Variance of random sum of random i.i.d. variables - spot the mistake?












1












$begingroup$


Probably a trivial mistake, but can't seem to spot it:




Assume $X_1, ldots, X_tau$ and $tau in {1, ldots, n}$ are random i.i.d variables, where $S_tau = X_1 + ldots + X_tau$ denotes the random sum.



It can be shown that the following holds:



$$Var(S_tau | tau )=tau Var(X_1)$$




However, from what I know,



$$Var(S_tau | tau) = mathbb{E}( (S_tau - mathbb{E}(S_tau|tau))^2|tau) = mathbb{E}(S_tau^2|tau) - tau^2mathbb{E}(X_1)^2$$



Here $$ mathbb{E}(S^2_tau|tau)=mathbb{E}((X_1+ldots+X_tau)^2|tau)=sum_{i,j}^{n}mathbb{E}(X_iX_j|tau)mathbb{1}_{{i,jleq tau}}=mathbb{E}(X_1^2)tau^2$$
due to independency and identical distributions.



So with my calculations I'm getting $$Var(S_tau|tau)=tau^2 Var(X_1)$$



and I'm not sure where should the squared $tau$ disappear.



I seem to be missing something, but can't spot it.



Would be grateful for any observations!










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Probably a trivial mistake, but can't seem to spot it:




    Assume $X_1, ldots, X_tau$ and $tau in {1, ldots, n}$ are random i.i.d variables, where $S_tau = X_1 + ldots + X_tau$ denotes the random sum.



    It can be shown that the following holds:



    $$Var(S_tau | tau )=tau Var(X_1)$$




    However, from what I know,



    $$Var(S_tau | tau) = mathbb{E}( (S_tau - mathbb{E}(S_tau|tau))^2|tau) = mathbb{E}(S_tau^2|tau) - tau^2mathbb{E}(X_1)^2$$



    Here $$ mathbb{E}(S^2_tau|tau)=mathbb{E}((X_1+ldots+X_tau)^2|tau)=sum_{i,j}^{n}mathbb{E}(X_iX_j|tau)mathbb{1}_{{i,jleq tau}}=mathbb{E}(X_1^2)tau^2$$
    due to independency and identical distributions.



    So with my calculations I'm getting $$Var(S_tau|tau)=tau^2 Var(X_1)$$



    and I'm not sure where should the squared $tau$ disappear.



    I seem to be missing something, but can't spot it.



    Would be grateful for any observations!










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Probably a trivial mistake, but can't seem to spot it:




      Assume $X_1, ldots, X_tau$ and $tau in {1, ldots, n}$ are random i.i.d variables, where $S_tau = X_1 + ldots + X_tau$ denotes the random sum.



      It can be shown that the following holds:



      $$Var(S_tau | tau )=tau Var(X_1)$$




      However, from what I know,



      $$Var(S_tau | tau) = mathbb{E}( (S_tau - mathbb{E}(S_tau|tau))^2|tau) = mathbb{E}(S_tau^2|tau) - tau^2mathbb{E}(X_1)^2$$



      Here $$ mathbb{E}(S^2_tau|tau)=mathbb{E}((X_1+ldots+X_tau)^2|tau)=sum_{i,j}^{n}mathbb{E}(X_iX_j|tau)mathbb{1}_{{i,jleq tau}}=mathbb{E}(X_1^2)tau^2$$
      due to independency and identical distributions.



      So with my calculations I'm getting $$Var(S_tau|tau)=tau^2 Var(X_1)$$



      and I'm not sure where should the squared $tau$ disappear.



      I seem to be missing something, but can't spot it.



      Would be grateful for any observations!










      share|cite|improve this question









      $endgroup$




      Probably a trivial mistake, but can't seem to spot it:




      Assume $X_1, ldots, X_tau$ and $tau in {1, ldots, n}$ are random i.i.d variables, where $S_tau = X_1 + ldots + X_tau$ denotes the random sum.



      It can be shown that the following holds:



      $$Var(S_tau | tau )=tau Var(X_1)$$




      However, from what I know,



      $$Var(S_tau | tau) = mathbb{E}( (S_tau - mathbb{E}(S_tau|tau))^2|tau) = mathbb{E}(S_tau^2|tau) - tau^2mathbb{E}(X_1)^2$$



      Here $$ mathbb{E}(S^2_tau|tau)=mathbb{E}((X_1+ldots+X_tau)^2|tau)=sum_{i,j}^{n}mathbb{E}(X_iX_j|tau)mathbb{1}_{{i,jleq tau}}=mathbb{E}(X_1^2)tau^2$$
      due to independency and identical distributions.



      So with my calculations I'm getting $$Var(S_tau|tau)=tau^2 Var(X_1)$$



      and I'm not sure where should the squared $tau$ disappear.



      I seem to be missing something, but can't spot it.



      Would be grateful for any observations!







      probability probability-theory conditional-expectation expected-value






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 3 at 20:21









      NutleNutle

      332110




      332110






















          4 Answers
          4






          active

          oldest

          votes


















          0












          $begingroup$

          First of all, $mathbb{E}[X_iX_j] = mathbb{E}[X_i]mathbb{E}[X_j] = (mathbb{E}[X_1])^2 ne mathbb{E}[X_1^2]$



          Also, there will be $tau$ terms of $X_i^2$ and $tau(tau-1)$ terms of $X_iX_j$ in the expansion of the square. Therefore your second equation will become



          $$mathbb{E}(S^2_tau|tau)=mathbb{E}((X_1+ldots+X_tau)^2|tau)=sum_{i,j}^{n}mathbb{E}(X_iX_j|tau)mathbb{1}_{{i,jleq tau}}=mathbb{E}(X_1^2)tau + tau(tau-1)(mathbb{E}[X_1])^2$$



          $$Var(S_tau|tau)=mathbb{E}(X_1^2)tau + tau(tau-1)(mathbb{E}[X_1])^2 - tau^2mathbb{E}(X_1)^2$$



          $$= taumathbb{E}(X_1^2) -tau(mathbb{E}[X_1])^2 $$



          $$= tau(mathbb{E}(X_1^2)-(mathbb{E}[X_1])^2)$$



          $$=tau Var(X_1)$$






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            I think one oopsie is: since $X_i$ and $X_j$ are independent, $mathbb{E}[X_iX_j] = mathbb{E}[X_i]mathbb{E}[X_j] = mathbb{E}[X_1]^2$ and not $mathbb{E}[X_1^2]$! There must be another mistake, because plugging that in returns zero, but I don't see it quite yet.



            There's also a much simpler proof. $var(S_tau|tau) = var(sum_{i=1}^tau X_i|tau)$. The variance of the sum of i.i.d. random variables is the sum of the variance of any random variable in the sum, so $var(sum_{i=1}^tau X_i|tau) = sum_{i=1}^tau var(X_1)$






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              The most succinct calculation writes the covariance of two iids using the Kronecker delta:$$operatorname{Var}S_tau=sum_{1le i,,jletau}operatorname{Cov}(X_i,,X_j)=sum_{ij}sigma^2delta_{ij}=tausigma^2.$$Your mistake, essentially, was to replace $delta_{ij}$ with $1$ throughout.






              share|cite|improve this answer









              $endgroup$





















                0












                $begingroup$

                Conditional on $tau=k$, where $1leq k leq n$, $S_tau=S_k=X_1+dotsc +X_k$. For any $(X_i)$ that are IID, we have that
                $$Var(X_1+dotsc+X_k)=Var(X_1)+dotsc +Var(X_k)=kVar(X_1).$$
                Thus,
                $$Var(X_1+dotsc +X_tau | tau =k)=Var(X_1 | tau =k)+dotsc Var(X_n |tau=k)$$
                $$=Var(X_1)+dotsc +Var(X_k)=k Var(X_1),$$
                and finally we obtain $Var(S_tau | tau)= tau Var(X_1)$.






                share|cite|improve this answer









                $endgroup$













                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060961%2fvariance-of-random-sum-of-random-i-i-d-variables-spot-the-mistake%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  0












                  $begingroup$

                  First of all, $mathbb{E}[X_iX_j] = mathbb{E}[X_i]mathbb{E}[X_j] = (mathbb{E}[X_1])^2 ne mathbb{E}[X_1^2]$



                  Also, there will be $tau$ terms of $X_i^2$ and $tau(tau-1)$ terms of $X_iX_j$ in the expansion of the square. Therefore your second equation will become



                  $$mathbb{E}(S^2_tau|tau)=mathbb{E}((X_1+ldots+X_tau)^2|tau)=sum_{i,j}^{n}mathbb{E}(X_iX_j|tau)mathbb{1}_{{i,jleq tau}}=mathbb{E}(X_1^2)tau + tau(tau-1)(mathbb{E}[X_1])^2$$



                  $$Var(S_tau|tau)=mathbb{E}(X_1^2)tau + tau(tau-1)(mathbb{E}[X_1])^2 - tau^2mathbb{E}(X_1)^2$$



                  $$= taumathbb{E}(X_1^2) -tau(mathbb{E}[X_1])^2 $$



                  $$= tau(mathbb{E}(X_1^2)-(mathbb{E}[X_1])^2)$$



                  $$=tau Var(X_1)$$






                  share|cite|improve this answer









                  $endgroup$


















                    0












                    $begingroup$

                    First of all, $mathbb{E}[X_iX_j] = mathbb{E}[X_i]mathbb{E}[X_j] = (mathbb{E}[X_1])^2 ne mathbb{E}[X_1^2]$



                    Also, there will be $tau$ terms of $X_i^2$ and $tau(tau-1)$ terms of $X_iX_j$ in the expansion of the square. Therefore your second equation will become



                    $$mathbb{E}(S^2_tau|tau)=mathbb{E}((X_1+ldots+X_tau)^2|tau)=sum_{i,j}^{n}mathbb{E}(X_iX_j|tau)mathbb{1}_{{i,jleq tau}}=mathbb{E}(X_1^2)tau + tau(tau-1)(mathbb{E}[X_1])^2$$



                    $$Var(S_tau|tau)=mathbb{E}(X_1^2)tau + tau(tau-1)(mathbb{E}[X_1])^2 - tau^2mathbb{E}(X_1)^2$$



                    $$= taumathbb{E}(X_1^2) -tau(mathbb{E}[X_1])^2 $$



                    $$= tau(mathbb{E}(X_1^2)-(mathbb{E}[X_1])^2)$$



                    $$=tau Var(X_1)$$






                    share|cite|improve this answer









                    $endgroup$
















                      0












                      0








                      0





                      $begingroup$

                      First of all, $mathbb{E}[X_iX_j] = mathbb{E}[X_i]mathbb{E}[X_j] = (mathbb{E}[X_1])^2 ne mathbb{E}[X_1^2]$



                      Also, there will be $tau$ terms of $X_i^2$ and $tau(tau-1)$ terms of $X_iX_j$ in the expansion of the square. Therefore your second equation will become



                      $$mathbb{E}(S^2_tau|tau)=mathbb{E}((X_1+ldots+X_tau)^2|tau)=sum_{i,j}^{n}mathbb{E}(X_iX_j|tau)mathbb{1}_{{i,jleq tau}}=mathbb{E}(X_1^2)tau + tau(tau-1)(mathbb{E}[X_1])^2$$



                      $$Var(S_tau|tau)=mathbb{E}(X_1^2)tau + tau(tau-1)(mathbb{E}[X_1])^2 - tau^2mathbb{E}(X_1)^2$$



                      $$= taumathbb{E}(X_1^2) -tau(mathbb{E}[X_1])^2 $$



                      $$= tau(mathbb{E}(X_1^2)-(mathbb{E}[X_1])^2)$$



                      $$=tau Var(X_1)$$






                      share|cite|improve this answer









                      $endgroup$



                      First of all, $mathbb{E}[X_iX_j] = mathbb{E}[X_i]mathbb{E}[X_j] = (mathbb{E}[X_1])^2 ne mathbb{E}[X_1^2]$



                      Also, there will be $tau$ terms of $X_i^2$ and $tau(tau-1)$ terms of $X_iX_j$ in the expansion of the square. Therefore your second equation will become



                      $$mathbb{E}(S^2_tau|tau)=mathbb{E}((X_1+ldots+X_tau)^2|tau)=sum_{i,j}^{n}mathbb{E}(X_iX_j|tau)mathbb{1}_{{i,jleq tau}}=mathbb{E}(X_1^2)tau + tau(tau-1)(mathbb{E}[X_1])^2$$



                      $$Var(S_tau|tau)=mathbb{E}(X_1^2)tau + tau(tau-1)(mathbb{E}[X_1])^2 - tau^2mathbb{E}(X_1)^2$$



                      $$= taumathbb{E}(X_1^2) -tau(mathbb{E}[X_1])^2 $$



                      $$= tau(mathbb{E}(X_1^2)-(mathbb{E}[X_1])^2)$$



                      $$=tau Var(X_1)$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Jan 3 at 21:37









                      Sauhard SharmaSauhard Sharma

                      953318




                      953318























                          0












                          $begingroup$

                          I think one oopsie is: since $X_i$ and $X_j$ are independent, $mathbb{E}[X_iX_j] = mathbb{E}[X_i]mathbb{E}[X_j] = mathbb{E}[X_1]^2$ and not $mathbb{E}[X_1^2]$! There must be another mistake, because plugging that in returns zero, but I don't see it quite yet.



                          There's also a much simpler proof. $var(S_tau|tau) = var(sum_{i=1}^tau X_i|tau)$. The variance of the sum of i.i.d. random variables is the sum of the variance of any random variable in the sum, so $var(sum_{i=1}^tau X_i|tau) = sum_{i=1}^tau var(X_1)$






                          share|cite|improve this answer









                          $endgroup$


















                            0












                            $begingroup$

                            I think one oopsie is: since $X_i$ and $X_j$ are independent, $mathbb{E}[X_iX_j] = mathbb{E}[X_i]mathbb{E}[X_j] = mathbb{E}[X_1]^2$ and not $mathbb{E}[X_1^2]$! There must be another mistake, because plugging that in returns zero, but I don't see it quite yet.



                            There's also a much simpler proof. $var(S_tau|tau) = var(sum_{i=1}^tau X_i|tau)$. The variance of the sum of i.i.d. random variables is the sum of the variance of any random variable in the sum, so $var(sum_{i=1}^tau X_i|tau) = sum_{i=1}^tau var(X_1)$






                            share|cite|improve this answer









                            $endgroup$
















                              0












                              0








                              0





                              $begingroup$

                              I think one oopsie is: since $X_i$ and $X_j$ are independent, $mathbb{E}[X_iX_j] = mathbb{E}[X_i]mathbb{E}[X_j] = mathbb{E}[X_1]^2$ and not $mathbb{E}[X_1^2]$! There must be another mistake, because plugging that in returns zero, but I don't see it quite yet.



                              There's also a much simpler proof. $var(S_tau|tau) = var(sum_{i=1}^tau X_i|tau)$. The variance of the sum of i.i.d. random variables is the sum of the variance of any random variable in the sum, so $var(sum_{i=1}^tau X_i|tau) = sum_{i=1}^tau var(X_1)$






                              share|cite|improve this answer









                              $endgroup$



                              I think one oopsie is: since $X_i$ and $X_j$ are independent, $mathbb{E}[X_iX_j] = mathbb{E}[X_i]mathbb{E}[X_j] = mathbb{E}[X_1]^2$ and not $mathbb{E}[X_1^2]$! There must be another mistake, because plugging that in returns zero, but I don't see it quite yet.



                              There's also a much simpler proof. $var(S_tau|tau) = var(sum_{i=1}^tau X_i|tau)$. The variance of the sum of i.i.d. random variables is the sum of the variance of any random variable in the sum, so $var(sum_{i=1}^tau X_i|tau) = sum_{i=1}^tau var(X_1)$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Jan 3 at 20:59









                              AllenAllen

                              62




                              62























                                  0












                                  $begingroup$

                                  The most succinct calculation writes the covariance of two iids using the Kronecker delta:$$operatorname{Var}S_tau=sum_{1le i,,jletau}operatorname{Cov}(X_i,,X_j)=sum_{ij}sigma^2delta_{ij}=tausigma^2.$$Your mistake, essentially, was to replace $delta_{ij}$ with $1$ throughout.






                                  share|cite|improve this answer









                                  $endgroup$


















                                    0












                                    $begingroup$

                                    The most succinct calculation writes the covariance of two iids using the Kronecker delta:$$operatorname{Var}S_tau=sum_{1le i,,jletau}operatorname{Cov}(X_i,,X_j)=sum_{ij}sigma^2delta_{ij}=tausigma^2.$$Your mistake, essentially, was to replace $delta_{ij}$ with $1$ throughout.






                                    share|cite|improve this answer









                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      The most succinct calculation writes the covariance of two iids using the Kronecker delta:$$operatorname{Var}S_tau=sum_{1le i,,jletau}operatorname{Cov}(X_i,,X_j)=sum_{ij}sigma^2delta_{ij}=tausigma^2.$$Your mistake, essentially, was to replace $delta_{ij}$ with $1$ throughout.






                                      share|cite|improve this answer









                                      $endgroup$



                                      The most succinct calculation writes the covariance of two iids using the Kronecker delta:$$operatorname{Var}S_tau=sum_{1le i,,jletau}operatorname{Cov}(X_i,,X_j)=sum_{ij}sigma^2delta_{ij}=tausigma^2.$$Your mistake, essentially, was to replace $delta_{ij}$ with $1$ throughout.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Jan 3 at 21:44









                                      J.G.J.G.

                                      29.8k22946




                                      29.8k22946























                                          0












                                          $begingroup$

                                          Conditional on $tau=k$, where $1leq k leq n$, $S_tau=S_k=X_1+dotsc +X_k$. For any $(X_i)$ that are IID, we have that
                                          $$Var(X_1+dotsc+X_k)=Var(X_1)+dotsc +Var(X_k)=kVar(X_1).$$
                                          Thus,
                                          $$Var(X_1+dotsc +X_tau | tau =k)=Var(X_1 | tau =k)+dotsc Var(X_n |tau=k)$$
                                          $$=Var(X_1)+dotsc +Var(X_k)=k Var(X_1),$$
                                          and finally we obtain $Var(S_tau | tau)= tau Var(X_1)$.






                                          share|cite|improve this answer









                                          $endgroup$


















                                            0












                                            $begingroup$

                                            Conditional on $tau=k$, where $1leq k leq n$, $S_tau=S_k=X_1+dotsc +X_k$. For any $(X_i)$ that are IID, we have that
                                            $$Var(X_1+dotsc+X_k)=Var(X_1)+dotsc +Var(X_k)=kVar(X_1).$$
                                            Thus,
                                            $$Var(X_1+dotsc +X_tau | tau =k)=Var(X_1 | tau =k)+dotsc Var(X_n |tau=k)$$
                                            $$=Var(X_1)+dotsc +Var(X_k)=k Var(X_1),$$
                                            and finally we obtain $Var(S_tau | tau)= tau Var(X_1)$.






                                            share|cite|improve this answer









                                            $endgroup$
















                                              0












                                              0








                                              0





                                              $begingroup$

                                              Conditional on $tau=k$, where $1leq k leq n$, $S_tau=S_k=X_1+dotsc +X_k$. For any $(X_i)$ that are IID, we have that
                                              $$Var(X_1+dotsc+X_k)=Var(X_1)+dotsc +Var(X_k)=kVar(X_1).$$
                                              Thus,
                                              $$Var(X_1+dotsc +X_tau | tau =k)=Var(X_1 | tau =k)+dotsc Var(X_n |tau=k)$$
                                              $$=Var(X_1)+dotsc +Var(X_k)=k Var(X_1),$$
                                              and finally we obtain $Var(S_tau | tau)= tau Var(X_1)$.






                                              share|cite|improve this answer









                                              $endgroup$



                                              Conditional on $tau=k$, where $1leq k leq n$, $S_tau=S_k=X_1+dotsc +X_k$. For any $(X_i)$ that are IID, we have that
                                              $$Var(X_1+dotsc+X_k)=Var(X_1)+dotsc +Var(X_k)=kVar(X_1).$$
                                              Thus,
                                              $$Var(X_1+dotsc +X_tau | tau =k)=Var(X_1 | tau =k)+dotsc Var(X_n |tau=k)$$
                                              $$=Var(X_1)+dotsc +Var(X_k)=k Var(X_1),$$
                                              and finally we obtain $Var(S_tau | tau)= tau Var(X_1)$.







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered Jan 3 at 23:06









                                              LoveTooNap29LoveTooNap29

                                              1,1331614




                                              1,1331614






























                                                  draft saved

                                                  draft discarded




















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060961%2fvariance-of-random-sum-of-random-i-i-d-variables-spot-the-mistake%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Bressuire

                                                  Cabo Verde

                                                  Gyllenstierna