Integral with two different answers using real and complex analysis
$begingroup$
The integral is$$int_0^{2pi}frac{mathrm dθ}{2-cosθ}.$$Just to skip time, the answer of the indefinite integral is $dfrac2{sqrt{3}}tan^{-1}left(sqrt3tanleft(dfracθ2right)right)$.
Evaluating it from $0$ to $ 2 pi$ yields$$frac2{sqrt3}tan^{-1}(sqrt3 tanπ)-frac2{sqrt3}tan^{-1}(sqrt3 tan0)=0-0=0.$$But using complex analysis, the integral is transformed into$$2iint_Cfrac{mathrm dz}{z^2-4z+1}=2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)},$$
where $C$ is the boundary of the circle $|z|=1$. Then by Cauchy's integral formula, since $z=2-sqrt3$ is inside the domain of the region bounded by $C$, then:
$$2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)}=2πifrac{2i}{2-sqrt3-2-sqrt3}=2πifrac{2i}{-2sqrt3}=frac{2π}{sqrt3}.$$
Using real analysis I get $0$, using complex analysis I get $dfrac{2π}{sqrt3}$. What is wrong?
complex-analysis definite-integrals cauchy-integral-formula
$endgroup$
add a comment |
$begingroup$
The integral is$$int_0^{2pi}frac{mathrm dθ}{2-cosθ}.$$Just to skip time, the answer of the indefinite integral is $dfrac2{sqrt{3}}tan^{-1}left(sqrt3tanleft(dfracθ2right)right)$.
Evaluating it from $0$ to $ 2 pi$ yields$$frac2{sqrt3}tan^{-1}(sqrt3 tanπ)-frac2{sqrt3}tan^{-1}(sqrt3 tan0)=0-0=0.$$But using complex analysis, the integral is transformed into$$2iint_Cfrac{mathrm dz}{z^2-4z+1}=2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)},$$
where $C$ is the boundary of the circle $|z|=1$. Then by Cauchy's integral formula, since $z=2-sqrt3$ is inside the domain of the region bounded by $C$, then:
$$2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)}=2πifrac{2i}{2-sqrt3-2-sqrt3}=2πifrac{2i}{-2sqrt3}=frac{2π}{sqrt3}.$$
Using real analysis I get $0$, using complex analysis I get $dfrac{2π}{sqrt3}$. What is wrong?
complex-analysis definite-integrals cauchy-integral-formula
$endgroup$
2
$begingroup$
OK, so I only spotted this after I already knew what the answer was, but nonetheless: notice that the integrand is always strictly positive, so the integral can't possibly be 0.
$endgroup$
– Ben Millwood
Jan 2 at 12:56
add a comment |
$begingroup$
The integral is$$int_0^{2pi}frac{mathrm dθ}{2-cosθ}.$$Just to skip time, the answer of the indefinite integral is $dfrac2{sqrt{3}}tan^{-1}left(sqrt3tanleft(dfracθ2right)right)$.
Evaluating it from $0$ to $ 2 pi$ yields$$frac2{sqrt3}tan^{-1}(sqrt3 tanπ)-frac2{sqrt3}tan^{-1}(sqrt3 tan0)=0-0=0.$$But using complex analysis, the integral is transformed into$$2iint_Cfrac{mathrm dz}{z^2-4z+1}=2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)},$$
where $C$ is the boundary of the circle $|z|=1$. Then by Cauchy's integral formula, since $z=2-sqrt3$ is inside the domain of the region bounded by $C$, then:
$$2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)}=2πifrac{2i}{2-sqrt3-2-sqrt3}=2πifrac{2i}{-2sqrt3}=frac{2π}{sqrt3}.$$
Using real analysis I get $0$, using complex analysis I get $dfrac{2π}{sqrt3}$. What is wrong?
complex-analysis definite-integrals cauchy-integral-formula
$endgroup$
The integral is$$int_0^{2pi}frac{mathrm dθ}{2-cosθ}.$$Just to skip time, the answer of the indefinite integral is $dfrac2{sqrt{3}}tan^{-1}left(sqrt3tanleft(dfracθ2right)right)$.
Evaluating it from $0$ to $ 2 pi$ yields$$frac2{sqrt3}tan^{-1}(sqrt3 tanπ)-frac2{sqrt3}tan^{-1}(sqrt3 tan0)=0-0=0.$$But using complex analysis, the integral is transformed into$$2iint_Cfrac{mathrm dz}{z^2-4z+1}=2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)},$$
where $C$ is the boundary of the circle $|z|=1$. Then by Cauchy's integral formula, since $z=2-sqrt3$ is inside the domain of the region bounded by $C$, then:
$$2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)}=2πifrac{2i}{2-sqrt3-2-sqrt3}=2πifrac{2i}{-2sqrt3}=frac{2π}{sqrt3}.$$
Using real analysis I get $0$, using complex analysis I get $dfrac{2π}{sqrt3}$. What is wrong?
complex-analysis definite-integrals cauchy-integral-formula
complex-analysis definite-integrals cauchy-integral-formula
edited Jan 2 at 1:22
Saad
19.7k92352
19.7k92352
asked Jan 2 at 0:17
khaled014zkhaled014z
1769
1769
2
$begingroup$
OK, so I only spotted this after I already knew what the answer was, but nonetheless: notice that the integrand is always strictly positive, so the integral can't possibly be 0.
$endgroup$
– Ben Millwood
Jan 2 at 12:56
add a comment |
2
$begingroup$
OK, so I only spotted this after I already knew what the answer was, but nonetheless: notice that the integrand is always strictly positive, so the integral can't possibly be 0.
$endgroup$
– Ben Millwood
Jan 2 at 12:56
2
2
$begingroup$
OK, so I only spotted this after I already knew what the answer was, but nonetheless: notice that the integrand is always strictly positive, so the integral can't possibly be 0.
$endgroup$
– Ben Millwood
Jan 2 at 12:56
$begingroup$
OK, so I only spotted this after I already knew what the answer was, but nonetheless: notice that the integrand is always strictly positive, so the integral can't possibly be 0.
$endgroup$
– Ben Millwood
Jan 2 at 12:56
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The problem with the real approach is that you make the change of variable $t=tanleft(dfrac{theta}{2}right)$ for $0 < theta < 2 pi$.
This is problematic since your substitution need to be defined and continuous for all $theta$, but you have a problem when $theta=pi$.
Edit: Note that if you split the integral into $int_0^pi+int_pi^{2 pi}$, you are going to get the right answer, as for one integral you are going to get $arctan(- infty)$ and for the other $arctan(+infty)$:
$$int_0^{2 pi} frac{mathrm{d}θ}{2-cos theta}=int_0^pi frac{mathrm{d}θ}{2-cos theta}+int_pi ^{2 pi} frac{mathrm{d}θ}{2-cos theta}\
= lim_{r to pi_-} int_0^r frac{mathrm{d}θ}{2-cos theta}+ lim_{w to pi_+} int_w^{2 pi} frac{mathrm{d}θ}{2-cos theta}\= lim_{r to pi_-} left(frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}-0right)+ lim_{w to pi_+}left(0- frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}right).$$
$endgroup$
$begingroup$
Oh I see, so I have to solve it without this substitution? Or could I keep this substitution and change something else?
$endgroup$
– khaled014z
Jan 2 at 0:26
1
$begingroup$
@khaled014z See the edit. Let me know if you want more details.
$endgroup$
– N. S.
Jan 2 at 0:27
$begingroup$
Brilliant, that was kind of a tricky substitution, thank you
$endgroup$
– khaled014z
Jan 2 at 0:31
$begingroup$
When this is next edited, you want tan^{-1} twice in the last line.
$endgroup$
– Teepeemm
Jan 2 at 14:12
add a comment |
$begingroup$
Note that that tangent function, $tan(x)$, is discontinuous when $x=pi/2+npi$. So, the antiderivative $frac2{sqrt{3}} arctanleft(sqrt 3 tan(theta/2)right)$ is not valid over the interval $[0,2pi]$.
Instead, we have
$$int_0^{2pi}frac{1}{2-cos(theta)},dtheta=2int_0^pifrac{1}{2-cos(theta)},dtheta=frac{4}{sqrt3}left.left(arctanleft(sqrt 3 tan(theta/2)right)right)right|_0^pi=frac{2pi}{sqrt3}$$
$endgroup$
$begingroup$
Don't you mean $x = frac{pi}{2} + npi$?
$endgroup$
– DavidG
Jan 2 at 3:18
$begingroup$
Hi Mark ! Happy New Year !
$endgroup$
– Claude Leibovici
Jan 2 at 3:33
$begingroup$
@DavidG Yes, of course. Thank you for the comment.
$endgroup$
– Mark Viola
Jan 2 at 14:36
$begingroup$
@ClaudeLeibovici Hi Claude! Happy New Year to you too!
$endgroup$
– Mark Viola
Jan 2 at 14:36
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059020%2fintegral-with-two-different-answers-using-real-and-complex-analysis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The problem with the real approach is that you make the change of variable $t=tanleft(dfrac{theta}{2}right)$ for $0 < theta < 2 pi$.
This is problematic since your substitution need to be defined and continuous for all $theta$, but you have a problem when $theta=pi$.
Edit: Note that if you split the integral into $int_0^pi+int_pi^{2 pi}$, you are going to get the right answer, as for one integral you are going to get $arctan(- infty)$ and for the other $arctan(+infty)$:
$$int_0^{2 pi} frac{mathrm{d}θ}{2-cos theta}=int_0^pi frac{mathrm{d}θ}{2-cos theta}+int_pi ^{2 pi} frac{mathrm{d}θ}{2-cos theta}\
= lim_{r to pi_-} int_0^r frac{mathrm{d}θ}{2-cos theta}+ lim_{w to pi_+} int_w^{2 pi} frac{mathrm{d}θ}{2-cos theta}\= lim_{r to pi_-} left(frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}-0right)+ lim_{w to pi_+}left(0- frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}right).$$
$endgroup$
$begingroup$
Oh I see, so I have to solve it without this substitution? Or could I keep this substitution and change something else?
$endgroup$
– khaled014z
Jan 2 at 0:26
1
$begingroup$
@khaled014z See the edit. Let me know if you want more details.
$endgroup$
– N. S.
Jan 2 at 0:27
$begingroup$
Brilliant, that was kind of a tricky substitution, thank you
$endgroup$
– khaled014z
Jan 2 at 0:31
$begingroup$
When this is next edited, you want tan^{-1} twice in the last line.
$endgroup$
– Teepeemm
Jan 2 at 14:12
add a comment |
$begingroup$
The problem with the real approach is that you make the change of variable $t=tanleft(dfrac{theta}{2}right)$ for $0 < theta < 2 pi$.
This is problematic since your substitution need to be defined and continuous for all $theta$, but you have a problem when $theta=pi$.
Edit: Note that if you split the integral into $int_0^pi+int_pi^{2 pi}$, you are going to get the right answer, as for one integral you are going to get $arctan(- infty)$ and for the other $arctan(+infty)$:
$$int_0^{2 pi} frac{mathrm{d}θ}{2-cos theta}=int_0^pi frac{mathrm{d}θ}{2-cos theta}+int_pi ^{2 pi} frac{mathrm{d}θ}{2-cos theta}\
= lim_{r to pi_-} int_0^r frac{mathrm{d}θ}{2-cos theta}+ lim_{w to pi_+} int_w^{2 pi} frac{mathrm{d}θ}{2-cos theta}\= lim_{r to pi_-} left(frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}-0right)+ lim_{w to pi_+}left(0- frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}right).$$
$endgroup$
$begingroup$
Oh I see, so I have to solve it without this substitution? Or could I keep this substitution and change something else?
$endgroup$
– khaled014z
Jan 2 at 0:26
1
$begingroup$
@khaled014z See the edit. Let me know if you want more details.
$endgroup$
– N. S.
Jan 2 at 0:27
$begingroup$
Brilliant, that was kind of a tricky substitution, thank you
$endgroup$
– khaled014z
Jan 2 at 0:31
$begingroup$
When this is next edited, you want tan^{-1} twice in the last line.
$endgroup$
– Teepeemm
Jan 2 at 14:12
add a comment |
$begingroup$
The problem with the real approach is that you make the change of variable $t=tanleft(dfrac{theta}{2}right)$ for $0 < theta < 2 pi$.
This is problematic since your substitution need to be defined and continuous for all $theta$, but you have a problem when $theta=pi$.
Edit: Note that if you split the integral into $int_0^pi+int_pi^{2 pi}$, you are going to get the right answer, as for one integral you are going to get $arctan(- infty)$ and for the other $arctan(+infty)$:
$$int_0^{2 pi} frac{mathrm{d}θ}{2-cos theta}=int_0^pi frac{mathrm{d}θ}{2-cos theta}+int_pi ^{2 pi} frac{mathrm{d}θ}{2-cos theta}\
= lim_{r to pi_-} int_0^r frac{mathrm{d}θ}{2-cos theta}+ lim_{w to pi_+} int_w^{2 pi} frac{mathrm{d}θ}{2-cos theta}\= lim_{r to pi_-} left(frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}-0right)+ lim_{w to pi_+}left(0- frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}right).$$
$endgroup$
The problem with the real approach is that you make the change of variable $t=tanleft(dfrac{theta}{2}right)$ for $0 < theta < 2 pi$.
This is problematic since your substitution need to be defined and continuous for all $theta$, but you have a problem when $theta=pi$.
Edit: Note that if you split the integral into $int_0^pi+int_pi^{2 pi}$, you are going to get the right answer, as for one integral you are going to get $arctan(- infty)$ and for the other $arctan(+infty)$:
$$int_0^{2 pi} frac{mathrm{d}θ}{2-cos theta}=int_0^pi frac{mathrm{d}θ}{2-cos theta}+int_pi ^{2 pi} frac{mathrm{d}θ}{2-cos theta}\
= lim_{r to pi_-} int_0^r frac{mathrm{d}θ}{2-cos theta}+ lim_{w to pi_+} int_w^{2 pi} frac{mathrm{d}θ}{2-cos theta}\= lim_{r to pi_-} left(frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}-0right)+ lim_{w to pi_+}left(0- frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}right).$$
edited Jan 2 at 0:55
Saad
19.7k92352
19.7k92352
answered Jan 2 at 0:25
N. S.N. S.
104k7114209
104k7114209
$begingroup$
Oh I see, so I have to solve it without this substitution? Or could I keep this substitution and change something else?
$endgroup$
– khaled014z
Jan 2 at 0:26
1
$begingroup$
@khaled014z See the edit. Let me know if you want more details.
$endgroup$
– N. S.
Jan 2 at 0:27
$begingroup$
Brilliant, that was kind of a tricky substitution, thank you
$endgroup$
– khaled014z
Jan 2 at 0:31
$begingroup$
When this is next edited, you want tan^{-1} twice in the last line.
$endgroup$
– Teepeemm
Jan 2 at 14:12
add a comment |
$begingroup$
Oh I see, so I have to solve it without this substitution? Or could I keep this substitution and change something else?
$endgroup$
– khaled014z
Jan 2 at 0:26
1
$begingroup$
@khaled014z See the edit. Let me know if you want more details.
$endgroup$
– N. S.
Jan 2 at 0:27
$begingroup$
Brilliant, that was kind of a tricky substitution, thank you
$endgroup$
– khaled014z
Jan 2 at 0:31
$begingroup$
When this is next edited, you want tan^{-1} twice in the last line.
$endgroup$
– Teepeemm
Jan 2 at 14:12
$begingroup$
Oh I see, so I have to solve it without this substitution? Or could I keep this substitution and change something else?
$endgroup$
– khaled014z
Jan 2 at 0:26
$begingroup$
Oh I see, so I have to solve it without this substitution? Or could I keep this substitution and change something else?
$endgroup$
– khaled014z
Jan 2 at 0:26
1
1
$begingroup$
@khaled014z See the edit. Let me know if you want more details.
$endgroup$
– N. S.
Jan 2 at 0:27
$begingroup$
@khaled014z See the edit. Let me know if you want more details.
$endgroup$
– N. S.
Jan 2 at 0:27
$begingroup$
Brilliant, that was kind of a tricky substitution, thank you
$endgroup$
– khaled014z
Jan 2 at 0:31
$begingroup$
Brilliant, that was kind of a tricky substitution, thank you
$endgroup$
– khaled014z
Jan 2 at 0:31
$begingroup$
When this is next edited, you want tan^{-1} twice in the last line.
$endgroup$
– Teepeemm
Jan 2 at 14:12
$begingroup$
When this is next edited, you want tan^{-1} twice in the last line.
$endgroup$
– Teepeemm
Jan 2 at 14:12
add a comment |
$begingroup$
Note that that tangent function, $tan(x)$, is discontinuous when $x=pi/2+npi$. So, the antiderivative $frac2{sqrt{3}} arctanleft(sqrt 3 tan(theta/2)right)$ is not valid over the interval $[0,2pi]$.
Instead, we have
$$int_0^{2pi}frac{1}{2-cos(theta)},dtheta=2int_0^pifrac{1}{2-cos(theta)},dtheta=frac{4}{sqrt3}left.left(arctanleft(sqrt 3 tan(theta/2)right)right)right|_0^pi=frac{2pi}{sqrt3}$$
$endgroup$
$begingroup$
Don't you mean $x = frac{pi}{2} + npi$?
$endgroup$
– DavidG
Jan 2 at 3:18
$begingroup$
Hi Mark ! Happy New Year !
$endgroup$
– Claude Leibovici
Jan 2 at 3:33
$begingroup$
@DavidG Yes, of course. Thank you for the comment.
$endgroup$
– Mark Viola
Jan 2 at 14:36
$begingroup$
@ClaudeLeibovici Hi Claude! Happy New Year to you too!
$endgroup$
– Mark Viola
Jan 2 at 14:36
add a comment |
$begingroup$
Note that that tangent function, $tan(x)$, is discontinuous when $x=pi/2+npi$. So, the antiderivative $frac2{sqrt{3}} arctanleft(sqrt 3 tan(theta/2)right)$ is not valid over the interval $[0,2pi]$.
Instead, we have
$$int_0^{2pi}frac{1}{2-cos(theta)},dtheta=2int_0^pifrac{1}{2-cos(theta)},dtheta=frac{4}{sqrt3}left.left(arctanleft(sqrt 3 tan(theta/2)right)right)right|_0^pi=frac{2pi}{sqrt3}$$
$endgroup$
$begingroup$
Don't you mean $x = frac{pi}{2} + npi$?
$endgroup$
– DavidG
Jan 2 at 3:18
$begingroup$
Hi Mark ! Happy New Year !
$endgroup$
– Claude Leibovici
Jan 2 at 3:33
$begingroup$
@DavidG Yes, of course. Thank you for the comment.
$endgroup$
– Mark Viola
Jan 2 at 14:36
$begingroup$
@ClaudeLeibovici Hi Claude! Happy New Year to you too!
$endgroup$
– Mark Viola
Jan 2 at 14:36
add a comment |
$begingroup$
Note that that tangent function, $tan(x)$, is discontinuous when $x=pi/2+npi$. So, the antiderivative $frac2{sqrt{3}} arctanleft(sqrt 3 tan(theta/2)right)$ is not valid over the interval $[0,2pi]$.
Instead, we have
$$int_0^{2pi}frac{1}{2-cos(theta)},dtheta=2int_0^pifrac{1}{2-cos(theta)},dtheta=frac{4}{sqrt3}left.left(arctanleft(sqrt 3 tan(theta/2)right)right)right|_0^pi=frac{2pi}{sqrt3}$$
$endgroup$
Note that that tangent function, $tan(x)$, is discontinuous when $x=pi/2+npi$. So, the antiderivative $frac2{sqrt{3}} arctanleft(sqrt 3 tan(theta/2)right)$ is not valid over the interval $[0,2pi]$.
Instead, we have
$$int_0^{2pi}frac{1}{2-cos(theta)},dtheta=2int_0^pifrac{1}{2-cos(theta)},dtheta=frac{4}{sqrt3}left.left(arctanleft(sqrt 3 tan(theta/2)right)right)right|_0^pi=frac{2pi}{sqrt3}$$
edited Jan 2 at 14:35
answered Jan 2 at 0:28
Mark ViolaMark Viola
133k1277175
133k1277175
$begingroup$
Don't you mean $x = frac{pi}{2} + npi$?
$endgroup$
– DavidG
Jan 2 at 3:18
$begingroup$
Hi Mark ! Happy New Year !
$endgroup$
– Claude Leibovici
Jan 2 at 3:33
$begingroup$
@DavidG Yes, of course. Thank you for the comment.
$endgroup$
– Mark Viola
Jan 2 at 14:36
$begingroup$
@ClaudeLeibovici Hi Claude! Happy New Year to you too!
$endgroup$
– Mark Viola
Jan 2 at 14:36
add a comment |
$begingroup$
Don't you mean $x = frac{pi}{2} + npi$?
$endgroup$
– DavidG
Jan 2 at 3:18
$begingroup$
Hi Mark ! Happy New Year !
$endgroup$
– Claude Leibovici
Jan 2 at 3:33
$begingroup$
@DavidG Yes, of course. Thank you for the comment.
$endgroup$
– Mark Viola
Jan 2 at 14:36
$begingroup$
@ClaudeLeibovici Hi Claude! Happy New Year to you too!
$endgroup$
– Mark Viola
Jan 2 at 14:36
$begingroup$
Don't you mean $x = frac{pi}{2} + npi$?
$endgroup$
– DavidG
Jan 2 at 3:18
$begingroup$
Don't you mean $x = frac{pi}{2} + npi$?
$endgroup$
– DavidG
Jan 2 at 3:18
$begingroup$
Hi Mark ! Happy New Year !
$endgroup$
– Claude Leibovici
Jan 2 at 3:33
$begingroup$
Hi Mark ! Happy New Year !
$endgroup$
– Claude Leibovici
Jan 2 at 3:33
$begingroup$
@DavidG Yes, of course. Thank you for the comment.
$endgroup$
– Mark Viola
Jan 2 at 14:36
$begingroup$
@DavidG Yes, of course. Thank you for the comment.
$endgroup$
– Mark Viola
Jan 2 at 14:36
$begingroup$
@ClaudeLeibovici Hi Claude! Happy New Year to you too!
$endgroup$
– Mark Viola
Jan 2 at 14:36
$begingroup$
@ClaudeLeibovici Hi Claude! Happy New Year to you too!
$endgroup$
– Mark Viola
Jan 2 at 14:36
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059020%2fintegral-with-two-different-answers-using-real-and-complex-analysis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
OK, so I only spotted this after I already knew what the answer was, but nonetheless: notice that the integrand is always strictly positive, so the integral can't possibly be 0.
$endgroup$
– Ben Millwood
Jan 2 at 12:56