Generalize $sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}$












1












$begingroup$


I was looking at this wolfram site on section [25]



A general identity due to B. Cloitre (pers. comm., Jan. 7, 2006)



where $kge1$



$$sum_{n=1}^{infty}frac{H_n}{(n+1)(n+2)cdots(n+k+1)}=frac{1}{k!k^2}tag1$$



I was trying to generalize $(1)$



Let generalize $(1)$,



where $xge0$



$$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}tag2$$



and hoping to find a closed form but I could only got a partial of it



$k=1$



$$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)}=-frac{H_x}{x+1}-(H_x)^2+(H_{x+1})^2tag3$$



How do we go about to find the closed form for $(2)$?



I am assuming $(2)$, may take the closed form of



$$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}=G(x)-sum_{j=0}^{k}(-1)^j{k choose j}(H_{x+j})^2tag4$$










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I was looking at this wolfram site on section [25]



    A general identity due to B. Cloitre (pers. comm., Jan. 7, 2006)



    where $kge1$



    $$sum_{n=1}^{infty}frac{H_n}{(n+1)(n+2)cdots(n+k+1)}=frac{1}{k!k^2}tag1$$



    I was trying to generalize $(1)$



    Let generalize $(1)$,



    where $xge0$



    $$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}tag2$$



    and hoping to find a closed form but I could only got a partial of it



    $k=1$



    $$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)}=-frac{H_x}{x+1}-(H_x)^2+(H_{x+1})^2tag3$$



    How do we go about to find the closed form for $(2)$?



    I am assuming $(2)$, may take the closed form of



    $$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}=G(x)-sum_{j=0}^{k}(-1)^j{k choose j}(H_{x+j})^2tag4$$










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      I was looking at this wolfram site on section [25]



      A general identity due to B. Cloitre (pers. comm., Jan. 7, 2006)



      where $kge1$



      $$sum_{n=1}^{infty}frac{H_n}{(n+1)(n+2)cdots(n+k+1)}=frac{1}{k!k^2}tag1$$



      I was trying to generalize $(1)$



      Let generalize $(1)$,



      where $xge0$



      $$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}tag2$$



      and hoping to find a closed form but I could only got a partial of it



      $k=1$



      $$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)}=-frac{H_x}{x+1}-(H_x)^2+(H_{x+1})^2tag3$$



      How do we go about to find the closed form for $(2)$?



      I am assuming $(2)$, may take the closed form of



      $$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}=G(x)-sum_{j=0}^{k}(-1)^j{k choose j}(H_{x+j})^2tag4$$










      share|cite|improve this question











      $endgroup$




      I was looking at this wolfram site on section [25]



      A general identity due to B. Cloitre (pers. comm., Jan. 7, 2006)



      where $kge1$



      $$sum_{n=1}^{infty}frac{H_n}{(n+1)(n+2)cdots(n+k+1)}=frac{1}{k!k^2}tag1$$



      I was trying to generalize $(1)$



      Let generalize $(1)$,



      where $xge0$



      $$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}tag2$$



      and hoping to find a closed form but I could only got a partial of it



      $k=1$



      $$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)}=-frac{H_x}{x+1}-(H_x)^2+(H_{x+1})^2tag3$$



      How do we go about to find the closed form for $(2)$?



      I am assuming $(2)$, may take the closed form of



      $$sum_{n=1}^{infty}frac{H_n}{(n+1+x)(n+2+x)cdots(n+k+1+x)}=G(x)-sum_{j=0}^{k}(-1)^j{k choose j}(H_{x+j})^2tag4$$







      sequences-and-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 2 at 20:53







      user583851

















      asked Jan 2 at 20:33









      user583851user583851

      508110




      508110






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          By summation by parts the computation of $(2)$ boils down to the computation of
          $$ sum_{ngeq 1}frac{1}{(n+1)(n+1+x)(n+2+x)cdots(n+k+x)}=sum_{ngeq 1}frac{Gamma(n+1+x)}{(n+1)Gamma(n+k+x)} $$
          or
          $$ frac{1}{Gamma(k-1)}sum_{ngeq 1}frac{B(n+1+x,k-1)}{n+1}=frac{1}{Gamma(k-1)}int_{0}^{1}sum_{ngeq 1}frac{(1-z)^{k-2}z^{n+x+2}}{n+1},dz $$
          or
          $$ frac{1}{Gamma(k-1)}int_{0}^{1}(1-z)^{k-2}z^{1+x}(-z-log(1-z)),dz $$
          which only depends on the Beta function and its partial derivatives. In particular the last expression equals



          $$ -frac{Gamma(x+2)Gamma(k-1)}{Gamma(x+k+2)}left[2+x+(x+k+1)(H_{k-2}-H_{k+x})right]. $$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059942%2fgeneralize-sum-n-1-infty-frach-nn1xn2x-cdotsnk1x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            By summation by parts the computation of $(2)$ boils down to the computation of
            $$ sum_{ngeq 1}frac{1}{(n+1)(n+1+x)(n+2+x)cdots(n+k+x)}=sum_{ngeq 1}frac{Gamma(n+1+x)}{(n+1)Gamma(n+k+x)} $$
            or
            $$ frac{1}{Gamma(k-1)}sum_{ngeq 1}frac{B(n+1+x,k-1)}{n+1}=frac{1}{Gamma(k-1)}int_{0}^{1}sum_{ngeq 1}frac{(1-z)^{k-2}z^{n+x+2}}{n+1},dz $$
            or
            $$ frac{1}{Gamma(k-1)}int_{0}^{1}(1-z)^{k-2}z^{1+x}(-z-log(1-z)),dz $$
            which only depends on the Beta function and its partial derivatives. In particular the last expression equals



            $$ -frac{Gamma(x+2)Gamma(k-1)}{Gamma(x+k+2)}left[2+x+(x+k+1)(H_{k-2}-H_{k+x})right]. $$






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              By summation by parts the computation of $(2)$ boils down to the computation of
              $$ sum_{ngeq 1}frac{1}{(n+1)(n+1+x)(n+2+x)cdots(n+k+x)}=sum_{ngeq 1}frac{Gamma(n+1+x)}{(n+1)Gamma(n+k+x)} $$
              or
              $$ frac{1}{Gamma(k-1)}sum_{ngeq 1}frac{B(n+1+x,k-1)}{n+1}=frac{1}{Gamma(k-1)}int_{0}^{1}sum_{ngeq 1}frac{(1-z)^{k-2}z^{n+x+2}}{n+1},dz $$
              or
              $$ frac{1}{Gamma(k-1)}int_{0}^{1}(1-z)^{k-2}z^{1+x}(-z-log(1-z)),dz $$
              which only depends on the Beta function and its partial derivatives. In particular the last expression equals



              $$ -frac{Gamma(x+2)Gamma(k-1)}{Gamma(x+k+2)}left[2+x+(x+k+1)(H_{k-2}-H_{k+x})right]. $$






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                By summation by parts the computation of $(2)$ boils down to the computation of
                $$ sum_{ngeq 1}frac{1}{(n+1)(n+1+x)(n+2+x)cdots(n+k+x)}=sum_{ngeq 1}frac{Gamma(n+1+x)}{(n+1)Gamma(n+k+x)} $$
                or
                $$ frac{1}{Gamma(k-1)}sum_{ngeq 1}frac{B(n+1+x,k-1)}{n+1}=frac{1}{Gamma(k-1)}int_{0}^{1}sum_{ngeq 1}frac{(1-z)^{k-2}z^{n+x+2}}{n+1},dz $$
                or
                $$ frac{1}{Gamma(k-1)}int_{0}^{1}(1-z)^{k-2}z^{1+x}(-z-log(1-z)),dz $$
                which only depends on the Beta function and its partial derivatives. In particular the last expression equals



                $$ -frac{Gamma(x+2)Gamma(k-1)}{Gamma(x+k+2)}left[2+x+(x+k+1)(H_{k-2}-H_{k+x})right]. $$






                share|cite|improve this answer









                $endgroup$



                By summation by parts the computation of $(2)$ boils down to the computation of
                $$ sum_{ngeq 1}frac{1}{(n+1)(n+1+x)(n+2+x)cdots(n+k+x)}=sum_{ngeq 1}frac{Gamma(n+1+x)}{(n+1)Gamma(n+k+x)} $$
                or
                $$ frac{1}{Gamma(k-1)}sum_{ngeq 1}frac{B(n+1+x,k-1)}{n+1}=frac{1}{Gamma(k-1)}int_{0}^{1}sum_{ngeq 1}frac{(1-z)^{k-2}z^{n+x+2}}{n+1},dz $$
                or
                $$ frac{1}{Gamma(k-1)}int_{0}^{1}(1-z)^{k-2}z^{1+x}(-z-log(1-z)),dz $$
                which only depends on the Beta function and its partial derivatives. In particular the last expression equals



                $$ -frac{Gamma(x+2)Gamma(k-1)}{Gamma(x+k+2)}left[2+x+(x+k+1)(H_{k-2}-H_{k+x})right]. $$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 2 at 21:54









                Jack D'AurizioJack D'Aurizio

                291k33284666




                291k33284666






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059942%2fgeneralize-sum-n-1-infty-frach-nn1xn2x-cdotsnk1x%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna