Find the Values of $p$ and $q$ such that $int_0^{infty} x^pln(1+x)^q dx$ Converges or Diverges.












2












$begingroup$


The question is to find the value values of $p$ and $q$ such that the improper integral converges or diverges. My friend indeed found some values of $p$ and $q$ such that it converges, but after many trials, I am still getting divergent for all values. Via L'Hospital, we have the following:



$$lim_{x to 0} x^cln(1+x)^q = infty space text{when} space c < 0$$
$$lim_{x to 0} x^cln(1+x)^q = 0 space text{when} space c > 0$$
$$lim_{x to infty} x^cln(1+x)^q = infty space text{when} space c > 0$$
$$lim_{x to infty} x^cln(1+x)^q = 0 space text{when} space c < 0$$



Thus,
$$int_1^{infty} x^pln(1+x)^q dx = int_1^{infty} x^{p-c}x^cln(1+x)^q dx > int_1^{infty} x^{p-c} dx$$
which diverges when $p > -1$. Here, we set $c = frac{1}{2}(p+1) > 0$. On the other hand,
$$int_0^1 x^pln(1+x)^q dx = int_0^1 x^{p-c}x^cln(1+x)^q dx > int_0^1 x^{p-c} dx$$
which diverges when $p < -1$. Here, we set $c = frac{1}{2}(p+1) < 0$. Thus, the integral diverges whenever $p ne –1$. Then, let $p = -1$.



$$int_0^{infty} frac{1}{x}ln(1+x)^q dx = int_0^1 frac{1}{x}ln(1+x)^q dx + int_1^{infty} frac{1}{x}ln(1+x)^q dx $$
$$ ge int_0^1 frac{1}{x+1}ln(1+x)^q dx + int_1^{infty} frac{1}{x+1}ln(1+x)^q dx $$



The first summand diverges when $q < -1$ and the second diverges when $q > -1$. Finally, let $ p = -1$ and $q = -1$. The integral $int_0^{infty} frac{1}{xln(1+x)} dx ≥ int_0^{infty} frac{1}{(x+1)ln(1+x)} dx$ diverges on both ends. Did I make a mistake?










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    The question is to find the value values of $p$ and $q$ such that the improper integral converges or diverges. My friend indeed found some values of $p$ and $q$ such that it converges, but after many trials, I am still getting divergent for all values. Via L'Hospital, we have the following:



    $$lim_{x to 0} x^cln(1+x)^q = infty space text{when} space c < 0$$
    $$lim_{x to 0} x^cln(1+x)^q = 0 space text{when} space c > 0$$
    $$lim_{x to infty} x^cln(1+x)^q = infty space text{when} space c > 0$$
    $$lim_{x to infty} x^cln(1+x)^q = 0 space text{when} space c < 0$$



    Thus,
    $$int_1^{infty} x^pln(1+x)^q dx = int_1^{infty} x^{p-c}x^cln(1+x)^q dx > int_1^{infty} x^{p-c} dx$$
    which diverges when $p > -1$. Here, we set $c = frac{1}{2}(p+1) > 0$. On the other hand,
    $$int_0^1 x^pln(1+x)^q dx = int_0^1 x^{p-c}x^cln(1+x)^q dx > int_0^1 x^{p-c} dx$$
    which diverges when $p < -1$. Here, we set $c = frac{1}{2}(p+1) < 0$. Thus, the integral diverges whenever $p ne –1$. Then, let $p = -1$.



    $$int_0^{infty} frac{1}{x}ln(1+x)^q dx = int_0^1 frac{1}{x}ln(1+x)^q dx + int_1^{infty} frac{1}{x}ln(1+x)^q dx $$
    $$ ge int_0^1 frac{1}{x+1}ln(1+x)^q dx + int_1^{infty} frac{1}{x+1}ln(1+x)^q dx $$



    The first summand diverges when $q < -1$ and the second diverges when $q > -1$. Finally, let $ p = -1$ and $q = -1$. The integral $int_0^{infty} frac{1}{xln(1+x)} dx ≥ int_0^{infty} frac{1}{(x+1)ln(1+x)} dx$ diverges on both ends. Did I make a mistake?










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      The question is to find the value values of $p$ and $q$ such that the improper integral converges or diverges. My friend indeed found some values of $p$ and $q$ such that it converges, but after many trials, I am still getting divergent for all values. Via L'Hospital, we have the following:



      $$lim_{x to 0} x^cln(1+x)^q = infty space text{when} space c < 0$$
      $$lim_{x to 0} x^cln(1+x)^q = 0 space text{when} space c > 0$$
      $$lim_{x to infty} x^cln(1+x)^q = infty space text{when} space c > 0$$
      $$lim_{x to infty} x^cln(1+x)^q = 0 space text{when} space c < 0$$



      Thus,
      $$int_1^{infty} x^pln(1+x)^q dx = int_1^{infty} x^{p-c}x^cln(1+x)^q dx > int_1^{infty} x^{p-c} dx$$
      which diverges when $p > -1$. Here, we set $c = frac{1}{2}(p+1) > 0$. On the other hand,
      $$int_0^1 x^pln(1+x)^q dx = int_0^1 x^{p-c}x^cln(1+x)^q dx > int_0^1 x^{p-c} dx$$
      which diverges when $p < -1$. Here, we set $c = frac{1}{2}(p+1) < 0$. Thus, the integral diverges whenever $p ne –1$. Then, let $p = -1$.



      $$int_0^{infty} frac{1}{x}ln(1+x)^q dx = int_0^1 frac{1}{x}ln(1+x)^q dx + int_1^{infty} frac{1}{x}ln(1+x)^q dx $$
      $$ ge int_0^1 frac{1}{x+1}ln(1+x)^q dx + int_1^{infty} frac{1}{x+1}ln(1+x)^q dx $$



      The first summand diverges when $q < -1$ and the second diverges when $q > -1$. Finally, let $ p = -1$ and $q = -1$. The integral $int_0^{infty} frac{1}{xln(1+x)} dx ≥ int_0^{infty} frac{1}{(x+1)ln(1+x)} dx$ diverges on both ends. Did I make a mistake?










      share|cite|improve this question









      $endgroup$




      The question is to find the value values of $p$ and $q$ such that the improper integral converges or diverges. My friend indeed found some values of $p$ and $q$ such that it converges, but after many trials, I am still getting divergent for all values. Via L'Hospital, we have the following:



      $$lim_{x to 0} x^cln(1+x)^q = infty space text{when} space c < 0$$
      $$lim_{x to 0} x^cln(1+x)^q = 0 space text{when} space c > 0$$
      $$lim_{x to infty} x^cln(1+x)^q = infty space text{when} space c > 0$$
      $$lim_{x to infty} x^cln(1+x)^q = 0 space text{when} space c < 0$$



      Thus,
      $$int_1^{infty} x^pln(1+x)^q dx = int_1^{infty} x^{p-c}x^cln(1+x)^q dx > int_1^{infty} x^{p-c} dx$$
      which diverges when $p > -1$. Here, we set $c = frac{1}{2}(p+1) > 0$. On the other hand,
      $$int_0^1 x^pln(1+x)^q dx = int_0^1 x^{p-c}x^cln(1+x)^q dx > int_0^1 x^{p-c} dx$$
      which diverges when $p < -1$. Here, we set $c = frac{1}{2}(p+1) < 0$. Thus, the integral diverges whenever $p ne –1$. Then, let $p = -1$.



      $$int_0^{infty} frac{1}{x}ln(1+x)^q dx = int_0^1 frac{1}{x}ln(1+x)^q dx + int_1^{infty} frac{1}{x}ln(1+x)^q dx $$
      $$ ge int_0^1 frac{1}{x+1}ln(1+x)^q dx + int_1^{infty} frac{1}{x+1}ln(1+x)^q dx $$



      The first summand diverges when $q < -1$ and the second diverges when $q > -1$. Finally, let $ p = -1$ and $q = -1$. The integral $int_0^{infty} frac{1}{xln(1+x)} dx ≥ int_0^{infty} frac{1}{(x+1)ln(1+x)} dx$ diverges on both ends. Did I make a mistake?







      real-analysis improper-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Oct 19 '14 at 3:36









      Andy TamAndy Tam

      1,41121630




      1,41121630






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          The result seems correct, but check the limits for $xto 0$.



          $int_1^{+infty} x^p log^q (1+x)dx$ diverges if $p>-1$,
          $int_0^{1} x^p log^q (1+x)dx$ diverges if $p<-1$, independently of $q$.



          It remains $p=-1$.



          $int_1^{+infty} x^{-1}log^q (1+x)dx$ diverges if $qgeq -1$. Note that for small $x$ the behavior of $log(1+x)sim x$, hence

          $$int_0^{1} x^{-1}log^q (1+x)dxsim int_0^{1} x^{-1}x^q dx,$$
          which diverges for any $qleq 0$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f980368%2ffind-the-values-of-p-and-q-such-that-int-0-infty-xpln1xq-dx-conve%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            The result seems correct, but check the limits for $xto 0$.



            $int_1^{+infty} x^p log^q (1+x)dx$ diverges if $p>-1$,
            $int_0^{1} x^p log^q (1+x)dx$ diverges if $p<-1$, independently of $q$.



            It remains $p=-1$.



            $int_1^{+infty} x^{-1}log^q (1+x)dx$ diverges if $qgeq -1$. Note that for small $x$ the behavior of $log(1+x)sim x$, hence

            $$int_0^{1} x^{-1}log^q (1+x)dxsim int_0^{1} x^{-1}x^q dx,$$
            which diverges for any $qleq 0$.






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              The result seems correct, but check the limits for $xto 0$.



              $int_1^{+infty} x^p log^q (1+x)dx$ diverges if $p>-1$,
              $int_0^{1} x^p log^q (1+x)dx$ diverges if $p<-1$, independently of $q$.



              It remains $p=-1$.



              $int_1^{+infty} x^{-1}log^q (1+x)dx$ diverges if $qgeq -1$. Note that for small $x$ the behavior of $log(1+x)sim x$, hence

              $$int_0^{1} x^{-1}log^q (1+x)dxsim int_0^{1} x^{-1}x^q dx,$$
              which diverges for any $qleq 0$.






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                The result seems correct, but check the limits for $xto 0$.



                $int_1^{+infty} x^p log^q (1+x)dx$ diverges if $p>-1$,
                $int_0^{1} x^p log^q (1+x)dx$ diverges if $p<-1$, independently of $q$.



                It remains $p=-1$.



                $int_1^{+infty} x^{-1}log^q (1+x)dx$ diverges if $qgeq -1$. Note that for small $x$ the behavior of $log(1+x)sim x$, hence

                $$int_0^{1} x^{-1}log^q (1+x)dxsim int_0^{1} x^{-1}x^q dx,$$
                which diverges for any $qleq 0$.






                share|cite|improve this answer









                $endgroup$



                The result seems correct, but check the limits for $xto 0$.



                $int_1^{+infty} x^p log^q (1+x)dx$ diverges if $p>-1$,
                $int_0^{1} x^p log^q (1+x)dx$ diverges if $p<-1$, independently of $q$.



                It remains $p=-1$.



                $int_1^{+infty} x^{-1}log^q (1+x)dx$ diverges if $qgeq -1$. Note that for small $x$ the behavior of $log(1+x)sim x$, hence

                $$int_0^{1} x^{-1}log^q (1+x)dxsim int_0^{1} x^{-1}x^q dx,$$
                which diverges for any $qleq 0$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Oct 19 '14 at 3:56









                MillyMilly

                2,628612




                2,628612






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f980368%2ffind-the-values-of-p-and-q-such-that-int-0-infty-xpln1xq-dx-conve%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna