How can the area of a paralellogram formed by two 3D vectors be computed without using the cross product?












0












$begingroup$


How can the area of the parallelogram formed by two 3D vectors
$$mathbf{u} = [a, b, c], space mathbf{v} = [e, f, g]$$
be computed without using the cross product?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    You may perhaps calculate the angle $alpha$ between $u$ and $v$ via dot product and then use $A=|u||v|sinalpha$, but it is basically the ugly way to calculate the cross product.
    $endgroup$
    – A.Γ.
    Jan 2 at 20:22
















0












$begingroup$


How can the area of the parallelogram formed by two 3D vectors
$$mathbf{u} = [a, b, c], space mathbf{v} = [e, f, g]$$
be computed without using the cross product?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    You may perhaps calculate the angle $alpha$ between $u$ and $v$ via dot product and then use $A=|u||v|sinalpha$, but it is basically the ugly way to calculate the cross product.
    $endgroup$
    – A.Γ.
    Jan 2 at 20:22














0












0








0





$begingroup$


How can the area of the parallelogram formed by two 3D vectors
$$mathbf{u} = [a, b, c], space mathbf{v} = [e, f, g]$$
be computed without using the cross product?










share|cite|improve this question











$endgroup$




How can the area of the parallelogram formed by two 3D vectors
$$mathbf{u} = [a, b, c], space mathbf{v} = [e, f, g]$$
be computed without using the cross product?







linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 2 at 20:23









Bernard

122k740116




122k740116










asked Jan 2 at 20:16









K. ClaessonK. Claesson

18110




18110








  • 2




    $begingroup$
    You may perhaps calculate the angle $alpha$ between $u$ and $v$ via dot product and then use $A=|u||v|sinalpha$, but it is basically the ugly way to calculate the cross product.
    $endgroup$
    – A.Γ.
    Jan 2 at 20:22














  • 2




    $begingroup$
    You may perhaps calculate the angle $alpha$ between $u$ and $v$ via dot product and then use $A=|u||v|sinalpha$, but it is basically the ugly way to calculate the cross product.
    $endgroup$
    – A.Γ.
    Jan 2 at 20:22








2




2




$begingroup$
You may perhaps calculate the angle $alpha$ between $u$ and $v$ via dot product and then use $A=|u||v|sinalpha$, but it is basically the ugly way to calculate the cross product.
$endgroup$
– A.Γ.
Jan 2 at 20:22




$begingroup$
You may perhaps calculate the angle $alpha$ between $u$ and $v$ via dot product and then use $A=|u||v|sinalpha$, but it is basically the ugly way to calculate the cross product.
$endgroup$
– A.Γ.
Jan 2 at 20:22










2 Answers
2






active

oldest

votes


















2












$begingroup$

The square of the area is the determinant
$$begin{vmatrix}
bf{u}cdotbf u&bf{u}cdotbf v\
bf{v}cdotbf u&
bf{v}cdotbf v
end{vmatrix}.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Could you explain why this is the square of the area?
    $endgroup$
    – K. Claesson
    Jan 2 at 20:33






  • 2




    $begingroup$
    @K.Claesson Recall that $A^2=|mathbf u|^2|mathbf v|^2sin^2alpha=|mathbf u|^2|mathbf v|^2(1-cos^2alpha)=|mathbf u|^2|mathbf v|^2-(mathbf{ucdot v})^2$
    $endgroup$
    – Shubham Johri
    Jan 2 at 20:49





















2












$begingroup$

Rewrite $mathbf v$ as the sum of two components, one parallel to $mathbf u$ and one orthogonal to $mathbf u.$
Let $mathbf v_perp$ be the orthogonal component.
Then the area of the parallelogram is
$$ lVert u rVert, lVert mathbf v_perp rVert. $$





Projection of a vector and its answers explain how to get $mathbf v_parallel,$ the parallel component of $mathbf v.$
And then $mathbf v_perp = mathbf v - mathbf v_parallel.$
The effect is the same as the formula in the helpful comment under this answer.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How can I find the orthogonal component $mathbf{v}_perp$ or the length of the component directly?
    $endgroup$
    – K. Claesson
    Jan 2 at 20:31








  • 2




    $begingroup$
    @K.Claesson Subtract from $bf v$ the component of $bf v$ along $bf u$. $$mathbf{v_perp}=mathbf v-frac{mathbf{vcdot u}}{|mathbf u|^2}mathbf u$$
    $endgroup$
    – Shubham Johri
    Jan 2 at 20:41













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059928%2fhow-can-the-area-of-a-paralellogram-formed-by-two-3d-vectors-be-computed-without%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

The square of the area is the determinant
$$begin{vmatrix}
bf{u}cdotbf u&bf{u}cdotbf v\
bf{v}cdotbf u&
bf{v}cdotbf v
end{vmatrix}.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Could you explain why this is the square of the area?
    $endgroup$
    – K. Claesson
    Jan 2 at 20:33






  • 2




    $begingroup$
    @K.Claesson Recall that $A^2=|mathbf u|^2|mathbf v|^2sin^2alpha=|mathbf u|^2|mathbf v|^2(1-cos^2alpha)=|mathbf u|^2|mathbf v|^2-(mathbf{ucdot v})^2$
    $endgroup$
    – Shubham Johri
    Jan 2 at 20:49


















2












$begingroup$

The square of the area is the determinant
$$begin{vmatrix}
bf{u}cdotbf u&bf{u}cdotbf v\
bf{v}cdotbf u&
bf{v}cdotbf v
end{vmatrix}.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Could you explain why this is the square of the area?
    $endgroup$
    – K. Claesson
    Jan 2 at 20:33






  • 2




    $begingroup$
    @K.Claesson Recall that $A^2=|mathbf u|^2|mathbf v|^2sin^2alpha=|mathbf u|^2|mathbf v|^2(1-cos^2alpha)=|mathbf u|^2|mathbf v|^2-(mathbf{ucdot v})^2$
    $endgroup$
    – Shubham Johri
    Jan 2 at 20:49
















2












2








2





$begingroup$

The square of the area is the determinant
$$begin{vmatrix}
bf{u}cdotbf u&bf{u}cdotbf v\
bf{v}cdotbf u&
bf{v}cdotbf v
end{vmatrix}.$$






share|cite|improve this answer









$endgroup$



The square of the area is the determinant
$$begin{vmatrix}
bf{u}cdotbf u&bf{u}cdotbf v\
bf{v}cdotbf u&
bf{v}cdotbf v
end{vmatrix}.$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 2 at 20:30









Lord Shark the UnknownLord Shark the Unknown

105k1160133




105k1160133












  • $begingroup$
    Could you explain why this is the square of the area?
    $endgroup$
    – K. Claesson
    Jan 2 at 20:33






  • 2




    $begingroup$
    @K.Claesson Recall that $A^2=|mathbf u|^2|mathbf v|^2sin^2alpha=|mathbf u|^2|mathbf v|^2(1-cos^2alpha)=|mathbf u|^2|mathbf v|^2-(mathbf{ucdot v})^2$
    $endgroup$
    – Shubham Johri
    Jan 2 at 20:49




















  • $begingroup$
    Could you explain why this is the square of the area?
    $endgroup$
    – K. Claesson
    Jan 2 at 20:33






  • 2




    $begingroup$
    @K.Claesson Recall that $A^2=|mathbf u|^2|mathbf v|^2sin^2alpha=|mathbf u|^2|mathbf v|^2(1-cos^2alpha)=|mathbf u|^2|mathbf v|^2-(mathbf{ucdot v})^2$
    $endgroup$
    – Shubham Johri
    Jan 2 at 20:49


















$begingroup$
Could you explain why this is the square of the area?
$endgroup$
– K. Claesson
Jan 2 at 20:33




$begingroup$
Could you explain why this is the square of the area?
$endgroup$
– K. Claesson
Jan 2 at 20:33




2




2




$begingroup$
@K.Claesson Recall that $A^2=|mathbf u|^2|mathbf v|^2sin^2alpha=|mathbf u|^2|mathbf v|^2(1-cos^2alpha)=|mathbf u|^2|mathbf v|^2-(mathbf{ucdot v})^2$
$endgroup$
– Shubham Johri
Jan 2 at 20:49






$begingroup$
@K.Claesson Recall that $A^2=|mathbf u|^2|mathbf v|^2sin^2alpha=|mathbf u|^2|mathbf v|^2(1-cos^2alpha)=|mathbf u|^2|mathbf v|^2-(mathbf{ucdot v})^2$
$endgroup$
– Shubham Johri
Jan 2 at 20:49













2












$begingroup$

Rewrite $mathbf v$ as the sum of two components, one parallel to $mathbf u$ and one orthogonal to $mathbf u.$
Let $mathbf v_perp$ be the orthogonal component.
Then the area of the parallelogram is
$$ lVert u rVert, lVert mathbf v_perp rVert. $$





Projection of a vector and its answers explain how to get $mathbf v_parallel,$ the parallel component of $mathbf v.$
And then $mathbf v_perp = mathbf v - mathbf v_parallel.$
The effect is the same as the formula in the helpful comment under this answer.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How can I find the orthogonal component $mathbf{v}_perp$ or the length of the component directly?
    $endgroup$
    – K. Claesson
    Jan 2 at 20:31








  • 2




    $begingroup$
    @K.Claesson Subtract from $bf v$ the component of $bf v$ along $bf u$. $$mathbf{v_perp}=mathbf v-frac{mathbf{vcdot u}}{|mathbf u|^2}mathbf u$$
    $endgroup$
    – Shubham Johri
    Jan 2 at 20:41


















2












$begingroup$

Rewrite $mathbf v$ as the sum of two components, one parallel to $mathbf u$ and one orthogonal to $mathbf u.$
Let $mathbf v_perp$ be the orthogonal component.
Then the area of the parallelogram is
$$ lVert u rVert, lVert mathbf v_perp rVert. $$





Projection of a vector and its answers explain how to get $mathbf v_parallel,$ the parallel component of $mathbf v.$
And then $mathbf v_perp = mathbf v - mathbf v_parallel.$
The effect is the same as the formula in the helpful comment under this answer.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How can I find the orthogonal component $mathbf{v}_perp$ or the length of the component directly?
    $endgroup$
    – K. Claesson
    Jan 2 at 20:31








  • 2




    $begingroup$
    @K.Claesson Subtract from $bf v$ the component of $bf v$ along $bf u$. $$mathbf{v_perp}=mathbf v-frac{mathbf{vcdot u}}{|mathbf u|^2}mathbf u$$
    $endgroup$
    – Shubham Johri
    Jan 2 at 20:41
















2












2








2





$begingroup$

Rewrite $mathbf v$ as the sum of two components, one parallel to $mathbf u$ and one orthogonal to $mathbf u.$
Let $mathbf v_perp$ be the orthogonal component.
Then the area of the parallelogram is
$$ lVert u rVert, lVert mathbf v_perp rVert. $$





Projection of a vector and its answers explain how to get $mathbf v_parallel,$ the parallel component of $mathbf v.$
And then $mathbf v_perp = mathbf v - mathbf v_parallel.$
The effect is the same as the formula in the helpful comment under this answer.






share|cite|improve this answer











$endgroup$



Rewrite $mathbf v$ as the sum of two components, one parallel to $mathbf u$ and one orthogonal to $mathbf u.$
Let $mathbf v_perp$ be the orthogonal component.
Then the area of the parallelogram is
$$ lVert u rVert, lVert mathbf v_perp rVert. $$





Projection of a vector and its answers explain how to get $mathbf v_parallel,$ the parallel component of $mathbf v.$
And then $mathbf v_perp = mathbf v - mathbf v_parallel.$
The effect is the same as the formula in the helpful comment under this answer.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 2 at 20:46

























answered Jan 2 at 20:20









David KDavid K

54.9k344120




54.9k344120












  • $begingroup$
    How can I find the orthogonal component $mathbf{v}_perp$ or the length of the component directly?
    $endgroup$
    – K. Claesson
    Jan 2 at 20:31








  • 2




    $begingroup$
    @K.Claesson Subtract from $bf v$ the component of $bf v$ along $bf u$. $$mathbf{v_perp}=mathbf v-frac{mathbf{vcdot u}}{|mathbf u|^2}mathbf u$$
    $endgroup$
    – Shubham Johri
    Jan 2 at 20:41




















  • $begingroup$
    How can I find the orthogonal component $mathbf{v}_perp$ or the length of the component directly?
    $endgroup$
    – K. Claesson
    Jan 2 at 20:31








  • 2




    $begingroup$
    @K.Claesson Subtract from $bf v$ the component of $bf v$ along $bf u$. $$mathbf{v_perp}=mathbf v-frac{mathbf{vcdot u}}{|mathbf u|^2}mathbf u$$
    $endgroup$
    – Shubham Johri
    Jan 2 at 20:41


















$begingroup$
How can I find the orthogonal component $mathbf{v}_perp$ or the length of the component directly?
$endgroup$
– K. Claesson
Jan 2 at 20:31






$begingroup$
How can I find the orthogonal component $mathbf{v}_perp$ or the length of the component directly?
$endgroup$
– K. Claesson
Jan 2 at 20:31






2




2




$begingroup$
@K.Claesson Subtract from $bf v$ the component of $bf v$ along $bf u$. $$mathbf{v_perp}=mathbf v-frac{mathbf{vcdot u}}{|mathbf u|^2}mathbf u$$
$endgroup$
– Shubham Johri
Jan 2 at 20:41






$begingroup$
@K.Claesson Subtract from $bf v$ the component of $bf v$ along $bf u$. $$mathbf{v_perp}=mathbf v-frac{mathbf{vcdot u}}{|mathbf u|^2}mathbf u$$
$endgroup$
– Shubham Johri
Jan 2 at 20:41




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059928%2fhow-can-the-area-of-a-paralellogram-formed-by-two-3d-vectors-be-computed-without%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna