Verify that $left|int_{gamma} exp(iz^2)dzright| leq frac{pibig(1-exp(-r^2)big)}{4r}$ where...












1












$begingroup$



Verify that $$left|int_{gamma} exp(iz^2)dzright| leq frac{pibig(1-exp(-r^2)big)}{4r}$$ where $gamma(t)=re^{it}$, for $0leq t leq pi/4$ and $r > 0$.




I'm stuck. here is my attempt:



$|int_{gamma} e^{icdot z^2}dz|leq int_{gamma} |e^{icdot z^2}|dz=int_{gamma}|(e^{z^2})^i|dz$. As $t > 0$ on $0leq t leq pi/4$.
$Rightarrow|e^{r^2 e^{2it}}|=|e^{r^2}e^{e^{2it}}|>0$
$Rightarrowint_{0}^{pi/4} e^{r^2}e^{2it}rie^{it}dt=e^{r^2}riint_{0}^{pi/4} exp(e^{2it}+it)dt$

Let $alpha=e^{r^2}ri$
$Rightarrow alphaint_{0}^{pi/4}e^{cos2t}e^{icdot sin2t}(cos(t)+icdot sin(t)dt)$



Am I on track?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What is $sen(t)$? Did you mean to write $sin(t)$?
    $endgroup$
    – LoveTooNap29
    Jan 3 at 19:23










  • $begingroup$
    yeah, I corrected that. tks
    $endgroup$
    – Lincon Ribeiro
    Jan 3 at 19:25






  • 1




    $begingroup$
    Hints: $|e^{i(x+iy)^2}|=e^{-2xy}$ and $sinphigeqslant 2phi/pi$ for $0leqslantphileqslantpi/2$.
    $endgroup$
    – metamorphy
    Jan 4 at 2:29


















1












$begingroup$



Verify that $$left|int_{gamma} exp(iz^2)dzright| leq frac{pibig(1-exp(-r^2)big)}{4r}$$ where $gamma(t)=re^{it}$, for $0leq t leq pi/4$ and $r > 0$.




I'm stuck. here is my attempt:



$|int_{gamma} e^{icdot z^2}dz|leq int_{gamma} |e^{icdot z^2}|dz=int_{gamma}|(e^{z^2})^i|dz$. As $t > 0$ on $0leq t leq pi/4$.
$Rightarrow|e^{r^2 e^{2it}}|=|e^{r^2}e^{e^{2it}}|>0$
$Rightarrowint_{0}^{pi/4} e^{r^2}e^{2it}rie^{it}dt=e^{r^2}riint_{0}^{pi/4} exp(e^{2it}+it)dt$

Let $alpha=e^{r^2}ri$
$Rightarrow alphaint_{0}^{pi/4}e^{cos2t}e^{icdot sin2t}(cos(t)+icdot sin(t)dt)$



Am I on track?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What is $sen(t)$? Did you mean to write $sin(t)$?
    $endgroup$
    – LoveTooNap29
    Jan 3 at 19:23










  • $begingroup$
    yeah, I corrected that. tks
    $endgroup$
    – Lincon Ribeiro
    Jan 3 at 19:25






  • 1




    $begingroup$
    Hints: $|e^{i(x+iy)^2}|=e^{-2xy}$ and $sinphigeqslant 2phi/pi$ for $0leqslantphileqslantpi/2$.
    $endgroup$
    – metamorphy
    Jan 4 at 2:29
















1












1








1


0



$begingroup$



Verify that $$left|int_{gamma} exp(iz^2)dzright| leq frac{pibig(1-exp(-r^2)big)}{4r}$$ where $gamma(t)=re^{it}$, for $0leq t leq pi/4$ and $r > 0$.




I'm stuck. here is my attempt:



$|int_{gamma} e^{icdot z^2}dz|leq int_{gamma} |e^{icdot z^2}|dz=int_{gamma}|(e^{z^2})^i|dz$. As $t > 0$ on $0leq t leq pi/4$.
$Rightarrow|e^{r^2 e^{2it}}|=|e^{r^2}e^{e^{2it}}|>0$
$Rightarrowint_{0}^{pi/4} e^{r^2}e^{2it}rie^{it}dt=e^{r^2}riint_{0}^{pi/4} exp(e^{2it}+it)dt$

Let $alpha=e^{r^2}ri$
$Rightarrow alphaint_{0}^{pi/4}e^{cos2t}e^{icdot sin2t}(cos(t)+icdot sin(t)dt)$



Am I on track?










share|cite|improve this question











$endgroup$





Verify that $$left|int_{gamma} exp(iz^2)dzright| leq frac{pibig(1-exp(-r^2)big)}{4r}$$ where $gamma(t)=re^{it}$, for $0leq t leq pi/4$ and $r > 0$.




I'm stuck. here is my attempt:



$|int_{gamma} e^{icdot z^2}dz|leq int_{gamma} |e^{icdot z^2}|dz=int_{gamma}|(e^{z^2})^i|dz$. As $t > 0$ on $0leq t leq pi/4$.
$Rightarrow|e^{r^2 e^{2it}}|=|e^{r^2}e^{e^{2it}}|>0$
$Rightarrowint_{0}^{pi/4} e^{r^2}e^{2it}rie^{it}dt=e^{r^2}riint_{0}^{pi/4} exp(e^{2it}+it)dt$

Let $alpha=e^{r^2}ri$
$Rightarrow alphaint_{0}^{pi/4}e^{cos2t}e^{icdot sin2t}(cos(t)+icdot sin(t)dt)$



Am I on track?







integration complex-analysis contour-integration integral-inequality holomorphic-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 4 at 12:34







Lincon Ribeiro

















asked Jan 3 at 19:14









Lincon RibeiroLincon Ribeiro

597




597








  • 1




    $begingroup$
    What is $sen(t)$? Did you mean to write $sin(t)$?
    $endgroup$
    – LoveTooNap29
    Jan 3 at 19:23










  • $begingroup$
    yeah, I corrected that. tks
    $endgroup$
    – Lincon Ribeiro
    Jan 3 at 19:25






  • 1




    $begingroup$
    Hints: $|e^{i(x+iy)^2}|=e^{-2xy}$ and $sinphigeqslant 2phi/pi$ for $0leqslantphileqslantpi/2$.
    $endgroup$
    – metamorphy
    Jan 4 at 2:29
















  • 1




    $begingroup$
    What is $sen(t)$? Did you mean to write $sin(t)$?
    $endgroup$
    – LoveTooNap29
    Jan 3 at 19:23










  • $begingroup$
    yeah, I corrected that. tks
    $endgroup$
    – Lincon Ribeiro
    Jan 3 at 19:25






  • 1




    $begingroup$
    Hints: $|e^{i(x+iy)^2}|=e^{-2xy}$ and $sinphigeqslant 2phi/pi$ for $0leqslantphileqslantpi/2$.
    $endgroup$
    – metamorphy
    Jan 4 at 2:29










1




1




$begingroup$
What is $sen(t)$? Did you mean to write $sin(t)$?
$endgroup$
– LoveTooNap29
Jan 3 at 19:23




$begingroup$
What is $sen(t)$? Did you mean to write $sin(t)$?
$endgroup$
– LoveTooNap29
Jan 3 at 19:23












$begingroup$
yeah, I corrected that. tks
$endgroup$
– Lincon Ribeiro
Jan 3 at 19:25




$begingroup$
yeah, I corrected that. tks
$endgroup$
– Lincon Ribeiro
Jan 3 at 19:25




1




1




$begingroup$
Hints: $|e^{i(x+iy)^2}|=e^{-2xy}$ and $sinphigeqslant 2phi/pi$ for $0leqslantphileqslantpi/2$.
$endgroup$
– metamorphy
Jan 4 at 2:29






$begingroup$
Hints: $|e^{i(x+iy)^2}|=e^{-2xy}$ and $sinphigeqslant 2phi/pi$ for $0leqslantphileqslantpi/2$.
$endgroup$
– metamorphy
Jan 4 at 2:29












1 Answer
1






active

oldest

votes


















1












$begingroup$

You have



$$ int_gamma e^{iz^2}dz = int_0^{pi/4} e^{ir^2(cos 2t + isin 2t)}ire^{it} dt $$



Taking the magnitude



$$ leftvert int_gamma e^{iz^2}dz rightvert le int_0^{pi/4} leftvert e^{ir^2(cos 2t + isin 2t)}ire^{it} rightvert dt = int_0^{pi/4} re^{-r^2sin 2t} dt $$



Since $sin 2t$ curves upwards on the interval $(0,pi/4)$, it always lies above its secant line from $t=0$ to $t=pi/4$, therefore



$$ sin 2t ge frac{4t}{pi}, quad forall t in left(0,frac{pi}{4}right) $$



And



$$ int_0^{pi/4} re^{-r^2sin 2t} dt le int_0^{pi/4} re^{-4r^2t/pi} dt = frac{pi}{4r}left(1 - e^{-r^2} right) $$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @LinconRibeiro Can you remove your check mark? I made a mistake in my answer
    $endgroup$
    – Dylan
    Jan 4 at 12:17










  • $begingroup$
    Ok, done. How did you get that term on the right side of the last inequality $frac {1-e^{-r^2}} {r^2}$? btw, I forgot to add that r must be greater than zero. I don't know if it changes anything.
    $endgroup$
    – Lincon Ribeiro
    Jan 4 at 12:37






  • 1




    $begingroup$
    I updated my answer. It was simpler than I though.
    $endgroup$
    – Dylan
    Jan 4 at 13:47











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060895%2fverify-that-left-int-gamma-expiz2dz-right-leq-frac-pi-big1-exp%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

You have



$$ int_gamma e^{iz^2}dz = int_0^{pi/4} e^{ir^2(cos 2t + isin 2t)}ire^{it} dt $$



Taking the magnitude



$$ leftvert int_gamma e^{iz^2}dz rightvert le int_0^{pi/4} leftvert e^{ir^2(cos 2t + isin 2t)}ire^{it} rightvert dt = int_0^{pi/4} re^{-r^2sin 2t} dt $$



Since $sin 2t$ curves upwards on the interval $(0,pi/4)$, it always lies above its secant line from $t=0$ to $t=pi/4$, therefore



$$ sin 2t ge frac{4t}{pi}, quad forall t in left(0,frac{pi}{4}right) $$



And



$$ int_0^{pi/4} re^{-r^2sin 2t} dt le int_0^{pi/4} re^{-4r^2t/pi} dt = frac{pi}{4r}left(1 - e^{-r^2} right) $$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @LinconRibeiro Can you remove your check mark? I made a mistake in my answer
    $endgroup$
    – Dylan
    Jan 4 at 12:17










  • $begingroup$
    Ok, done. How did you get that term on the right side of the last inequality $frac {1-e^{-r^2}} {r^2}$? btw, I forgot to add that r must be greater than zero. I don't know if it changes anything.
    $endgroup$
    – Lincon Ribeiro
    Jan 4 at 12:37






  • 1




    $begingroup$
    I updated my answer. It was simpler than I though.
    $endgroup$
    – Dylan
    Jan 4 at 13:47
















1












$begingroup$

You have



$$ int_gamma e^{iz^2}dz = int_0^{pi/4} e^{ir^2(cos 2t + isin 2t)}ire^{it} dt $$



Taking the magnitude



$$ leftvert int_gamma e^{iz^2}dz rightvert le int_0^{pi/4} leftvert e^{ir^2(cos 2t + isin 2t)}ire^{it} rightvert dt = int_0^{pi/4} re^{-r^2sin 2t} dt $$



Since $sin 2t$ curves upwards on the interval $(0,pi/4)$, it always lies above its secant line from $t=0$ to $t=pi/4$, therefore



$$ sin 2t ge frac{4t}{pi}, quad forall t in left(0,frac{pi}{4}right) $$



And



$$ int_0^{pi/4} re^{-r^2sin 2t} dt le int_0^{pi/4} re^{-4r^2t/pi} dt = frac{pi}{4r}left(1 - e^{-r^2} right) $$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @LinconRibeiro Can you remove your check mark? I made a mistake in my answer
    $endgroup$
    – Dylan
    Jan 4 at 12:17










  • $begingroup$
    Ok, done. How did you get that term on the right side of the last inequality $frac {1-e^{-r^2}} {r^2}$? btw, I forgot to add that r must be greater than zero. I don't know if it changes anything.
    $endgroup$
    – Lincon Ribeiro
    Jan 4 at 12:37






  • 1




    $begingroup$
    I updated my answer. It was simpler than I though.
    $endgroup$
    – Dylan
    Jan 4 at 13:47














1












1








1





$begingroup$

You have



$$ int_gamma e^{iz^2}dz = int_0^{pi/4} e^{ir^2(cos 2t + isin 2t)}ire^{it} dt $$



Taking the magnitude



$$ leftvert int_gamma e^{iz^2}dz rightvert le int_0^{pi/4} leftvert e^{ir^2(cos 2t + isin 2t)}ire^{it} rightvert dt = int_0^{pi/4} re^{-r^2sin 2t} dt $$



Since $sin 2t$ curves upwards on the interval $(0,pi/4)$, it always lies above its secant line from $t=0$ to $t=pi/4$, therefore



$$ sin 2t ge frac{4t}{pi}, quad forall t in left(0,frac{pi}{4}right) $$



And



$$ int_0^{pi/4} re^{-r^2sin 2t} dt le int_0^{pi/4} re^{-4r^2t/pi} dt = frac{pi}{4r}left(1 - e^{-r^2} right) $$






share|cite|improve this answer











$endgroup$



You have



$$ int_gamma e^{iz^2}dz = int_0^{pi/4} e^{ir^2(cos 2t + isin 2t)}ire^{it} dt $$



Taking the magnitude



$$ leftvert int_gamma e^{iz^2}dz rightvert le int_0^{pi/4} leftvert e^{ir^2(cos 2t + isin 2t)}ire^{it} rightvert dt = int_0^{pi/4} re^{-r^2sin 2t} dt $$



Since $sin 2t$ curves upwards on the interval $(0,pi/4)$, it always lies above its secant line from $t=0$ to $t=pi/4$, therefore



$$ sin 2t ge frac{4t}{pi}, quad forall t in left(0,frac{pi}{4}right) $$



And



$$ int_0^{pi/4} re^{-r^2sin 2t} dt le int_0^{pi/4} re^{-4r^2t/pi} dt = frac{pi}{4r}left(1 - e^{-r^2} right) $$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 4 at 13:52

























answered Jan 4 at 9:02









DylanDylan

13.9k31027




13.9k31027












  • $begingroup$
    @LinconRibeiro Can you remove your check mark? I made a mistake in my answer
    $endgroup$
    – Dylan
    Jan 4 at 12:17










  • $begingroup$
    Ok, done. How did you get that term on the right side of the last inequality $frac {1-e^{-r^2}} {r^2}$? btw, I forgot to add that r must be greater than zero. I don't know if it changes anything.
    $endgroup$
    – Lincon Ribeiro
    Jan 4 at 12:37






  • 1




    $begingroup$
    I updated my answer. It was simpler than I though.
    $endgroup$
    – Dylan
    Jan 4 at 13:47


















  • $begingroup$
    @LinconRibeiro Can you remove your check mark? I made a mistake in my answer
    $endgroup$
    – Dylan
    Jan 4 at 12:17










  • $begingroup$
    Ok, done. How did you get that term on the right side of the last inequality $frac {1-e^{-r^2}} {r^2}$? btw, I forgot to add that r must be greater than zero. I don't know if it changes anything.
    $endgroup$
    – Lincon Ribeiro
    Jan 4 at 12:37






  • 1




    $begingroup$
    I updated my answer. It was simpler than I though.
    $endgroup$
    – Dylan
    Jan 4 at 13:47
















$begingroup$
@LinconRibeiro Can you remove your check mark? I made a mistake in my answer
$endgroup$
– Dylan
Jan 4 at 12:17




$begingroup$
@LinconRibeiro Can you remove your check mark? I made a mistake in my answer
$endgroup$
– Dylan
Jan 4 at 12:17












$begingroup$
Ok, done. How did you get that term on the right side of the last inequality $frac {1-e^{-r^2}} {r^2}$? btw, I forgot to add that r must be greater than zero. I don't know if it changes anything.
$endgroup$
– Lincon Ribeiro
Jan 4 at 12:37




$begingroup$
Ok, done. How did you get that term on the right side of the last inequality $frac {1-e^{-r^2}} {r^2}$? btw, I forgot to add that r must be greater than zero. I don't know if it changes anything.
$endgroup$
– Lincon Ribeiro
Jan 4 at 12:37




1




1




$begingroup$
I updated my answer. It was simpler than I though.
$endgroup$
– Dylan
Jan 4 at 13:47




$begingroup$
I updated my answer. It was simpler than I though.
$endgroup$
– Dylan
Jan 4 at 13:47


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060895%2fverify-that-left-int-gamma-expiz2dz-right-leq-frac-pi-big1-exp%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna