A few conjectured limits of products involving the Thue–Morse sequence












10












$begingroup$


(related to my previous questions$^{[1]}$$!^{[2]}$)



Let's define the signed Thue–Morse sequence $t_n$ by the recurrence
$$t_0 = 1, quad t_n = (-1)^n , t_{lfloor n/2rfloor},tag1$$
or by the generating function
$$sum_{n=0}^infty t_n , x^n=prod_{n=0}^inftyleft(1-x^{2^n}right).tag{$1^prime$}$$
It seems that the following conjectures hold:
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}stackrel{color{gray}?}=frac12tag2$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{t_k}stackrel{color{gray}?}=frac1{sqrt2}tag3$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{(-1)^k,t_k}stackrel{color{gray}?}=frac1{2sqrt2}tag4$$
How can we prove these? Are there any other limits of products similar to these?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Related papers: algo.inria.fr/seminars/sem92-93/allouche.pdf, pdfs.semanticscholar.org/a4dc/…, arxiv.org/abs/1709.03398, arxiv.org/abs/1406.7407, arxiv.org/abs/1709.04104
    $endgroup$
    – Vladimir Reshetnikov
    Apr 9 '18 at 1:58












  • $begingroup$
    Related questions: math.stackexchange.com/q/29234/19661, math.stackexchange.com/q/924601/19661
    $endgroup$
    – Vladimir Reshetnikov
    Apr 11 '18 at 18:52
















10












$begingroup$


(related to my previous questions$^{[1]}$$!^{[2]}$)



Let's define the signed Thue–Morse sequence $t_n$ by the recurrence
$$t_0 = 1, quad t_n = (-1)^n , t_{lfloor n/2rfloor},tag1$$
or by the generating function
$$sum_{n=0}^infty t_n , x^n=prod_{n=0}^inftyleft(1-x^{2^n}right).tag{$1^prime$}$$
It seems that the following conjectures hold:
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}stackrel{color{gray}?}=frac12tag2$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{t_k}stackrel{color{gray}?}=frac1{sqrt2}tag3$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{(-1)^k,t_k}stackrel{color{gray}?}=frac1{2sqrt2}tag4$$
How can we prove these? Are there any other limits of products similar to these?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Related papers: algo.inria.fr/seminars/sem92-93/allouche.pdf, pdfs.semanticscholar.org/a4dc/…, arxiv.org/abs/1709.03398, arxiv.org/abs/1406.7407, arxiv.org/abs/1709.04104
    $endgroup$
    – Vladimir Reshetnikov
    Apr 9 '18 at 1:58












  • $begingroup$
    Related questions: math.stackexchange.com/q/29234/19661, math.stackexchange.com/q/924601/19661
    $endgroup$
    – Vladimir Reshetnikov
    Apr 11 '18 at 18:52














10












10








10


2



$begingroup$


(related to my previous questions$^{[1]}$$!^{[2]}$)



Let's define the signed Thue–Morse sequence $t_n$ by the recurrence
$$t_0 = 1, quad t_n = (-1)^n , t_{lfloor n/2rfloor},tag1$$
or by the generating function
$$sum_{n=0}^infty t_n , x^n=prod_{n=0}^inftyleft(1-x^{2^n}right).tag{$1^prime$}$$
It seems that the following conjectures hold:
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}stackrel{color{gray}?}=frac12tag2$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{t_k}stackrel{color{gray}?}=frac1{sqrt2}tag3$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{(-1)^k,t_k}stackrel{color{gray}?}=frac1{2sqrt2}tag4$$
How can we prove these? Are there any other limits of products similar to these?










share|cite|improve this question











$endgroup$




(related to my previous questions$^{[1]}$$!^{[2]}$)



Let's define the signed Thue–Morse sequence $t_n$ by the recurrence
$$t_0 = 1, quad t_n = (-1)^n , t_{lfloor n/2rfloor},tag1$$
or by the generating function
$$sum_{n=0}^infty t_n , x^n=prod_{n=0}^inftyleft(1-x^{2^n}right).tag{$1^prime$}$$
It seems that the following conjectures hold:
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}stackrel{color{gray}?}=frac12tag2$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{t_k}stackrel{color{gray}?}=frac1{sqrt2}tag3$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{(-1)^k,t_k}stackrel{color{gray}?}=frac1{2sqrt2}tag4$$
How can we prove these? Are there any other limits of products similar to these?







sequences-and-series number-theory limits products conjectures






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 8 '18 at 23:47







Vladimir Reshetnikov

















asked Apr 8 '18 at 1:33









Vladimir ReshetnikovVladimir Reshetnikov

24.6k5121235




24.6k5121235












  • $begingroup$
    Related papers: algo.inria.fr/seminars/sem92-93/allouche.pdf, pdfs.semanticscholar.org/a4dc/…, arxiv.org/abs/1709.03398, arxiv.org/abs/1406.7407, arxiv.org/abs/1709.04104
    $endgroup$
    – Vladimir Reshetnikov
    Apr 9 '18 at 1:58












  • $begingroup$
    Related questions: math.stackexchange.com/q/29234/19661, math.stackexchange.com/q/924601/19661
    $endgroup$
    – Vladimir Reshetnikov
    Apr 11 '18 at 18:52


















  • $begingroup$
    Related papers: algo.inria.fr/seminars/sem92-93/allouche.pdf, pdfs.semanticscholar.org/a4dc/…, arxiv.org/abs/1709.03398, arxiv.org/abs/1406.7407, arxiv.org/abs/1709.04104
    $endgroup$
    – Vladimir Reshetnikov
    Apr 9 '18 at 1:58












  • $begingroup$
    Related questions: math.stackexchange.com/q/29234/19661, math.stackexchange.com/q/924601/19661
    $endgroup$
    – Vladimir Reshetnikov
    Apr 11 '18 at 18:52
















$begingroup$
Related papers: algo.inria.fr/seminars/sem92-93/allouche.pdf, pdfs.semanticscholar.org/a4dc/…, arxiv.org/abs/1709.03398, arxiv.org/abs/1406.7407, arxiv.org/abs/1709.04104
$endgroup$
– Vladimir Reshetnikov
Apr 9 '18 at 1:58






$begingroup$
Related papers: algo.inria.fr/seminars/sem92-93/allouche.pdf, pdfs.semanticscholar.org/a4dc/…, arxiv.org/abs/1709.03398, arxiv.org/abs/1406.7407, arxiv.org/abs/1709.04104
$endgroup$
– Vladimir Reshetnikov
Apr 9 '18 at 1:58














$begingroup$
Related questions: math.stackexchange.com/q/29234/19661, math.stackexchange.com/q/924601/19661
$endgroup$
– Vladimir Reshetnikov
Apr 11 '18 at 18:52




$begingroup$
Related questions: math.stackexchange.com/q/29234/19661, math.stackexchange.com/q/924601/19661
$endgroup$
– Vladimir Reshetnikov
Apr 11 '18 at 18:52










1 Answer
1






active

oldest

votes


















3





+50







$begingroup$

2) For $nge 1$ we have



$$prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_{2k}}left(2k+1+tfrac12right)^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_k}left(2k+1+tfrac12right)^{-t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{2k+tfrac12}{2k+1+tfrac12}right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}.$$



So, according to the introduction and Lemma 1 from the last paper you referenced (“Infinite products involving binary digit sums” by Samin Riasat), the left hand side of (2) equals



$$prod_{k=0}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13prod_{k=1}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13fleft(frac14,frac34right)=frac13cdotfrac32=frac12.$$



3) Similarly to the previous case we can show that the left hand side of (3) equals $tfrac12 fleft(tfrac 12,1right)=tfrac 1{sqrt2}$.



1) Here preliminary calculations are a bit longer. For $nge 2$ we have



$$prod_{k=0}^{2^n-1}(k+1)^{(-1)^kt_k}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_{2k}}(2k+1+1)^{-t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_k}(2k+2)^{t_k}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_{2k}}((4k+3)(4k+4))^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_k}((4k+3)(4k+4))^{-t_{k}}=$$
$$prod_{k=0}^{2^{n-2}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}left(frac{k+tfrac12}{k+1 }right)^{t_k}.$$



Thus the left hand side of (1) equals the product of the left hand sides of (2) and (3), which is $tfrac 1{2sqrt2}.$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    The index splitting technique is indeed the correct way for calculating such products. As a note, I would like to mention the (fantastic) paper by Allouche, Shallit and Riasat, which derives many similar formulas: arxiv.org/pdf/1709.03398.pdf
    $endgroup$
    – Klangen
    Mar 11 at 9:12














Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2727194%2fa-few-conjectured-limits-of-products-involving-the-thue-morse-sequence%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3





+50







$begingroup$

2) For $nge 1$ we have



$$prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_{2k}}left(2k+1+tfrac12right)^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_k}left(2k+1+tfrac12right)^{-t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{2k+tfrac12}{2k+1+tfrac12}right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}.$$



So, according to the introduction and Lemma 1 from the last paper you referenced (“Infinite products involving binary digit sums” by Samin Riasat), the left hand side of (2) equals



$$prod_{k=0}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13prod_{k=1}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13fleft(frac14,frac34right)=frac13cdotfrac32=frac12.$$



3) Similarly to the previous case we can show that the left hand side of (3) equals $tfrac12 fleft(tfrac 12,1right)=tfrac 1{sqrt2}$.



1) Here preliminary calculations are a bit longer. For $nge 2$ we have



$$prod_{k=0}^{2^n-1}(k+1)^{(-1)^kt_k}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_{2k}}(2k+1+1)^{-t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_k}(2k+2)^{t_k}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_{2k}}((4k+3)(4k+4))^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_k}((4k+3)(4k+4))^{-t_{k}}=$$
$$prod_{k=0}^{2^{n-2}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}left(frac{k+tfrac12}{k+1 }right)^{t_k}.$$



Thus the left hand side of (1) equals the product of the left hand sides of (2) and (3), which is $tfrac 1{2sqrt2}.$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    The index splitting technique is indeed the correct way for calculating such products. As a note, I would like to mention the (fantastic) paper by Allouche, Shallit and Riasat, which derives many similar formulas: arxiv.org/pdf/1709.03398.pdf
    $endgroup$
    – Klangen
    Mar 11 at 9:12


















3





+50







$begingroup$

2) For $nge 1$ we have



$$prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_{2k}}left(2k+1+tfrac12right)^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_k}left(2k+1+tfrac12right)^{-t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{2k+tfrac12}{2k+1+tfrac12}right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}.$$



So, according to the introduction and Lemma 1 from the last paper you referenced (“Infinite products involving binary digit sums” by Samin Riasat), the left hand side of (2) equals



$$prod_{k=0}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13prod_{k=1}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13fleft(frac14,frac34right)=frac13cdotfrac32=frac12.$$



3) Similarly to the previous case we can show that the left hand side of (3) equals $tfrac12 fleft(tfrac 12,1right)=tfrac 1{sqrt2}$.



1) Here preliminary calculations are a bit longer. For $nge 2$ we have



$$prod_{k=0}^{2^n-1}(k+1)^{(-1)^kt_k}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_{2k}}(2k+1+1)^{-t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_k}(2k+2)^{t_k}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_{2k}}((4k+3)(4k+4))^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_k}((4k+3)(4k+4))^{-t_{k}}=$$
$$prod_{k=0}^{2^{n-2}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}left(frac{k+tfrac12}{k+1 }right)^{t_k}.$$



Thus the left hand side of (1) equals the product of the left hand sides of (2) and (3), which is $tfrac 1{2sqrt2}.$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    The index splitting technique is indeed the correct way for calculating such products. As a note, I would like to mention the (fantastic) paper by Allouche, Shallit and Riasat, which derives many similar formulas: arxiv.org/pdf/1709.03398.pdf
    $endgroup$
    – Klangen
    Mar 11 at 9:12
















3





+50







3





+50



3




+50



$begingroup$

2) For $nge 1$ we have



$$prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_{2k}}left(2k+1+tfrac12right)^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_k}left(2k+1+tfrac12right)^{-t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{2k+tfrac12}{2k+1+tfrac12}right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}.$$



So, according to the introduction and Lemma 1 from the last paper you referenced (“Infinite products involving binary digit sums” by Samin Riasat), the left hand side of (2) equals



$$prod_{k=0}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13prod_{k=1}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13fleft(frac14,frac34right)=frac13cdotfrac32=frac12.$$



3) Similarly to the previous case we can show that the left hand side of (3) equals $tfrac12 fleft(tfrac 12,1right)=tfrac 1{sqrt2}$.



1) Here preliminary calculations are a bit longer. For $nge 2$ we have



$$prod_{k=0}^{2^n-1}(k+1)^{(-1)^kt_k}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_{2k}}(2k+1+1)^{-t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_k}(2k+2)^{t_k}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_{2k}}((4k+3)(4k+4))^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_k}((4k+3)(4k+4))^{-t_{k}}=$$
$$prod_{k=0}^{2^{n-2}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}left(frac{k+tfrac12}{k+1 }right)^{t_k}.$$



Thus the left hand side of (1) equals the product of the left hand sides of (2) and (3), which is $tfrac 1{2sqrt2}.$






share|cite|improve this answer









$endgroup$



2) For $nge 1$ we have



$$prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_{2k}}left(2k+1+tfrac12right)^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_k}left(2k+1+tfrac12right)^{-t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{2k+tfrac12}{2k+1+tfrac12}right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}.$$



So, according to the introduction and Lemma 1 from the last paper you referenced (“Infinite products involving binary digit sums” by Samin Riasat), the left hand side of (2) equals



$$prod_{k=0}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13prod_{k=1}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13fleft(frac14,frac34right)=frac13cdotfrac32=frac12.$$



3) Similarly to the previous case we can show that the left hand side of (3) equals $tfrac12 fleft(tfrac 12,1right)=tfrac 1{sqrt2}$.



1) Here preliminary calculations are a bit longer. For $nge 2$ we have



$$prod_{k=0}^{2^n-1}(k+1)^{(-1)^kt_k}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_{2k}}(2k+1+1)^{-t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_k}(2k+2)^{t_k}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_{2k}}((4k+3)(4k+4))^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_k}((4k+3)(4k+4))^{-t_{k}}=$$
$$prod_{k=0}^{2^{n-2}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}left(frac{k+tfrac12}{k+1 }right)^{t_k}.$$



Thus the left hand side of (1) equals the product of the left hand sides of (2) and (3), which is $tfrac 1{2sqrt2}.$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 20 at 8:10









Alex RavskyAlex Ravsky

43.3k32583




43.3k32583








  • 1




    $begingroup$
    The index splitting technique is indeed the correct way for calculating such products. As a note, I would like to mention the (fantastic) paper by Allouche, Shallit and Riasat, which derives many similar formulas: arxiv.org/pdf/1709.03398.pdf
    $endgroup$
    – Klangen
    Mar 11 at 9:12
















  • 1




    $begingroup$
    The index splitting technique is indeed the correct way for calculating such products. As a note, I would like to mention the (fantastic) paper by Allouche, Shallit and Riasat, which derives many similar formulas: arxiv.org/pdf/1709.03398.pdf
    $endgroup$
    – Klangen
    Mar 11 at 9:12










1




1




$begingroup$
The index splitting technique is indeed the correct way for calculating such products. As a note, I would like to mention the (fantastic) paper by Allouche, Shallit and Riasat, which derives many similar formulas: arxiv.org/pdf/1709.03398.pdf
$endgroup$
– Klangen
Mar 11 at 9:12






$begingroup$
The index splitting technique is indeed the correct way for calculating such products. As a note, I would like to mention the (fantastic) paper by Allouche, Shallit and Riasat, which derives many similar formulas: arxiv.org/pdf/1709.03398.pdf
$endgroup$
– Klangen
Mar 11 at 9:12




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2727194%2fa-few-conjectured-limits-of-products-involving-the-thue-morse-sequence%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna