Generalize $sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}$
$begingroup$
I was looking at this wolfram site on section [25]
A general identity due to B. Cloitre (pers. comm., Jan. 7, 2006)
where $kge1$
$$sum_{n=1}^{infty}frac{H_n}{(n+1)(n+2)cdots(n+k+1)}=frac{1}{k!k^2}tag1$$
I was trying to generalize $(1)$
Let generalize $(1)$,
where $xge0$
$$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}tag2$$
and hoping to find a closed form but I could only got a partial of it
$k=1$
$$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)}=-frac{H_x}{x+1}-(H_x)^2+(H_{x+1})^2tag3$$
How do we go about to find the closed form for $(2)$?
I am assuming $(2)$, may take the closed form of
$$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}=G(x)-sum_{j=0}^{k}(-1)^j{k choose j}(H_{x+j})^2tag4$$
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I was looking at this wolfram site on section [25]
A general identity due to B. Cloitre (pers. comm., Jan. 7, 2006)
where $kge1$
$$sum_{n=1}^{infty}frac{H_n}{(n+1)(n+2)cdots(n+k+1)}=frac{1}{k!k^2}tag1$$
I was trying to generalize $(1)$
Let generalize $(1)$,
where $xge0$
$$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}tag2$$
and hoping to find a closed form but I could only got a partial of it
$k=1$
$$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)}=-frac{H_x}{x+1}-(H_x)^2+(H_{x+1})^2tag3$$
How do we go about to find the closed form for $(2)$?
I am assuming $(2)$, may take the closed form of
$$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}=G(x)-sum_{j=0}^{k}(-1)^j{k choose j}(H_{x+j})^2tag4$$
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I was looking at this wolfram site on section [25]
A general identity due to B. Cloitre (pers. comm., Jan. 7, 2006)
where $kge1$
$$sum_{n=1}^{infty}frac{H_n}{(n+1)(n+2)cdots(n+k+1)}=frac{1}{k!k^2}tag1$$
I was trying to generalize $(1)$
Let generalize $(1)$,
where $xge0$
$$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}tag2$$
and hoping to find a closed form but I could only got a partial of it
$k=1$
$$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)}=-frac{H_x}{x+1}-(H_x)^2+(H_{x+1})^2tag3$$
How do we go about to find the closed form for $(2)$?
I am assuming $(2)$, may take the closed form of
$$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}=G(x)-sum_{j=0}^{k}(-1)^j{k choose j}(H_{x+j})^2tag4$$
sequences-and-series
$endgroup$
I was looking at this wolfram site on section [25]
A general identity due to B. Cloitre (pers. comm., Jan. 7, 2006)
where $kge1$
$$sum_{n=1}^{infty}frac{H_n}{(n+1)(n+2)cdots(n+k+1)}=frac{1}{k!k^2}tag1$$
I was trying to generalize $(1)$
Let generalize $(1)$,
where $xge0$
$$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}tag2$$
and hoping to find a closed form but I could only got a partial of it
$k=1$
$$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)}=-frac{H_x}{x+1}-(H_x)^2+(H_{x+1})^2tag3$$
How do we go about to find the closed form for $(2)$?
I am assuming $(2)$, may take the closed form of
$$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}=G(x)-sum_{j=0}^{k}(-1)^j{k choose j}(H_{x+j})^2tag4$$
sequences-and-series
sequences-and-series
edited Jan 2 at 20:53
user583851
asked Jan 2 at 20:33
user583851user583851
508110
508110
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
By summation by parts the computation of $(2)$ boils down to the computation of
$$ sum_{ngeq 1}frac{1}{(n+1)(n+1+x)(n+2+x)cdots(n+k+x)}=sum_{ngeq 1}frac{Gamma(n+1+x)}{(n+1)Gamma(n+k+x)} $$
or
$$ frac{1}{Gamma(k-1)}sum_{ngeq 1}frac{B(n+1+x,k-1)}{n+1}=frac{1}{Gamma(k-1)}int_{0}^{1}sum_{ngeq 1}frac{(1-z)^{k-2}z^{n+x+2}}{n+1},dz $$
or
$$ frac{1}{Gamma(k-1)}int_{0}^{1}(1-z)^{k-2}z^{1+x}(-z-log(1-z)),dz $$
which only depends on the Beta function and its partial derivatives. In particular the last expression equals
$$ -frac{Gamma(x+2)Gamma(k-1)}{Gamma(x+k+2)}left[2+x+(x+k+1)(H_{k-2}-H_{k+x})right]. $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059942%2fgeneralize-sum-n-1-infty-frach-nn1xn2x-cdotsnk1x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By summation by parts the computation of $(2)$ boils down to the computation of
$$ sum_{ngeq 1}frac{1}{(n+1)(n+1+x)(n+2+x)cdots(n+k+x)}=sum_{ngeq 1}frac{Gamma(n+1+x)}{(n+1)Gamma(n+k+x)} $$
or
$$ frac{1}{Gamma(k-1)}sum_{ngeq 1}frac{B(n+1+x,k-1)}{n+1}=frac{1}{Gamma(k-1)}int_{0}^{1}sum_{ngeq 1}frac{(1-z)^{k-2}z^{n+x+2}}{n+1},dz $$
or
$$ frac{1}{Gamma(k-1)}int_{0}^{1}(1-z)^{k-2}z^{1+x}(-z-log(1-z)),dz $$
which only depends on the Beta function and its partial derivatives. In particular the last expression equals
$$ -frac{Gamma(x+2)Gamma(k-1)}{Gamma(x+k+2)}left[2+x+(x+k+1)(H_{k-2}-H_{k+x})right]. $$
$endgroup$
add a comment |
$begingroup$
By summation by parts the computation of $(2)$ boils down to the computation of
$$ sum_{ngeq 1}frac{1}{(n+1)(n+1+x)(n+2+x)cdots(n+k+x)}=sum_{ngeq 1}frac{Gamma(n+1+x)}{(n+1)Gamma(n+k+x)} $$
or
$$ frac{1}{Gamma(k-1)}sum_{ngeq 1}frac{B(n+1+x,k-1)}{n+1}=frac{1}{Gamma(k-1)}int_{0}^{1}sum_{ngeq 1}frac{(1-z)^{k-2}z^{n+x+2}}{n+1},dz $$
or
$$ frac{1}{Gamma(k-1)}int_{0}^{1}(1-z)^{k-2}z^{1+x}(-z-log(1-z)),dz $$
which only depends on the Beta function and its partial derivatives. In particular the last expression equals
$$ -frac{Gamma(x+2)Gamma(k-1)}{Gamma(x+k+2)}left[2+x+(x+k+1)(H_{k-2}-H_{k+x})right]. $$
$endgroup$
add a comment |
$begingroup$
By summation by parts the computation of $(2)$ boils down to the computation of
$$ sum_{ngeq 1}frac{1}{(n+1)(n+1+x)(n+2+x)cdots(n+k+x)}=sum_{ngeq 1}frac{Gamma(n+1+x)}{(n+1)Gamma(n+k+x)} $$
or
$$ frac{1}{Gamma(k-1)}sum_{ngeq 1}frac{B(n+1+x,k-1)}{n+1}=frac{1}{Gamma(k-1)}int_{0}^{1}sum_{ngeq 1}frac{(1-z)^{k-2}z^{n+x+2}}{n+1},dz $$
or
$$ frac{1}{Gamma(k-1)}int_{0}^{1}(1-z)^{k-2}z^{1+x}(-z-log(1-z)),dz $$
which only depends on the Beta function and its partial derivatives. In particular the last expression equals
$$ -frac{Gamma(x+2)Gamma(k-1)}{Gamma(x+k+2)}left[2+x+(x+k+1)(H_{k-2}-H_{k+x})right]. $$
$endgroup$
By summation by parts the computation of $(2)$ boils down to the computation of
$$ sum_{ngeq 1}frac{1}{(n+1)(n+1+x)(n+2+x)cdots(n+k+x)}=sum_{ngeq 1}frac{Gamma(n+1+x)}{(n+1)Gamma(n+k+x)} $$
or
$$ frac{1}{Gamma(k-1)}sum_{ngeq 1}frac{B(n+1+x,k-1)}{n+1}=frac{1}{Gamma(k-1)}int_{0}^{1}sum_{ngeq 1}frac{(1-z)^{k-2}z^{n+x+2}}{n+1},dz $$
or
$$ frac{1}{Gamma(k-1)}int_{0}^{1}(1-z)^{k-2}z^{1+x}(-z-log(1-z)),dz $$
which only depends on the Beta function and its partial derivatives. In particular the last expression equals
$$ -frac{Gamma(x+2)Gamma(k-1)}{Gamma(x+k+2)}left[2+x+(x+k+1)(H_{k-2}-H_{k+x})right]. $$
answered Jan 2 at 21:54
Jack D'AurizioJack D'Aurizio
291k33284666
291k33284666
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059942%2fgeneralize-sum-n-1-infty-frach-nn1xn2x-cdotsnk1x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown