Prove that $arcsin z = frac{pi}{2} - arccos z$
$begingroup$
I have $arccos (z) = -iln (z + sqrt{z^2-1})$ and $arcsin (z)=-i ln(iz +sqrt{1-z^2}).$
Now I must prove, that $arcsin (z) = frac{pi}{2} - arccos (z)$.
I get:
$$arcsin (z)=-ilnleft(iz+sqrt{1-z^2}right)=-ilnleft(iz+sqrt{-1(z^2-1)}right)=-ilnleft(iz+sqrt{i^{2}(z^2-1)}right)=$$
$$=-lnleft(iz+isqrt{z^2-1}right)=-ilnleft(i(z+sqrt{z^2-1})right)=-iln -ilnleft(z+sqrt{z^2-1}right)=$$
$$=-ileft(ln|i|+ifrac{pi}{2}right)-ilnleft(z+sqrt{z^2-1}right)=frac{pi}{2}+arccos (z).$$
I don't know where I make mistake, because I have "+" not "-".
complex-analysis
$endgroup$
add a comment |
$begingroup$
I have $arccos (z) = -iln (z + sqrt{z^2-1})$ and $arcsin (z)=-i ln(iz +sqrt{1-z^2}).$
Now I must prove, that $arcsin (z) = frac{pi}{2} - arccos (z)$.
I get:
$$arcsin (z)=-ilnleft(iz+sqrt{1-z^2}right)=-ilnleft(iz+sqrt{-1(z^2-1)}right)=-ilnleft(iz+sqrt{i^{2}(z^2-1)}right)=$$
$$=-lnleft(iz+isqrt{z^2-1}right)=-ilnleft(i(z+sqrt{z^2-1})right)=-iln -ilnleft(z+sqrt{z^2-1}right)=$$
$$=-ileft(ln|i|+ifrac{pi}{2}right)-ilnleft(z+sqrt{z^2-1}right)=frac{pi}{2}+arccos (z).$$
I don't know where I make mistake, because I have "+" not "-".
complex-analysis
$endgroup$
$begingroup$
One hint: $ln(sqrt{i^2})$ is not always equal to $ln(i)$
$endgroup$
– gammatester
May 7 '14 at 14:19
$begingroup$
so what I do now
$endgroup$
– user119543
May 7 '14 at 14:26
$begingroup$
Easiest way would be using $sin left(frac{pi}{2}-wright) = cos w$.
$endgroup$
– Daniel Fischer♦
May 7 '14 at 14:27
$begingroup$
but it is multiplicative funkction ... i would do made in this way ..
$endgroup$
– user119543
May 7 '14 at 14:29
$begingroup$
someone can help me?
$endgroup$
– user119543
May 7 '14 at 14:46
add a comment |
$begingroup$
I have $arccos (z) = -iln (z + sqrt{z^2-1})$ and $arcsin (z)=-i ln(iz +sqrt{1-z^2}).$
Now I must prove, that $arcsin (z) = frac{pi}{2} - arccos (z)$.
I get:
$$arcsin (z)=-ilnleft(iz+sqrt{1-z^2}right)=-ilnleft(iz+sqrt{-1(z^2-1)}right)=-ilnleft(iz+sqrt{i^{2}(z^2-1)}right)=$$
$$=-lnleft(iz+isqrt{z^2-1}right)=-ilnleft(i(z+sqrt{z^2-1})right)=-iln -ilnleft(z+sqrt{z^2-1}right)=$$
$$=-ileft(ln|i|+ifrac{pi}{2}right)-ilnleft(z+sqrt{z^2-1}right)=frac{pi}{2}+arccos (z).$$
I don't know where I make mistake, because I have "+" not "-".
complex-analysis
$endgroup$
I have $arccos (z) = -iln (z + sqrt{z^2-1})$ and $arcsin (z)=-i ln(iz +sqrt{1-z^2}).$
Now I must prove, that $arcsin (z) = frac{pi}{2} - arccos (z)$.
I get:
$$arcsin (z)=-ilnleft(iz+sqrt{1-z^2}right)=-ilnleft(iz+sqrt{-1(z^2-1)}right)=-ilnleft(iz+sqrt{i^{2}(z^2-1)}right)=$$
$$=-lnleft(iz+isqrt{z^2-1}right)=-ilnleft(i(z+sqrt{z^2-1})right)=-iln -ilnleft(z+sqrt{z^2-1}right)=$$
$$=-ileft(ln|i|+ifrac{pi}{2}right)-ilnleft(z+sqrt{z^2-1}right)=frac{pi}{2}+arccos (z).$$
I don't know where I make mistake, because I have "+" not "-".
complex-analysis
complex-analysis
edited May 7 '14 at 14:23
Samrat Mukhopadhyay
13.7k2047
13.7k2047
asked May 7 '14 at 14:11
user119543user119543
115
115
$begingroup$
One hint: $ln(sqrt{i^2})$ is not always equal to $ln(i)$
$endgroup$
– gammatester
May 7 '14 at 14:19
$begingroup$
so what I do now
$endgroup$
– user119543
May 7 '14 at 14:26
$begingroup$
Easiest way would be using $sin left(frac{pi}{2}-wright) = cos w$.
$endgroup$
– Daniel Fischer♦
May 7 '14 at 14:27
$begingroup$
but it is multiplicative funkction ... i would do made in this way ..
$endgroup$
– user119543
May 7 '14 at 14:29
$begingroup$
someone can help me?
$endgroup$
– user119543
May 7 '14 at 14:46
add a comment |
$begingroup$
One hint: $ln(sqrt{i^2})$ is not always equal to $ln(i)$
$endgroup$
– gammatester
May 7 '14 at 14:19
$begingroup$
so what I do now
$endgroup$
– user119543
May 7 '14 at 14:26
$begingroup$
Easiest way would be using $sin left(frac{pi}{2}-wright) = cos w$.
$endgroup$
– Daniel Fischer♦
May 7 '14 at 14:27
$begingroup$
but it is multiplicative funkction ... i would do made in this way ..
$endgroup$
– user119543
May 7 '14 at 14:29
$begingroup$
someone can help me?
$endgroup$
– user119543
May 7 '14 at 14:46
$begingroup$
One hint: $ln(sqrt{i^2})$ is not always equal to $ln(i)$
$endgroup$
– gammatester
May 7 '14 at 14:19
$begingroup$
One hint: $ln(sqrt{i^2})$ is not always equal to $ln(i)$
$endgroup$
– gammatester
May 7 '14 at 14:19
$begingroup$
so what I do now
$endgroup$
– user119543
May 7 '14 at 14:26
$begingroup$
so what I do now
$endgroup$
– user119543
May 7 '14 at 14:26
$begingroup$
Easiest way would be using $sin left(frac{pi}{2}-wright) = cos w$.
$endgroup$
– Daniel Fischer♦
May 7 '14 at 14:27
$begingroup$
Easiest way would be using $sin left(frac{pi}{2}-wright) = cos w$.
$endgroup$
– Daniel Fischer♦
May 7 '14 at 14:27
$begingroup$
but it is multiplicative funkction ... i would do made in this way ..
$endgroup$
– user119543
May 7 '14 at 14:29
$begingroup$
but it is multiplicative funkction ... i would do made in this way ..
$endgroup$
– user119543
May 7 '14 at 14:29
$begingroup$
someone can help me?
$endgroup$
– user119543
May 7 '14 at 14:46
$begingroup$
someone can help me?
$endgroup$
– user119543
May 7 '14 at 14:46
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Suppose the statement is true, namely,
begin{align}
sin^{-1}(z) = frac{pi}{2} - cos^{-1}(z).
end{align}
By taking the sine of both sides leads to
begin{align}
sin(sin^{-1}(z)) &= sin(frac{pi}{2} - cos^{-1}(z)) \
z &= sin(pi/2) cos(cos^{-1}(z)) - cos(pi/2) sin(cos^{-1}(z)) \
z &= z.
end{align}
This shows the identity is true.
$endgroup$
add a comment |
$begingroup$
lets start by defining $w
to be $sin(w) = z
now, we'll use the complex identity:
sin(w) = z = (exp(iw)-exp(-iw))/2i
define t = exp(iw)
therefor, by applying this to the previous equation:
z = (t - 1/t)/2i
multiply by 2i
and pass all args to the right side to get:
t^2 - (2iz) - 1 = 0
a standard quadratic equation:
t = ((2iz)+sqrt((2i*z)^2 + 4))/2
t = i*z + sqrt(1 - z^2)
but we defined t = exp(i*w)
therfor:
exp(iw) = i*z + sqrt(1 - z^2)
take the log
to both sides and get that:
iw = log(i*z + sqrt(1 - z^2))
divide by i
:
w = (1/i) * log(i*z + sqrt(1 - z^2))
but as we first defined: sin(w) = z
thenw = arcsin(z)
in total:
arcsin(z) = (1/i) * log(i*z + sqrt(1 - z^2))
that proves your claim is right.
$endgroup$
$begingroup$
Please do not bump old posts unless absolutely necessary.
$endgroup$
– Cyclohexanol.
Dec 3 '14 at 23:14
add a comment |
$begingroup$
My usual naive approach.
From
$arccos (z) = -iln (z + sqrt{z^2-1})
$
and
$arcsin (z)=-i ln(iz +sqrt{1-z^2})
$
we get
$begin{array}\
arccos (z)+arcsin (z)
&=-i(ln (z + sqrt{z^2-1})+ln(iz +sqrt{1-z^2}))\
&=-i(ln ((z + sqrt{z^2-1})(iz +sqrt{1-z^2}))\
&=-i(ln ((z + isqrt{1-z^2})(iz +sqrt{1-z^2}))\
&=-i(ln (iz^2+zsqrt{1-z^2}(-1+1)+i(1-z^2))\
&=-i(ln (i))\
&=-i(dfrac{ipi}{2})\
&=dfrac{pi}{2}\
end{array}
$
Throw in a $2kpi i$
if you want.
That will change the answer to
$dfrac{pi}{2}+2kpi$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f785028%2fprove-that-arcsin-z-frac-pi2-arccos-z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Suppose the statement is true, namely,
begin{align}
sin^{-1}(z) = frac{pi}{2} - cos^{-1}(z).
end{align}
By taking the sine of both sides leads to
begin{align}
sin(sin^{-1}(z)) &= sin(frac{pi}{2} - cos^{-1}(z)) \
z &= sin(pi/2) cos(cos^{-1}(z)) - cos(pi/2) sin(cos^{-1}(z)) \
z &= z.
end{align}
This shows the identity is true.
$endgroup$
add a comment |
$begingroup$
Suppose the statement is true, namely,
begin{align}
sin^{-1}(z) = frac{pi}{2} - cos^{-1}(z).
end{align}
By taking the sine of both sides leads to
begin{align}
sin(sin^{-1}(z)) &= sin(frac{pi}{2} - cos^{-1}(z)) \
z &= sin(pi/2) cos(cos^{-1}(z)) - cos(pi/2) sin(cos^{-1}(z)) \
z &= z.
end{align}
This shows the identity is true.
$endgroup$
add a comment |
$begingroup$
Suppose the statement is true, namely,
begin{align}
sin^{-1}(z) = frac{pi}{2} - cos^{-1}(z).
end{align}
By taking the sine of both sides leads to
begin{align}
sin(sin^{-1}(z)) &= sin(frac{pi}{2} - cos^{-1}(z)) \
z &= sin(pi/2) cos(cos^{-1}(z)) - cos(pi/2) sin(cos^{-1}(z)) \
z &= z.
end{align}
This shows the identity is true.
$endgroup$
Suppose the statement is true, namely,
begin{align}
sin^{-1}(z) = frac{pi}{2} - cos^{-1}(z).
end{align}
By taking the sine of both sides leads to
begin{align}
sin(sin^{-1}(z)) &= sin(frac{pi}{2} - cos^{-1}(z)) \
z &= sin(pi/2) cos(cos^{-1}(z)) - cos(pi/2) sin(cos^{-1}(z)) \
z &= z.
end{align}
This shows the identity is true.
answered May 7 '14 at 17:39
LeucippusLeucippus
19.6k102871
19.6k102871
add a comment |
add a comment |
$begingroup$
lets start by defining $w
to be $sin(w) = z
now, we'll use the complex identity:
sin(w) = z = (exp(iw)-exp(-iw))/2i
define t = exp(iw)
therefor, by applying this to the previous equation:
z = (t - 1/t)/2i
multiply by 2i
and pass all args to the right side to get:
t^2 - (2iz) - 1 = 0
a standard quadratic equation:
t = ((2iz)+sqrt((2i*z)^2 + 4))/2
t = i*z + sqrt(1 - z^2)
but we defined t = exp(i*w)
therfor:
exp(iw) = i*z + sqrt(1 - z^2)
take the log
to both sides and get that:
iw = log(i*z + sqrt(1 - z^2))
divide by i
:
w = (1/i) * log(i*z + sqrt(1 - z^2))
but as we first defined: sin(w) = z
thenw = arcsin(z)
in total:
arcsin(z) = (1/i) * log(i*z + sqrt(1 - z^2))
that proves your claim is right.
$endgroup$
$begingroup$
Please do not bump old posts unless absolutely necessary.
$endgroup$
– Cyclohexanol.
Dec 3 '14 at 23:14
add a comment |
$begingroup$
lets start by defining $w
to be $sin(w) = z
now, we'll use the complex identity:
sin(w) = z = (exp(iw)-exp(-iw))/2i
define t = exp(iw)
therefor, by applying this to the previous equation:
z = (t - 1/t)/2i
multiply by 2i
and pass all args to the right side to get:
t^2 - (2iz) - 1 = 0
a standard quadratic equation:
t = ((2iz)+sqrt((2i*z)^2 + 4))/2
t = i*z + sqrt(1 - z^2)
but we defined t = exp(i*w)
therfor:
exp(iw) = i*z + sqrt(1 - z^2)
take the log
to both sides and get that:
iw = log(i*z + sqrt(1 - z^2))
divide by i
:
w = (1/i) * log(i*z + sqrt(1 - z^2))
but as we first defined: sin(w) = z
thenw = arcsin(z)
in total:
arcsin(z) = (1/i) * log(i*z + sqrt(1 - z^2))
that proves your claim is right.
$endgroup$
$begingroup$
Please do not bump old posts unless absolutely necessary.
$endgroup$
– Cyclohexanol.
Dec 3 '14 at 23:14
add a comment |
$begingroup$
lets start by defining $w
to be $sin(w) = z
now, we'll use the complex identity:
sin(w) = z = (exp(iw)-exp(-iw))/2i
define t = exp(iw)
therefor, by applying this to the previous equation:
z = (t - 1/t)/2i
multiply by 2i
and pass all args to the right side to get:
t^2 - (2iz) - 1 = 0
a standard quadratic equation:
t = ((2iz)+sqrt((2i*z)^2 + 4))/2
t = i*z + sqrt(1 - z^2)
but we defined t = exp(i*w)
therfor:
exp(iw) = i*z + sqrt(1 - z^2)
take the log
to both sides and get that:
iw = log(i*z + sqrt(1 - z^2))
divide by i
:
w = (1/i) * log(i*z + sqrt(1 - z^2))
but as we first defined: sin(w) = z
thenw = arcsin(z)
in total:
arcsin(z) = (1/i) * log(i*z + sqrt(1 - z^2))
that proves your claim is right.
$endgroup$
lets start by defining $w
to be $sin(w) = z
now, we'll use the complex identity:
sin(w) = z = (exp(iw)-exp(-iw))/2i
define t = exp(iw)
therefor, by applying this to the previous equation:
z = (t - 1/t)/2i
multiply by 2i
and pass all args to the right side to get:
t^2 - (2iz) - 1 = 0
a standard quadratic equation:
t = ((2iz)+sqrt((2i*z)^2 + 4))/2
t = i*z + sqrt(1 - z^2)
but we defined t = exp(i*w)
therfor:
exp(iw) = i*z + sqrt(1 - z^2)
take the log
to both sides and get that:
iw = log(i*z + sqrt(1 - z^2))
divide by i
:
w = (1/i) * log(i*z + sqrt(1 - z^2))
but as we first defined: sin(w) = z
thenw = arcsin(z)
in total:
arcsin(z) = (1/i) * log(i*z + sqrt(1 - z^2))
that proves your claim is right.
answered Dec 3 '14 at 23:09
ThunderWiringThunderWiring
1215
1215
$begingroup$
Please do not bump old posts unless absolutely necessary.
$endgroup$
– Cyclohexanol.
Dec 3 '14 at 23:14
add a comment |
$begingroup$
Please do not bump old posts unless absolutely necessary.
$endgroup$
– Cyclohexanol.
Dec 3 '14 at 23:14
$begingroup$
Please do not bump old posts unless absolutely necessary.
$endgroup$
– Cyclohexanol.
Dec 3 '14 at 23:14
$begingroup$
Please do not bump old posts unless absolutely necessary.
$endgroup$
– Cyclohexanol.
Dec 3 '14 at 23:14
add a comment |
$begingroup$
My usual naive approach.
From
$arccos (z) = -iln (z + sqrt{z^2-1})
$
and
$arcsin (z)=-i ln(iz +sqrt{1-z^2})
$
we get
$begin{array}\
arccos (z)+arcsin (z)
&=-i(ln (z + sqrt{z^2-1})+ln(iz +sqrt{1-z^2}))\
&=-i(ln ((z + sqrt{z^2-1})(iz +sqrt{1-z^2}))\
&=-i(ln ((z + isqrt{1-z^2})(iz +sqrt{1-z^2}))\
&=-i(ln (iz^2+zsqrt{1-z^2}(-1+1)+i(1-z^2))\
&=-i(ln (i))\
&=-i(dfrac{ipi}{2})\
&=dfrac{pi}{2}\
end{array}
$
Throw in a $2kpi i$
if you want.
That will change the answer to
$dfrac{pi}{2}+2kpi$.
$endgroup$
add a comment |
$begingroup$
My usual naive approach.
From
$arccos (z) = -iln (z + sqrt{z^2-1})
$
and
$arcsin (z)=-i ln(iz +sqrt{1-z^2})
$
we get
$begin{array}\
arccos (z)+arcsin (z)
&=-i(ln (z + sqrt{z^2-1})+ln(iz +sqrt{1-z^2}))\
&=-i(ln ((z + sqrt{z^2-1})(iz +sqrt{1-z^2}))\
&=-i(ln ((z + isqrt{1-z^2})(iz +sqrt{1-z^2}))\
&=-i(ln (iz^2+zsqrt{1-z^2}(-1+1)+i(1-z^2))\
&=-i(ln (i))\
&=-i(dfrac{ipi}{2})\
&=dfrac{pi}{2}\
end{array}
$
Throw in a $2kpi i$
if you want.
That will change the answer to
$dfrac{pi}{2}+2kpi$.
$endgroup$
add a comment |
$begingroup$
My usual naive approach.
From
$arccos (z) = -iln (z + sqrt{z^2-1})
$
and
$arcsin (z)=-i ln(iz +sqrt{1-z^2})
$
we get
$begin{array}\
arccos (z)+arcsin (z)
&=-i(ln (z + sqrt{z^2-1})+ln(iz +sqrt{1-z^2}))\
&=-i(ln ((z + sqrt{z^2-1})(iz +sqrt{1-z^2}))\
&=-i(ln ((z + isqrt{1-z^2})(iz +sqrt{1-z^2}))\
&=-i(ln (iz^2+zsqrt{1-z^2}(-1+1)+i(1-z^2))\
&=-i(ln (i))\
&=-i(dfrac{ipi}{2})\
&=dfrac{pi}{2}\
end{array}
$
Throw in a $2kpi i$
if you want.
That will change the answer to
$dfrac{pi}{2}+2kpi$.
$endgroup$
My usual naive approach.
From
$arccos (z) = -iln (z + sqrt{z^2-1})
$
and
$arcsin (z)=-i ln(iz +sqrt{1-z^2})
$
we get
$begin{array}\
arccos (z)+arcsin (z)
&=-i(ln (z + sqrt{z^2-1})+ln(iz +sqrt{1-z^2}))\
&=-i(ln ((z + sqrt{z^2-1})(iz +sqrt{1-z^2}))\
&=-i(ln ((z + isqrt{1-z^2})(iz +sqrt{1-z^2}))\
&=-i(ln (iz^2+zsqrt{1-z^2}(-1+1)+i(1-z^2))\
&=-i(ln (i))\
&=-i(dfrac{ipi}{2})\
&=dfrac{pi}{2}\
end{array}
$
Throw in a $2kpi i$
if you want.
That will change the answer to
$dfrac{pi}{2}+2kpi$.
answered Nov 28 '18 at 21:49
marty cohenmarty cohen
74.1k549128
74.1k549128
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f785028%2fprove-that-arcsin-z-frac-pi2-arccos-z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
One hint: $ln(sqrt{i^2})$ is not always equal to $ln(i)$
$endgroup$
– gammatester
May 7 '14 at 14:19
$begingroup$
so what I do now
$endgroup$
– user119543
May 7 '14 at 14:26
$begingroup$
Easiest way would be using $sin left(frac{pi}{2}-wright) = cos w$.
$endgroup$
– Daniel Fischer♦
May 7 '14 at 14:27
$begingroup$
but it is multiplicative funkction ... i would do made in this way ..
$endgroup$
– user119543
May 7 '14 at 14:29
$begingroup$
someone can help me?
$endgroup$
– user119543
May 7 '14 at 14:46