0^{infty} frac{1}{x}ln(1+x)^q dx = int_0^1 frac{1}{x}ln(1+x)^q dx + int_1^{infty} frac{1}{x}ln(1+x)^q dx $$
$$ ge int_0^1 frac{1}{x+1}ln(1+x)^q dx + int_1^{infty} frac{1}{x+1}ln(1+x)^q dx $$
The first summand diverges when $q < -1$ and the second diverges when $q > -1$. Finally, let $ p = -1$ and $q = -1$. The integral $int_0^{infty} frac{1}{xln(1+x)} dx ≥ int_0^{infty} frac{1}{(x+1)ln(1+x)} dx$ diverges on both ends. Did I make a mistake?
real-analysis improper-integrals
$endgroup$
The question is to find the value values of $p$ and $q$ such that the improper integral converges or diverges. My friend indeed found some values of $p$ and $q$ such that it converges, but after many trials, I am still getting divergent for all values. Via L'Hospital, we have the following:
$$lim_{x to 0} x^cln(1+x)^q = infty space text{when} space c < 0$$
$$lim_{x to 0} x^cln(1+x)^q = 0 space text{when} space c > 0$$
$$lim_{x to infty} x^cln(1+x)^q = infty space text{when} space c > 0$$
$$lim_{x to infty} x^cln(1+x)^q = 0 space text{when} space c < 0$$
Thus,
$$int_1^{infty} x^pln(1+x)^q dx = int_1^{infty} x^{p-c}x^cln(1+x)^q dx > int_1^{infty} x^{p-c} dx$$
which diverges when $p > -1$. Here, we set $c = frac{1}{2}(p+1) > 0$. On the other hand,
$$int_0^1 x^pln(1+x)^q dx = int_0^1 x^{p-c}x^cln(1+x)^q dx > int_0^1 x^{p-c} dx$$
which diverges when $p < -1$. Here, we set $c = frac{1}{2}(p+1) < 0$. Thus, the integral diverges whenever $p ne –1$. Then, let $p = -1$.
$$int_0^{infty} frac{1}{x}ln(1+x)^q dx = int_0^1 frac{1}{x}ln(1+x)^q dx + int_1^{infty} frac{1}{x}ln(1+x)^q dx $$
$$ ge int_0^1 frac{1}{x+1}ln(1+x)^q dx + int_1^{infty} frac{1}{x+1}ln(1+x)^q dx $$
The first summand diverges when $q < -1$ and the second diverges when $q > -1$. Finally, let $ p = -1$ and $q = -1$. The integral $int_0^{infty} frac{1}{xln(1+x)} dx ≥ int_0^{infty} frac{1}{(x+1)ln(1+x)} dx$ diverges on both ends. Did I make a mistake?
real-analysis improper-integrals
real-analysis improper-integrals
asked Oct 19 '14 at 3:36
Andy TamAndy Tam
1,41121630
1,41121630
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The result seems correct, but check the limits for $xto 0$.
$int_1^{+infty} x^p log^q (1+x)dx$ diverges if $p>-1$,
$int_0^{1} x^p log^q (1+x)dx$ diverges if $p<-1$, independently of $q$.
It remains $p=-1$.
$int_1^{+infty} x^{-1}log^q (1+x)dx$ diverges if $qgeq -1$. Note that for small $x$ the behavior of $log(1+x)sim x$, hence
$$int_0^{1} x^{-1}log^q (1+x)dxsim int_0^{1} x^{-1}x^q dx,$$
which diverges for any $qleq 0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f980368%2ffind-the-values-of-p-and-q-such-that-int-0-infty-xpln1xq-dx-conve%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The result seems correct, but check the limits for $xto 0$.
$int_1^{+infty} x^p log^q (1+x)dx$ diverges if $p>-1$,
$int_0^{1} x^p log^q (1+x)dx$ diverges if $p<-1$, independently of $q$.
It remains $p=-1$.
$int_1^{+infty} x^{-1}log^q (1+x)dx$ diverges if $qgeq -1$. Note that for small $x$ the behavior of $log(1+x)sim x$, hence
$$int_0^{1} x^{-1}log^q (1+x)dxsim int_0^{1} x^{-1}x^q dx,$$
which diverges for any $qleq 0$.
$endgroup$
add a comment |
$begingroup$
The result seems correct, but check the limits for $xto 0$.
$int_1^{+infty} x^p log^q (1+x)dx$ diverges if $p>-1$,
$int_0^{1} x^p log^q (1+x)dx$ diverges if $p<-1$, independently of $q$.
It remains $p=-1$.
$int_1^{+infty} x^{-1}log^q (1+x)dx$ diverges if $qgeq -1$. Note that for small $x$ the behavior of $log(1+x)sim x$, hence
$$int_0^{1} x^{-1}log^q (1+x)dxsim int_0^{1} x^{-1}x^q dx,$$
which diverges for any $qleq 0$.
$endgroup$
add a comment |
$begingroup$
The result seems correct, but check the limits for $xto 0$.
$int_1^{+infty} x^p log^q (1+x)dx$ diverges if $p>-1$,
$int_0^{1} x^p log^q (1+x)dx$ diverges if $p<-1$, independently of $q$.
It remains $p=-1$.
$int_1^{+infty} x^{-1}log^q (1+x)dx$ diverges if $qgeq -1$. Note that for small $x$ the behavior of $log(1+x)sim x$, hence
$$int_0^{1} x^{-1}log^q (1+x)dxsim int_0^{1} x^{-1}x^q dx,$$
which diverges for any $qleq 0$.
$endgroup$
The result seems correct, but check the limits for $xto 0$.
$int_1^{+infty} x^p log^q (1+x)dx$ diverges if $p>-1$,
$int_0^{1} x^p log^q (1+x)dx$ diverges if $p<-1$, independently of $q$.
It remains $p=-1$.
$int_1^{+infty} x^{-1}log^q (1+x)dx$ diverges if $qgeq -1$. Note that for small $x$ the behavior of $log(1+x)sim x$, hence
$$int_0^{1} x^{-1}log^q (1+x)dxsim int_0^{1} x^{-1}x^q dx,$$
which diverges for any $qleq 0$.
answered Oct 19 '14 at 3:56
MillyMilly
2,628612
2,628612
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f980368%2ffind-the-values-of-p-and-q-such-that-int-0-infty-xpln1xq-dx-conve%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown