In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$












1












$begingroup$



If in a triangle ABC, $b+c=3a$, then $cotdfrac{B}{2}.cotdfrac{C}{2}$ is equal to ?




My reference gives the solution $2$, but I have no clue of where to start ?



My Attempt
$$
cotdfrac{B}{2}.cotdfrac{C}{2}=frac{cosfrac{B}{2}.cosfrac{C}{2}}{sinfrac{B}{2}.sinfrac{C}{2}}=frac{cos(frac{A-B}{2})+cos(frac{A+B}{2})}{cos(frac{A-B}{2})-cos(frac{A+B}{2})}
$$










share|cite|improve this question











$endgroup$

















    1












    $begingroup$



    If in a triangle ABC, $b+c=3a$, then $cotdfrac{B}{2}.cotdfrac{C}{2}$ is equal to ?




    My reference gives the solution $2$, but I have no clue of where to start ?



    My Attempt
    $$
    cotdfrac{B}{2}.cotdfrac{C}{2}=frac{cosfrac{B}{2}.cosfrac{C}{2}}{sinfrac{B}{2}.sinfrac{C}{2}}=frac{cos(frac{A-B}{2})+cos(frac{A+B}{2})}{cos(frac{A-B}{2})-cos(frac{A+B}{2})}
    $$










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      1



      $begingroup$



      If in a triangle ABC, $b+c=3a$, then $cotdfrac{B}{2}.cotdfrac{C}{2}$ is equal to ?




      My reference gives the solution $2$, but I have no clue of where to start ?



      My Attempt
      $$
      cotdfrac{B}{2}.cotdfrac{C}{2}=frac{cosfrac{B}{2}.cosfrac{C}{2}}{sinfrac{B}{2}.sinfrac{C}{2}}=frac{cos(frac{A-B}{2})+cos(frac{A+B}{2})}{cos(frac{A-B}{2})-cos(frac{A+B}{2})}
      $$










      share|cite|improve this question











      $endgroup$





      If in a triangle ABC, $b+c=3a$, then $cotdfrac{B}{2}.cotdfrac{C}{2}$ is equal to ?




      My reference gives the solution $2$, but I have no clue of where to start ?



      My Attempt
      $$
      cotdfrac{B}{2}.cotdfrac{C}{2}=frac{cosfrac{B}{2}.cosfrac{C}{2}}{sinfrac{B}{2}.sinfrac{C}{2}}=frac{cos(frac{A-B}{2})+cos(frac{A+B}{2})}{cos(frac{A-B}{2})-cos(frac{A+B}{2})}
      $$







      geometry trigonometry triangle






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 4 at 15:59









      Michael Rozenberg

      108k1895200




      108k1895200










      asked Jan 4 at 12:23









      ss1729ss1729

      2,01511124




      2,01511124






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Hint:



          $$b+c=3aimpliessin B+sin C=3sin A$$



          $$iff2sindfrac{B+C}2cosdfrac{B-C}2=6sindfrac A2cosdfrac A2$$



          Now use $dfrac{B+C}2=dfracpi2-dfrac A2,cosdfrac{B+C}2=?$



          As $0<A<pi,sinsindfrac A2ne0$



          $impliescosdfrac{B-C}2=3sindfrac A2=3cosdfrac{B+C}2$






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            In the standard notation we obtain: $$sinbeta+singamma=3sin(beta+gamma)$$ or
            $$2sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}=6sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}$$ or
            $$cosfrac{beta}{2}cosfrac{gamma}{2}+sinfrac{beta}{2}sinfrac{gamma}{2}=3left(cosfrac{beta}{2}cosfrac{gamma}{2}-sinfrac{beta}{2}sinfrac{gamma}{2}right)$$ or
            $$cosfrac{beta}{2}cosfrac{gamma}{2}=2sinfrac{beta}{2}sinfrac{gamma}{2}$$ or
            $$cotfrac{beta}{2}cotfrac{gamma}{2}=2.$$
            Also, we can use the following way:
            $$cotfrac{beta}{2}cotfrac{gamma}{2}=frac{a+b+c}{b+c-a}=frac{4a}{2a}=2.$$






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061601%2fin-delta-abc-find-cot-dfracb2-cot-dfracc2-if-bc-3a%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              Hint:



              $$b+c=3aimpliessin B+sin C=3sin A$$



              $$iff2sindfrac{B+C}2cosdfrac{B-C}2=6sindfrac A2cosdfrac A2$$



              Now use $dfrac{B+C}2=dfracpi2-dfrac A2,cosdfrac{B+C}2=?$



              As $0<A<pi,sinsindfrac A2ne0$



              $impliescosdfrac{B-C}2=3sindfrac A2=3cosdfrac{B+C}2$






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                Hint:



                $$b+c=3aimpliessin B+sin C=3sin A$$



                $$iff2sindfrac{B+C}2cosdfrac{B-C}2=6sindfrac A2cosdfrac A2$$



                Now use $dfrac{B+C}2=dfracpi2-dfrac A2,cosdfrac{B+C}2=?$



                As $0<A<pi,sinsindfrac A2ne0$



                $impliescosdfrac{B-C}2=3sindfrac A2=3cosdfrac{B+C}2$






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Hint:



                  $$b+c=3aimpliessin B+sin C=3sin A$$



                  $$iff2sindfrac{B+C}2cosdfrac{B-C}2=6sindfrac A2cosdfrac A2$$



                  Now use $dfrac{B+C}2=dfracpi2-dfrac A2,cosdfrac{B+C}2=?$



                  As $0<A<pi,sinsindfrac A2ne0$



                  $impliescosdfrac{B-C}2=3sindfrac A2=3cosdfrac{B+C}2$






                  share|cite|improve this answer









                  $endgroup$



                  Hint:



                  $$b+c=3aimpliessin B+sin C=3sin A$$



                  $$iff2sindfrac{B+C}2cosdfrac{B-C}2=6sindfrac A2cosdfrac A2$$



                  Now use $dfrac{B+C}2=dfracpi2-dfrac A2,cosdfrac{B+C}2=?$



                  As $0<A<pi,sinsindfrac A2ne0$



                  $impliescosdfrac{B-C}2=3sindfrac A2=3cosdfrac{B+C}2$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 4 at 12:28









                  lab bhattacharjeelab bhattacharjee

                  226k15158275




                  226k15158275























                      1












                      $begingroup$

                      In the standard notation we obtain: $$sinbeta+singamma=3sin(beta+gamma)$$ or
                      $$2sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}=6sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}$$ or
                      $$cosfrac{beta}{2}cosfrac{gamma}{2}+sinfrac{beta}{2}sinfrac{gamma}{2}=3left(cosfrac{beta}{2}cosfrac{gamma}{2}-sinfrac{beta}{2}sinfrac{gamma}{2}right)$$ or
                      $$cosfrac{beta}{2}cosfrac{gamma}{2}=2sinfrac{beta}{2}sinfrac{gamma}{2}$$ or
                      $$cotfrac{beta}{2}cotfrac{gamma}{2}=2.$$
                      Also, we can use the following way:
                      $$cotfrac{beta}{2}cotfrac{gamma}{2}=frac{a+b+c}{b+c-a}=frac{4a}{2a}=2.$$






                      share|cite|improve this answer











                      $endgroup$


















                        1












                        $begingroup$

                        In the standard notation we obtain: $$sinbeta+singamma=3sin(beta+gamma)$$ or
                        $$2sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}=6sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}$$ or
                        $$cosfrac{beta}{2}cosfrac{gamma}{2}+sinfrac{beta}{2}sinfrac{gamma}{2}=3left(cosfrac{beta}{2}cosfrac{gamma}{2}-sinfrac{beta}{2}sinfrac{gamma}{2}right)$$ or
                        $$cosfrac{beta}{2}cosfrac{gamma}{2}=2sinfrac{beta}{2}sinfrac{gamma}{2}$$ or
                        $$cotfrac{beta}{2}cotfrac{gamma}{2}=2.$$
                        Also, we can use the following way:
                        $$cotfrac{beta}{2}cotfrac{gamma}{2}=frac{a+b+c}{b+c-a}=frac{4a}{2a}=2.$$






                        share|cite|improve this answer











                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          In the standard notation we obtain: $$sinbeta+singamma=3sin(beta+gamma)$$ or
                          $$2sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}=6sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}$$ or
                          $$cosfrac{beta}{2}cosfrac{gamma}{2}+sinfrac{beta}{2}sinfrac{gamma}{2}=3left(cosfrac{beta}{2}cosfrac{gamma}{2}-sinfrac{beta}{2}sinfrac{gamma}{2}right)$$ or
                          $$cosfrac{beta}{2}cosfrac{gamma}{2}=2sinfrac{beta}{2}sinfrac{gamma}{2}$$ or
                          $$cotfrac{beta}{2}cotfrac{gamma}{2}=2.$$
                          Also, we can use the following way:
                          $$cotfrac{beta}{2}cotfrac{gamma}{2}=frac{a+b+c}{b+c-a}=frac{4a}{2a}=2.$$






                          share|cite|improve this answer











                          $endgroup$



                          In the standard notation we obtain: $$sinbeta+singamma=3sin(beta+gamma)$$ or
                          $$2sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}=6sinfrac{beta+gamma}{2}cosfrac{beta-gamma}{2}$$ or
                          $$cosfrac{beta}{2}cosfrac{gamma}{2}+sinfrac{beta}{2}sinfrac{gamma}{2}=3left(cosfrac{beta}{2}cosfrac{gamma}{2}-sinfrac{beta}{2}sinfrac{gamma}{2}right)$$ or
                          $$cosfrac{beta}{2}cosfrac{gamma}{2}=2sinfrac{beta}{2}sinfrac{gamma}{2}$$ or
                          $$cotfrac{beta}{2}cotfrac{gamma}{2}=2.$$
                          Also, we can use the following way:
                          $$cotfrac{beta}{2}cotfrac{gamma}{2}=frac{a+b+c}{b+c-a}=frac{4a}{2a}=2.$$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Jan 4 at 15:49

























                          answered Jan 4 at 15:43









                          Michael RozenbergMichael Rozenberg

                          108k1895200




                          108k1895200






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061601%2fin-delta-abc-find-cot-dfracb2-cot-dfracc2-if-bc-3a%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Bressuire

                              Cabo Verde

                              Gyllenstierna