Integral with two different answers using real and complex analysis












9












$begingroup$


The integral is$$int_0^{2pi}frac{mathrm dθ}{2-cosθ}.$$Just to skip time, the answer of the indefinite integral is $dfrac2{sqrt{3}}tan^{-1}left(sqrt3tanleft(dfracθ2right)right)$.



Evaluating it from $0$ to $ 2 pi$ yields$$frac2{sqrt3}tan^{-1}(sqrt3 tanπ)-frac2{sqrt3}tan^{-1}(sqrt3 tan0)=0-0=0.$$But using complex analysis, the integral is transformed into$$2iint_Cfrac{mathrm dz}{z^2-4z+1}=2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)},$$
where $C$ is the boundary of the circle $|z|=1$. Then by Cauchy's integral formula, since $z=2-sqrt3$ is inside the domain of the region bounded by $C$, then:
$$2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)}=2πifrac{2i}{2-sqrt3-2-sqrt3}=2πifrac{2i}{-2sqrt3}=frac{2π}{sqrt3}.$$



Using real analysis I get $0$, using complex analysis I get $dfrac{2π}{sqrt3}$. What is wrong?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    OK, so I only spotted this after I already knew what the answer was, but nonetheless: notice that the integrand is always strictly positive, so the integral can't possibly be 0.
    $endgroup$
    – Ben Millwood
    Jan 2 at 12:56
















9












$begingroup$


The integral is$$int_0^{2pi}frac{mathrm dθ}{2-cosθ}.$$Just to skip time, the answer of the indefinite integral is $dfrac2{sqrt{3}}tan^{-1}left(sqrt3tanleft(dfracθ2right)right)$.



Evaluating it from $0$ to $ 2 pi$ yields$$frac2{sqrt3}tan^{-1}(sqrt3 tanπ)-frac2{sqrt3}tan^{-1}(sqrt3 tan0)=0-0=0.$$But using complex analysis, the integral is transformed into$$2iint_Cfrac{mathrm dz}{z^2-4z+1}=2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)},$$
where $C$ is the boundary of the circle $|z|=1$. Then by Cauchy's integral formula, since $z=2-sqrt3$ is inside the domain of the region bounded by $C$, then:
$$2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)}=2πifrac{2i}{2-sqrt3-2-sqrt3}=2πifrac{2i}{-2sqrt3}=frac{2π}{sqrt3}.$$



Using real analysis I get $0$, using complex analysis I get $dfrac{2π}{sqrt3}$. What is wrong?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    OK, so I only spotted this after I already knew what the answer was, but nonetheless: notice that the integrand is always strictly positive, so the integral can't possibly be 0.
    $endgroup$
    – Ben Millwood
    Jan 2 at 12:56














9












9








9


2



$begingroup$


The integral is$$int_0^{2pi}frac{mathrm dθ}{2-cosθ}.$$Just to skip time, the answer of the indefinite integral is $dfrac2{sqrt{3}}tan^{-1}left(sqrt3tanleft(dfracθ2right)right)$.



Evaluating it from $0$ to $ 2 pi$ yields$$frac2{sqrt3}tan^{-1}(sqrt3 tanπ)-frac2{sqrt3}tan^{-1}(sqrt3 tan0)=0-0=0.$$But using complex analysis, the integral is transformed into$$2iint_Cfrac{mathrm dz}{z^2-4z+1}=2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)},$$
where $C$ is the boundary of the circle $|z|=1$. Then by Cauchy's integral formula, since $z=2-sqrt3$ is inside the domain of the region bounded by $C$, then:
$$2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)}=2πifrac{2i}{2-sqrt3-2-sqrt3}=2πifrac{2i}{-2sqrt3}=frac{2π}{sqrt3}.$$



Using real analysis I get $0$, using complex analysis I get $dfrac{2π}{sqrt3}$. What is wrong?










share|cite|improve this question











$endgroup$




The integral is$$int_0^{2pi}frac{mathrm dθ}{2-cosθ}.$$Just to skip time, the answer of the indefinite integral is $dfrac2{sqrt{3}}tan^{-1}left(sqrt3tanleft(dfracθ2right)right)$.



Evaluating it from $0$ to $ 2 pi$ yields$$frac2{sqrt3}tan^{-1}(sqrt3 tanπ)-frac2{sqrt3}tan^{-1}(sqrt3 tan0)=0-0=0.$$But using complex analysis, the integral is transformed into$$2iint_Cfrac{mathrm dz}{z^2-4z+1}=2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)},$$
where $C$ is the boundary of the circle $|z|=1$. Then by Cauchy's integral formula, since $z=2-sqrt3$ is inside the domain of the region bounded by $C$, then:
$$2iint_Cfrac{mathrm dz}{(z-2+sqrt3)(z-2-sqrt3)}=2πifrac{2i}{2-sqrt3-2-sqrt3}=2πifrac{2i}{-2sqrt3}=frac{2π}{sqrt3}.$$



Using real analysis I get $0$, using complex analysis I get $dfrac{2π}{sqrt3}$. What is wrong?







complex-analysis definite-integrals cauchy-integral-formula






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 2 at 1:22









Saad

19.7k92352




19.7k92352










asked Jan 2 at 0:17









khaled014zkhaled014z

1769




1769








  • 2




    $begingroup$
    OK, so I only spotted this after I already knew what the answer was, but nonetheless: notice that the integrand is always strictly positive, so the integral can't possibly be 0.
    $endgroup$
    – Ben Millwood
    Jan 2 at 12:56














  • 2




    $begingroup$
    OK, so I only spotted this after I already knew what the answer was, but nonetheless: notice that the integrand is always strictly positive, so the integral can't possibly be 0.
    $endgroup$
    – Ben Millwood
    Jan 2 at 12:56








2




2




$begingroup$
OK, so I only spotted this after I already knew what the answer was, but nonetheless: notice that the integrand is always strictly positive, so the integral can't possibly be 0.
$endgroup$
– Ben Millwood
Jan 2 at 12:56




$begingroup$
OK, so I only spotted this after I already knew what the answer was, but nonetheless: notice that the integrand is always strictly positive, so the integral can't possibly be 0.
$endgroup$
– Ben Millwood
Jan 2 at 12:56










2 Answers
2






active

oldest

votes


















13












$begingroup$

The problem with the real approach is that you make the change of variable $t=tanleft(dfrac{theta}{2}right)$ for $0 < theta < 2 pi$.



This is problematic since your substitution need to be defined and continuous for all $theta$, but you have a problem when $theta=pi$.



Edit: Note that if you split the integral into $int_0^pi+int_pi^{2 pi}$, you are going to get the right answer, as for one integral you are going to get $arctan(- infty)$ and for the other $arctan(+infty)$:



$$int_0^{2 pi} frac{mathrm{d}θ}{2-cos theta}=int_0^pi frac{mathrm{d}θ}{2-cos theta}+int_pi ^{2 pi} frac{mathrm{d}θ}{2-cos theta}\
= lim_{r to pi_-} int_0^r frac{mathrm{d}θ}{2-cos theta}+ lim_{w to pi_+} int_w^{2 pi} frac{mathrm{d}θ}{2-cos theta}\= lim_{r to pi_-} left(frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}-0right)+ lim_{w to pi_+}left(0- frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}right).$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Oh I see, so I have to solve it without this substitution? Or could I keep this substitution and change something else?
    $endgroup$
    – khaled014z
    Jan 2 at 0:26






  • 1




    $begingroup$
    @khaled014z See the edit. Let me know if you want more details.
    $endgroup$
    – N. S.
    Jan 2 at 0:27












  • $begingroup$
    Brilliant, that was kind of a tricky substitution, thank you
    $endgroup$
    – khaled014z
    Jan 2 at 0:31










  • $begingroup$
    When this is next edited, you want tan^{-1} twice in the last line.
    $endgroup$
    – Teepeemm
    Jan 2 at 14:12



















3












$begingroup$

Note that that tangent function, $tan(x)$, is discontinuous when $x=pi/2+npi$. So, the antiderivative $frac2{sqrt{3}} arctanleft(sqrt 3 tan(theta/2)right)$ is not valid over the interval $[0,2pi]$.



Instead, we have



$$int_0^{2pi}frac{1}{2-cos(theta)},dtheta=2int_0^pifrac{1}{2-cos(theta)},dtheta=frac{4}{sqrt3}left.left(arctanleft(sqrt 3 tan(theta/2)right)right)right|_0^pi=frac{2pi}{sqrt3}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Don't you mean $x = frac{pi}{2} + npi$?
    $endgroup$
    – DavidG
    Jan 2 at 3:18










  • $begingroup$
    Hi Mark ! Happy New Year !
    $endgroup$
    – Claude Leibovici
    Jan 2 at 3:33










  • $begingroup$
    @DavidG Yes, of course. Thank you for the comment.
    $endgroup$
    – Mark Viola
    Jan 2 at 14:36










  • $begingroup$
    @ClaudeLeibovici Hi Claude! Happy New Year to you too!
    $endgroup$
    – Mark Viola
    Jan 2 at 14:36











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059020%2fintegral-with-two-different-answers-using-real-and-complex-analysis%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









13












$begingroup$

The problem with the real approach is that you make the change of variable $t=tanleft(dfrac{theta}{2}right)$ for $0 < theta < 2 pi$.



This is problematic since your substitution need to be defined and continuous for all $theta$, but you have a problem when $theta=pi$.



Edit: Note that if you split the integral into $int_0^pi+int_pi^{2 pi}$, you are going to get the right answer, as for one integral you are going to get $arctan(- infty)$ and for the other $arctan(+infty)$:



$$int_0^{2 pi} frac{mathrm{d}θ}{2-cos theta}=int_0^pi frac{mathrm{d}θ}{2-cos theta}+int_pi ^{2 pi} frac{mathrm{d}θ}{2-cos theta}\
= lim_{r to pi_-} int_0^r frac{mathrm{d}θ}{2-cos theta}+ lim_{w to pi_+} int_w^{2 pi} frac{mathrm{d}θ}{2-cos theta}\= lim_{r to pi_-} left(frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}-0right)+ lim_{w to pi_+}left(0- frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}right).$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Oh I see, so I have to solve it without this substitution? Or could I keep this substitution and change something else?
    $endgroup$
    – khaled014z
    Jan 2 at 0:26






  • 1




    $begingroup$
    @khaled014z See the edit. Let me know if you want more details.
    $endgroup$
    – N. S.
    Jan 2 at 0:27












  • $begingroup$
    Brilliant, that was kind of a tricky substitution, thank you
    $endgroup$
    – khaled014z
    Jan 2 at 0:31










  • $begingroup$
    When this is next edited, you want tan^{-1} twice in the last line.
    $endgroup$
    – Teepeemm
    Jan 2 at 14:12
















13












$begingroup$

The problem with the real approach is that you make the change of variable $t=tanleft(dfrac{theta}{2}right)$ for $0 < theta < 2 pi$.



This is problematic since your substitution need to be defined and continuous for all $theta$, but you have a problem when $theta=pi$.



Edit: Note that if you split the integral into $int_0^pi+int_pi^{2 pi}$, you are going to get the right answer, as for one integral you are going to get $arctan(- infty)$ and for the other $arctan(+infty)$:



$$int_0^{2 pi} frac{mathrm{d}θ}{2-cos theta}=int_0^pi frac{mathrm{d}θ}{2-cos theta}+int_pi ^{2 pi} frac{mathrm{d}θ}{2-cos theta}\
= lim_{r to pi_-} int_0^r frac{mathrm{d}θ}{2-cos theta}+ lim_{w to pi_+} int_w^{2 pi} frac{mathrm{d}θ}{2-cos theta}\= lim_{r to pi_-} left(frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}-0right)+ lim_{w to pi_+}left(0- frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}right).$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Oh I see, so I have to solve it without this substitution? Or could I keep this substitution and change something else?
    $endgroup$
    – khaled014z
    Jan 2 at 0:26






  • 1




    $begingroup$
    @khaled014z See the edit. Let me know if you want more details.
    $endgroup$
    – N. S.
    Jan 2 at 0:27












  • $begingroup$
    Brilliant, that was kind of a tricky substitution, thank you
    $endgroup$
    – khaled014z
    Jan 2 at 0:31










  • $begingroup$
    When this is next edited, you want tan^{-1} twice in the last line.
    $endgroup$
    – Teepeemm
    Jan 2 at 14:12














13












13








13





$begingroup$

The problem with the real approach is that you make the change of variable $t=tanleft(dfrac{theta}{2}right)$ for $0 < theta < 2 pi$.



This is problematic since your substitution need to be defined and continuous for all $theta$, but you have a problem when $theta=pi$.



Edit: Note that if you split the integral into $int_0^pi+int_pi^{2 pi}$, you are going to get the right answer, as for one integral you are going to get $arctan(- infty)$ and for the other $arctan(+infty)$:



$$int_0^{2 pi} frac{mathrm{d}θ}{2-cos theta}=int_0^pi frac{mathrm{d}θ}{2-cos theta}+int_pi ^{2 pi} frac{mathrm{d}θ}{2-cos theta}\
= lim_{r to pi_-} int_0^r frac{mathrm{d}θ}{2-cos theta}+ lim_{w to pi_+} int_w^{2 pi} frac{mathrm{d}θ}{2-cos theta}\= lim_{r to pi_-} left(frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}-0right)+ lim_{w to pi_+}left(0- frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}right).$$






share|cite|improve this answer











$endgroup$



The problem with the real approach is that you make the change of variable $t=tanleft(dfrac{theta}{2}right)$ for $0 < theta < 2 pi$.



This is problematic since your substitution need to be defined and continuous for all $theta$, but you have a problem when $theta=pi$.



Edit: Note that if you split the integral into $int_0^pi+int_pi^{2 pi}$, you are going to get the right answer, as for one integral you are going to get $arctan(- infty)$ and for the other $arctan(+infty)$:



$$int_0^{2 pi} frac{mathrm{d}θ}{2-cos theta}=int_0^pi frac{mathrm{d}θ}{2-cos theta}+int_pi ^{2 pi} frac{mathrm{d}θ}{2-cos theta}\
= lim_{r to pi_-} int_0^r frac{mathrm{d}θ}{2-cos theta}+ lim_{w to pi_+} int_w^{2 pi} frac{mathrm{d}θ}{2-cos theta}\= lim_{r to pi_-} left(frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}-0right)+ lim_{w to pi_+}left(0- frac{2tan^-1( sqrt{3} tan( frac{ r}{2}))}{ sqrt{3}}right).$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 2 at 0:55









Saad

19.7k92352




19.7k92352










answered Jan 2 at 0:25









N. S.N. S.

104k7114209




104k7114209












  • $begingroup$
    Oh I see, so I have to solve it without this substitution? Or could I keep this substitution and change something else?
    $endgroup$
    – khaled014z
    Jan 2 at 0:26






  • 1




    $begingroup$
    @khaled014z See the edit. Let me know if you want more details.
    $endgroup$
    – N. S.
    Jan 2 at 0:27












  • $begingroup$
    Brilliant, that was kind of a tricky substitution, thank you
    $endgroup$
    – khaled014z
    Jan 2 at 0:31










  • $begingroup$
    When this is next edited, you want tan^{-1} twice in the last line.
    $endgroup$
    – Teepeemm
    Jan 2 at 14:12


















  • $begingroup$
    Oh I see, so I have to solve it without this substitution? Or could I keep this substitution and change something else?
    $endgroup$
    – khaled014z
    Jan 2 at 0:26






  • 1




    $begingroup$
    @khaled014z See the edit. Let me know if you want more details.
    $endgroup$
    – N. S.
    Jan 2 at 0:27












  • $begingroup$
    Brilliant, that was kind of a tricky substitution, thank you
    $endgroup$
    – khaled014z
    Jan 2 at 0:31










  • $begingroup$
    When this is next edited, you want tan^{-1} twice in the last line.
    $endgroup$
    – Teepeemm
    Jan 2 at 14:12
















$begingroup$
Oh I see, so I have to solve it without this substitution? Or could I keep this substitution and change something else?
$endgroup$
– khaled014z
Jan 2 at 0:26




$begingroup$
Oh I see, so I have to solve it without this substitution? Or could I keep this substitution and change something else?
$endgroup$
– khaled014z
Jan 2 at 0:26




1




1




$begingroup$
@khaled014z See the edit. Let me know if you want more details.
$endgroup$
– N. S.
Jan 2 at 0:27






$begingroup$
@khaled014z See the edit. Let me know if you want more details.
$endgroup$
– N. S.
Jan 2 at 0:27














$begingroup$
Brilliant, that was kind of a tricky substitution, thank you
$endgroup$
– khaled014z
Jan 2 at 0:31




$begingroup$
Brilliant, that was kind of a tricky substitution, thank you
$endgroup$
– khaled014z
Jan 2 at 0:31












$begingroup$
When this is next edited, you want tan^{-1} twice in the last line.
$endgroup$
– Teepeemm
Jan 2 at 14:12




$begingroup$
When this is next edited, you want tan^{-1} twice in the last line.
$endgroup$
– Teepeemm
Jan 2 at 14:12











3












$begingroup$

Note that that tangent function, $tan(x)$, is discontinuous when $x=pi/2+npi$. So, the antiderivative $frac2{sqrt{3}} arctanleft(sqrt 3 tan(theta/2)right)$ is not valid over the interval $[0,2pi]$.



Instead, we have



$$int_0^{2pi}frac{1}{2-cos(theta)},dtheta=2int_0^pifrac{1}{2-cos(theta)},dtheta=frac{4}{sqrt3}left.left(arctanleft(sqrt 3 tan(theta/2)right)right)right|_0^pi=frac{2pi}{sqrt3}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Don't you mean $x = frac{pi}{2} + npi$?
    $endgroup$
    – DavidG
    Jan 2 at 3:18










  • $begingroup$
    Hi Mark ! Happy New Year !
    $endgroup$
    – Claude Leibovici
    Jan 2 at 3:33










  • $begingroup$
    @DavidG Yes, of course. Thank you for the comment.
    $endgroup$
    – Mark Viola
    Jan 2 at 14:36










  • $begingroup$
    @ClaudeLeibovici Hi Claude! Happy New Year to you too!
    $endgroup$
    – Mark Viola
    Jan 2 at 14:36
















3












$begingroup$

Note that that tangent function, $tan(x)$, is discontinuous when $x=pi/2+npi$. So, the antiderivative $frac2{sqrt{3}} arctanleft(sqrt 3 tan(theta/2)right)$ is not valid over the interval $[0,2pi]$.



Instead, we have



$$int_0^{2pi}frac{1}{2-cos(theta)},dtheta=2int_0^pifrac{1}{2-cos(theta)},dtheta=frac{4}{sqrt3}left.left(arctanleft(sqrt 3 tan(theta/2)right)right)right|_0^pi=frac{2pi}{sqrt3}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Don't you mean $x = frac{pi}{2} + npi$?
    $endgroup$
    – DavidG
    Jan 2 at 3:18










  • $begingroup$
    Hi Mark ! Happy New Year !
    $endgroup$
    – Claude Leibovici
    Jan 2 at 3:33










  • $begingroup$
    @DavidG Yes, of course. Thank you for the comment.
    $endgroup$
    – Mark Viola
    Jan 2 at 14:36










  • $begingroup$
    @ClaudeLeibovici Hi Claude! Happy New Year to you too!
    $endgroup$
    – Mark Viola
    Jan 2 at 14:36














3












3








3





$begingroup$

Note that that tangent function, $tan(x)$, is discontinuous when $x=pi/2+npi$. So, the antiderivative $frac2{sqrt{3}} arctanleft(sqrt 3 tan(theta/2)right)$ is not valid over the interval $[0,2pi]$.



