Finding $dfrac{1}{1+tan 70^{circ}}+dfrac{1}{1+tan 20^{circ}}$












1












$begingroup$



find the :
$$dfrac{1}{1+tan 70^{circ}}+dfrac{1}{1+tan 20^{circ}}$$




My Try :
$$dfrac{1}{1+dfrac{sin 70^{circ}}{cos 70^{circ}}}+dfrac{1}{1+dfrac{sin 20^{circ}}{cos 20^{circ}}}$$



$$dfrac{cos70^{circ}}{cos 70^{circ}+sin 70^{circ}}+dfrac{cos20^{circ}}{cos 20^{circ}+sin 20^{circ}}$$



now what do i do ?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    $cos20=sin70$
    $endgroup$
    – Nosrati
    Jan 24 '18 at 20:24










  • $begingroup$
    $$frac{1}{1+z}+frac{1}{1+frac{1}{z}}=1.$$
    $endgroup$
    – Jack D'Aurizio
    Jan 24 '18 at 20:34
















1












$begingroup$



find the :
$$dfrac{1}{1+tan 70^{circ}}+dfrac{1}{1+tan 20^{circ}}$$




My Try :
$$dfrac{1}{1+dfrac{sin 70^{circ}}{cos 70^{circ}}}+dfrac{1}{1+dfrac{sin 20^{circ}}{cos 20^{circ}}}$$



$$dfrac{cos70^{circ}}{cos 70^{circ}+sin 70^{circ}}+dfrac{cos20^{circ}}{cos 20^{circ}+sin 20^{circ}}$$



now what do i do ?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    $cos20=sin70$
    $endgroup$
    – Nosrati
    Jan 24 '18 at 20:24










  • $begingroup$
    $$frac{1}{1+z}+frac{1}{1+frac{1}{z}}=1.$$
    $endgroup$
    – Jack D'Aurizio
    Jan 24 '18 at 20:34














1












1








1


1



$begingroup$



find the :
$$dfrac{1}{1+tan 70^{circ}}+dfrac{1}{1+tan 20^{circ}}$$




My Try :
$$dfrac{1}{1+dfrac{sin 70^{circ}}{cos 70^{circ}}}+dfrac{1}{1+dfrac{sin 20^{circ}}{cos 20^{circ}}}$$



$$dfrac{cos70^{circ}}{cos 70^{circ}+sin 70^{circ}}+dfrac{cos20^{circ}}{cos 20^{circ}+sin 20^{circ}}$$



now what do i do ?










share|cite|improve this question











$endgroup$





find the :
$$dfrac{1}{1+tan 70^{circ}}+dfrac{1}{1+tan 20^{circ}}$$




My Try :
$$dfrac{1}{1+dfrac{sin 70^{circ}}{cos 70^{circ}}}+dfrac{1}{1+dfrac{sin 20^{circ}}{cos 20^{circ}}}$$



$$dfrac{cos70^{circ}}{cos 70^{circ}+sin 70^{circ}}+dfrac{cos20^{circ}}{cos 20^{circ}+sin 20^{circ}}$$



now what do i do ?







algebra-precalculus trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 1 at 22:02









greedoid

45.8k1159116




45.8k1159116










asked Jan 24 '18 at 20:22









Fricul38Fricul38

36918




36918








  • 1




    $begingroup$
    $cos20=sin70$
    $endgroup$
    – Nosrati
    Jan 24 '18 at 20:24










  • $begingroup$
    $$frac{1}{1+z}+frac{1}{1+frac{1}{z}}=1.$$
    $endgroup$
    – Jack D'Aurizio
    Jan 24 '18 at 20:34














  • 1




    $begingroup$
    $cos20=sin70$
    $endgroup$
    – Nosrati
    Jan 24 '18 at 20:24










  • $begingroup$
    $$frac{1}{1+z}+frac{1}{1+frac{1}{z}}=1.$$
    $endgroup$
    – Jack D'Aurizio
    Jan 24 '18 at 20:34








1




1




$begingroup$
$cos20=sin70$
$endgroup$
– Nosrati
Jan 24 '18 at 20:24




$begingroup$
$cos20=sin70$
$endgroup$
– Nosrati
Jan 24 '18 at 20:24












$begingroup$
$$frac{1}{1+z}+frac{1}{1+frac{1}{z}}=1.$$
$endgroup$
– Jack D'Aurizio
Jan 24 '18 at 20:34




$begingroup$
$$frac{1}{1+z}+frac{1}{1+frac{1}{z}}=1.$$
$endgroup$
– Jack D'Aurizio
Jan 24 '18 at 20:34










4 Answers
4






active

oldest

votes


















3












$begingroup$

Let $x=20^{circ}$



begin{eqnarray}dfrac{1}{1+tan 70^{circ}}+dfrac{1}{1+tan 20^{circ}}&=&dfrac{1}{1+cot 20^{circ}}+dfrac{1}{1+tan 20^{circ}}\&=& dfrac{sin x}{sin x+cos x}+dfrac{cos x}{cos x+sin x}\ &=&1end{eqnarray}






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    It's $$dfrac{sin20^{circ}}{sin 20^{circ}+cos 20^{circ}}+dfrac{cos20^{circ}}{cos 20^{circ}+sin 20^{circ}}=1$$






    share|cite|improve this answer









    $endgroup$





















      2












      $begingroup$

      $$frac { 1 }{ 1+tan { { 70 }^{ circ } } } +frac { 1 }{ 1+tan { { 20 }^{ circ } } } =frac { 1 }{ 1+tan { { 70 }^{ circ } } } +frac { 1 }{ 1+cot { { 70 }^{ circ } } } =\ =frac { 1 }{ 1+tan { { 70 }^{ circ } } } +frac { 1 }{ 1+frac { 1 }{ tan { { 70 }^{ circ } } } } =frac { 1+tan { { 70 }^{ circ } } }{ 1+tan { { 70 }^{ circ } } } =1$$






      share|cite|improve this answer









      $endgroup$





















        2












        $begingroup$


        See that $$tan (x) = frac{sin x}{cos x}=frac{cos (90^{circ}-x)}{sin (90^{circ}-x)}=frac{1}{tan (90^{circ}-x)}$$
        what happen if you take $x=70$




        $$dfrac{1}{1+tan 70^{circ}}+dfrac{1}{1+tan 20^{circ}} = dfrac{1}{1+frac{1}{tan 20^{circ}}}+dfrac{1}{1+tan 20^{circ}}= dfrac{tan 20^{circ}}{1+tan 20^{circ}}+dfrac{1}{1+tan 20^{circ}} = 1$$






        share|cite|improve this answer











        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2619711%2ffinding-dfrac11-tan-70-circ-dfrac11-tan-20-circ%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          Let $x=20^{circ}$



          begin{eqnarray}dfrac{1}{1+tan 70^{circ}}+dfrac{1}{1+tan 20^{circ}}&=&dfrac{1}{1+cot 20^{circ}}+dfrac{1}{1+tan 20^{circ}}\&=& dfrac{sin x}{sin x+cos x}+dfrac{cos x}{cos x+sin x}\ &=&1end{eqnarray}






          share|cite|improve this answer









          $endgroup$


















            3












            $begingroup$

            Let $x=20^{circ}$



            begin{eqnarray}dfrac{1}{1+tan 70^{circ}}+dfrac{1}{1+tan 20^{circ}}&=&dfrac{1}{1+cot 20^{circ}}+dfrac{1}{1+tan 20^{circ}}\&=& dfrac{sin x}{sin x+cos x}+dfrac{cos x}{cos x+sin x}\ &=&1end{eqnarray}






            share|cite|improve this answer









            $endgroup$
















              3












              3








              3





              $begingroup$

              Let $x=20^{circ}$



              begin{eqnarray}dfrac{1}{1+tan 70^{circ}}+dfrac{1}{1+tan 20^{circ}}&=&dfrac{1}{1+cot 20^{circ}}+dfrac{1}{1+tan 20^{circ}}\&=& dfrac{sin x}{sin x+cos x}+dfrac{cos x}{cos x+sin x}\ &=&1end{eqnarray}






              share|cite|improve this answer









              $endgroup$



              Let $x=20^{circ}$



              begin{eqnarray}dfrac{1}{1+tan 70^{circ}}+dfrac{1}{1+tan 20^{circ}}&=&dfrac{1}{1+cot 20^{circ}}+dfrac{1}{1+tan 20^{circ}}\&=& dfrac{sin x}{sin x+cos x}+dfrac{cos x}{cos x+sin x}\ &=&1end{eqnarray}







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 24 '18 at 20:26









              greedoidgreedoid

              45.8k1159116




              45.8k1159116























                  2












                  $begingroup$

                  It's $$dfrac{sin20^{circ}}{sin 20^{circ}+cos 20^{circ}}+dfrac{cos20^{circ}}{cos 20^{circ}+sin 20^{circ}}=1$$






                  share|cite|improve this answer









                  $endgroup$


















                    2












                    $begingroup$

                    It's $$dfrac{sin20^{circ}}{sin 20^{circ}+cos 20^{circ}}+dfrac{cos20^{circ}}{cos 20^{circ}+sin 20^{circ}}=1$$






                    share|cite|improve this answer









                    $endgroup$
















                      2












                      2








                      2





                      $begingroup$

                      It's $$dfrac{sin20^{circ}}{sin 20^{circ}+cos 20^{circ}}+dfrac{cos20^{circ}}{cos 20^{circ}+sin 20^{circ}}=1$$






                      share|cite|improve this answer









                      $endgroup$



                      It's $$dfrac{sin20^{circ}}{sin 20^{circ}+cos 20^{circ}}+dfrac{cos20^{circ}}{cos 20^{circ}+sin 20^{circ}}=1$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Jan 24 '18 at 20:24









                      Michael RozenbergMichael Rozenberg

                      106k1894198




                      106k1894198























                          2












                          $begingroup$

                          $$frac { 1 }{ 1+tan { { 70 }^{ circ } } } +frac { 1 }{ 1+tan { { 20 }^{ circ } } } =frac { 1 }{ 1+tan { { 70 }^{ circ } } } +frac { 1 }{ 1+cot { { 70 }^{ circ } } } =\ =frac { 1 }{ 1+tan { { 70 }^{ circ } } } +frac { 1 }{ 1+frac { 1 }{ tan { { 70 }^{ circ } } } } =frac { 1+tan { { 70 }^{ circ } } }{ 1+tan { { 70 }^{ circ } } } =1$$






                          share|cite|improve this answer









                          $endgroup$


















                            2












                            $begingroup$

                            $$frac { 1 }{ 1+tan { { 70 }^{ circ } } } +frac { 1 }{ 1+tan { { 20 }^{ circ } } } =frac { 1 }{ 1+tan { { 70 }^{ circ } } } +frac { 1 }{ 1+cot { { 70 }^{ circ } } } =\ =frac { 1 }{ 1+tan { { 70 }^{ circ } } } +frac { 1 }{ 1+frac { 1 }{ tan { { 70 }^{ circ } } } } =frac { 1+tan { { 70 }^{ circ } } }{ 1+tan { { 70 }^{ circ } } } =1$$






                            share|cite|improve this answer









                            $endgroup$
















                              2












                              2








                              2





                              $begingroup$

                              $$frac { 1 }{ 1+tan { { 70 }^{ circ } } } +frac { 1 }{ 1+tan { { 20 }^{ circ } } } =frac { 1 }{ 1+tan { { 70 }^{ circ } } } +frac { 1 }{ 1+cot { { 70 }^{ circ } } } =\ =frac { 1 }{ 1+tan { { 70 }^{ circ } } } +frac { 1 }{ 1+frac { 1 }{ tan { { 70 }^{ circ } } } } =frac { 1+tan { { 70 }^{ circ } } }{ 1+tan { { 70 }^{ circ } } } =1$$






                              share|cite|improve this answer









                              $endgroup$



                              $$frac { 1 }{ 1+tan { { 70 }^{ circ } } } +frac { 1 }{ 1+tan { { 20 }^{ circ } } } =frac { 1 }{ 1+tan { { 70 }^{ circ } } } +frac { 1 }{ 1+cot { { 70 }^{ circ } } } =\ =frac { 1 }{ 1+tan { { 70 }^{ circ } } } +frac { 1 }{ 1+frac { 1 }{ tan { { 70 }^{ circ } } } } =frac { 1+tan { { 70 }^{ circ } } }{ 1+tan { { 70 }^{ circ } } } =1$$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Jan 24 '18 at 20:29









                              haqnaturalhaqnatural

                              20.8k72457




                              20.8k72457























                                  2












                                  $begingroup$


                                  See that $$tan (x) = frac{sin x}{cos x}=frac{cos (90^{circ}-x)}{sin (90^{circ}-x)}=frac{1}{tan (90^{circ}-x)}$$
                                  what happen if you take $x=70$




                                  $$dfrac{1}{1+tan 70^{circ}}+dfrac{1}{1+tan 20^{circ}} = dfrac{1}{1+frac{1}{tan 20^{circ}}}+dfrac{1}{1+tan 20^{circ}}= dfrac{tan 20^{circ}}{1+tan 20^{circ}}+dfrac{1}{1+tan 20^{circ}} = 1$$






                                  share|cite|improve this answer











                                  $endgroup$


















                                    2












                                    $begingroup$


                                    See that $$tan (x) = frac{sin x}{cos x}=frac{cos (90^{circ}-x)}{sin (90^{circ}-x)}=frac{1}{tan (90^{circ}-x)}$$
                                    what happen if you take $x=70$




                                    $$dfrac{1}{1+tan 70^{circ}}+dfrac{1}{1+tan 20^{circ}} = dfrac{1}{1+frac{1}{tan 20^{circ}}}+dfrac{1}{1+tan 20^{circ}}= dfrac{tan 20^{circ}}{1+tan 20^{circ}}+dfrac{1}{1+tan 20^{circ}} = 1$$






                                    share|cite|improve this answer











                                    $endgroup$
















                                      2












                                      2








                                      2





                                      $begingroup$


                                      See that $$tan (x) = frac{sin x}{cos x}=frac{cos (90^{circ}-x)}{sin (90^{circ}-x)}=frac{1}{tan (90^{circ}-x)}$$
                                      what happen if you take $x=70$




                                      $$dfrac{1}{1+tan 70^{circ}}+dfrac{1}{1+tan 20^{circ}} = dfrac{1}{1+frac{1}{tan 20^{circ}}}+dfrac{1}{1+tan 20^{circ}}= dfrac{tan 20^{circ}}{1+tan 20^{circ}}+dfrac{1}{1+tan 20^{circ}} = 1$$






                                      share|cite|improve this answer











                                      $endgroup$




                                      See that $$tan (x) = frac{sin x}{cos x}=frac{cos (90^{circ}-x)}{sin (90^{circ}-x)}=frac{1}{tan (90^{circ}-x)}$$
                                      what happen if you take $x=70$




                                      $$dfrac{1}{1+tan 70^{circ}}+dfrac{1}{1+tan 20^{circ}} = dfrac{1}{1+frac{1}{tan 20^{circ}}}+dfrac{1}{1+tan 20^{circ}}= dfrac{tan 20^{circ}}{1+tan 20^{circ}}+dfrac{1}{1+tan 20^{circ}} = 1$$







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited Jan 24 '18 at 21:11

























                                      answered Jan 24 '18 at 20:40









                                      Guy FsoneGuy Fsone

                                      17.2k43074




                                      17.2k43074






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2619711%2ffinding-dfrac11-tan-70-circ-dfrac11-tan-20-circ%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Bressuire

                                          Cabo Verde

                                          Gyllenstierna