Instead, we have



$$int_0^{2pi}frac{1}{2-cos(theta)},dtheta=2int_0^pifrac{1}{2-cos(theta)},dtheta=frac{4}{sqrt3}left.left(arctanleft(sqrt 3 tan(theta/2)right)right)right|_0^pi=frac{2pi}{sqrt3}$$






share|cite|improve this answer











$endgroup$



Note that that tangent function, $tan(x)$, is discontinuous when $x=pi/2+npi$. So, the antiderivative $frac2{sqrt{3}} arctanleft(sqrt 3 tan(theta/2)right)$ is not valid over the interval $[0,2pi]$.



Instead, we have



$$int_0^{2pi}frac{1}{2-cos(theta)},dtheta=2int_0^pifrac{1}{2-cos(theta)},dtheta=frac{4}{sqrt3}left.left(arctanleft(sqrt 3 tan(theta/2)right)right)right|_0^pi=frac{2pi}{sqrt3}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 2 at 14:35

























answered Jan 2 at 0:28









Mark ViolaMark Viola

133k1277175




133k1277175












  • $begingroup$
    Don't you mean $x = frac{pi}{2} + npi$?
    $endgroup$
    – DavidG
    Jan 2 at 3:18










  • $begingroup$
    Hi Mark ! Happy New Year !
    $endgroup$
    – Claude Leibovici
    Jan 2 at 3:33










  • $begingroup$
    @DavidG Yes, of course. Thank you for the comment.
    $endgroup$
    – Mark Viola
    Jan 2 at 14:36










  • $begingroup$
    @ClaudeLeibovici Hi Claude! Happy New Year to you too!
    $endgroup$
    – Mark Viola
    Jan 2 at 14:36


















  • $begingroup$
    Don't you mean $x = frac{pi}{2} + npi$?
    $endgroup$
    – DavidG
    Jan 2 at 3:18










  • $begingroup$
    Hi Mark ! Happy New Year !
    $endgroup$
    – Claude Leibovici
    Jan 2 at 3:33










  • $begingroup$
    @DavidG Yes, of course. Thank you for the comment.
    $endgroup$
    – Mark Viola
    Jan 2 at 14:36










  • $begingroup$
    @ClaudeLeibovici Hi Claude! Happy New Year to you too!
    $endgroup$
    – Mark Viola
    Jan 2 at 14:36
















$begingroup$
Don't you mean $x = frac{pi}{2} + npi$?
$endgroup$
– DavidG
Jan 2 at 3:18




$begingroup$
Don't you mean $x = frac{pi}{2} + npi$?
$endgroup$
– DavidG
Jan 2 at 3:18












$begingroup$
Hi Mark ! Happy New Year !
$endgroup$
– Claude Leibovici
Jan 2 at 3:33




$begingroup$
Hi Mark ! Happy New Year !
$endgroup$
– Claude Leibovici
Jan 2 at 3:33












$begingroup$
@DavidG Yes, of course. Thank you for the comment.
$endgroup$
– Mark Viola
Jan 2 at 14:36




$begingroup$
@DavidG Yes, of course. Thank you for the comment.
$endgroup$
– Mark Viola
Jan 2 at 14:36












$begingroup$
@ClaudeLeibovici Hi Claude! Happy New Year to you too!
$endgroup$
– Mark Viola
Jan 2 at 14:36




$begingroup$
@ClaudeLeibovici Hi Claude! Happy New Year to you too!
$endgroup$
– Mark Viola
Jan 2 at 14:36


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059020%2fintegral-with-two-different-answers-using-real-and-complex-analysis%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna