A few conjectured limits of products involving the Thue–Morse sequence
$begingroup$
(related to my previous questions$^{[1]}$$!^{[2]}$)
Let's define the signed Thue–Morse sequence $t_n$ by the recurrence
$$t_0 = 1, quad t_n = (-1)^n , t_{lfloor n/2rfloor},tag1$$
or by the generating function
$$sum_{n=0}^infty t_n , x^n=prod_{n=0}^inftyleft(1-x^{2^n}right).tag{$1^prime$}$$
It seems that the following conjectures hold:
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}stackrel{color{gray}?}=frac12tag2$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{t_k}stackrel{color{gray}?}=frac1{sqrt2}tag3$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{(-1)^k,t_k}stackrel{color{gray}?}=frac1{2sqrt2}tag4$$
How can we prove these? Are there any other limits of products similar to these?
sequences-and-series number-theory limits products conjectures
$endgroup$
add a comment |
$begingroup$
(related to my previous questions$^{[1]}$$!^{[2]}$)
Let's define the signed Thue–Morse sequence $t_n$ by the recurrence
$$t_0 = 1, quad t_n = (-1)^n , t_{lfloor n/2rfloor},tag1$$
or by the generating function
$$sum_{n=0}^infty t_n , x^n=prod_{n=0}^inftyleft(1-x^{2^n}right).tag{$1^prime$}$$
It seems that the following conjectures hold:
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}stackrel{color{gray}?}=frac12tag2$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{t_k}stackrel{color{gray}?}=frac1{sqrt2}tag3$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{(-1)^k,t_k}stackrel{color{gray}?}=frac1{2sqrt2}tag4$$
How can we prove these? Are there any other limits of products similar to these?
sequences-and-series number-theory limits products conjectures
$endgroup$
$begingroup$
Related papers: algo.inria.fr/seminars/sem92-93/allouche.pdf, pdfs.semanticscholar.org/a4dc/…, arxiv.org/abs/1709.03398, arxiv.org/abs/1406.7407, arxiv.org/abs/1709.04104
$endgroup$
– Vladimir Reshetnikov
Apr 9 '18 at 1:58
$begingroup$
Related questions: math.stackexchange.com/q/29234/19661, math.stackexchange.com/q/924601/19661
$endgroup$
– Vladimir Reshetnikov
Apr 11 '18 at 18:52
add a comment |
$begingroup$
(related to my previous questions$^{[1]}$$!^{[2]}$)
Let's define the signed Thue–Morse sequence $t_n$ by the recurrence
$$t_0 = 1, quad t_n = (-1)^n , t_{lfloor n/2rfloor},tag1$$
or by the generating function
$$sum_{n=0}^infty t_n , x^n=prod_{n=0}^inftyleft(1-x^{2^n}right).tag{$1^prime$}$$
It seems that the following conjectures hold:
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}stackrel{color{gray}?}=frac12tag2$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{t_k}stackrel{color{gray}?}=frac1{sqrt2}tag3$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{(-1)^k,t_k}stackrel{color{gray}?}=frac1{2sqrt2}tag4$$
How can we prove these? Are there any other limits of products similar to these?
sequences-and-series number-theory limits products conjectures
$endgroup$
(related to my previous questions$^{[1]}$$!^{[2]}$)
Let's define the signed Thue–Morse sequence $t_n$ by the recurrence
$$t_0 = 1, quad t_n = (-1)^n , t_{lfloor n/2rfloor},tag1$$
or by the generating function
$$sum_{n=0}^infty t_n , x^n=prod_{n=0}^inftyleft(1-x^{2^n}right).tag{$1^prime$}$$
It seems that the following conjectures hold:
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}stackrel{color{gray}?}=frac12tag2$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{t_k}stackrel{color{gray}?}=frac1{sqrt2}tag3$$
$$lim_{ntoinfty}prod_{k=0}^{2^n-1}left(k+1right)^{(-1)^k,t_k}stackrel{color{gray}?}=frac1{2sqrt2}tag4$$
How can we prove these? Are there any other limits of products similar to these?
sequences-and-series number-theory limits products conjectures
sequences-and-series number-theory limits products conjectures
edited Apr 8 '18 at 23:47
Vladimir Reshetnikov
asked Apr 8 '18 at 1:33
Vladimir ReshetnikovVladimir Reshetnikov
24.6k5121235
24.6k5121235
$begingroup$
Related papers: algo.inria.fr/seminars/sem92-93/allouche.pdf, pdfs.semanticscholar.org/a4dc/…, arxiv.org/abs/1709.03398, arxiv.org/abs/1406.7407, arxiv.org/abs/1709.04104
$endgroup$
– Vladimir Reshetnikov
Apr 9 '18 at 1:58
$begingroup$
Related questions: math.stackexchange.com/q/29234/19661, math.stackexchange.com/q/924601/19661
$endgroup$
– Vladimir Reshetnikov
Apr 11 '18 at 18:52
add a comment |
$begingroup$
Related papers: algo.inria.fr/seminars/sem92-93/allouche.pdf, pdfs.semanticscholar.org/a4dc/…, arxiv.org/abs/1709.03398, arxiv.org/abs/1406.7407, arxiv.org/abs/1709.04104
$endgroup$
– Vladimir Reshetnikov
Apr 9 '18 at 1:58
$begingroup$
Related questions: math.stackexchange.com/q/29234/19661, math.stackexchange.com/q/924601/19661
$endgroup$
– Vladimir Reshetnikov
Apr 11 '18 at 18:52
$begingroup$
Related papers: algo.inria.fr/seminars/sem92-93/allouche.pdf, pdfs.semanticscholar.org/a4dc/…, arxiv.org/abs/1709.03398, arxiv.org/abs/1406.7407, arxiv.org/abs/1709.04104
$endgroup$
– Vladimir Reshetnikov
Apr 9 '18 at 1:58
$begingroup$
Related papers: algo.inria.fr/seminars/sem92-93/allouche.pdf, pdfs.semanticscholar.org/a4dc/…, arxiv.org/abs/1709.03398, arxiv.org/abs/1406.7407, arxiv.org/abs/1709.04104
$endgroup$
– Vladimir Reshetnikov
Apr 9 '18 at 1:58
$begingroup$
Related questions: math.stackexchange.com/q/29234/19661, math.stackexchange.com/q/924601/19661
$endgroup$
– Vladimir Reshetnikov
Apr 11 '18 at 18:52
$begingroup$
Related questions: math.stackexchange.com/q/29234/19661, math.stackexchange.com/q/924601/19661
$endgroup$
– Vladimir Reshetnikov
Apr 11 '18 at 18:52
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
2) For $nge 1$ we have
$$prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_{2k}}left(2k+1+tfrac12right)^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_k}left(2k+1+tfrac12right)^{-t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{2k+tfrac12}{2k+1+tfrac12}right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}.$$
So, according to the introduction and Lemma 1 from the last paper you referenced (“Infinite products involving binary digit sums” by Samin Riasat), the left hand side of (2) equals
$$prod_{k=0}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13prod_{k=1}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13fleft(frac14,frac34right)=frac13cdotfrac32=frac12.$$
3) Similarly to the previous case we can show that the left hand side of (3) equals $tfrac12 fleft(tfrac 12,1right)=tfrac 1{sqrt2}$.
1) Here preliminary calculations are a bit longer. For $nge 2$ we have
$$prod_{k=0}^{2^n-1}(k+1)^{(-1)^kt_k}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_{2k}}(2k+1+1)^{-t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_k}(2k+2)^{t_k}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_{2k}}((4k+3)(4k+4))^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_k}((4k+3)(4k+4))^{-t_{k}}=$$
$$prod_{k=0}^{2^{n-2}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}left(frac{k+tfrac12}{k+1 }right)^{t_k}.$$
Thus the left hand side of (1) equals the product of the left hand sides of (2) and (3), which is $tfrac 1{2sqrt2}.$
$endgroup$
1
$begingroup$
The index splitting technique is indeed the correct way for calculating such products. As a note, I would like to mention the (fantastic) paper by Allouche, Shallit and Riasat, which derives many similar formulas: arxiv.org/pdf/1709.03398.pdf
$endgroup$
– Klangen
Mar 11 at 9:12
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2727194%2fa-few-conjectured-limits-of-products-involving-the-thue-morse-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
2) For $nge 1$ we have
$$prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_{2k}}left(2k+1+tfrac12right)^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_k}left(2k+1+tfrac12right)^{-t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{2k+tfrac12}{2k+1+tfrac12}right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}.$$
So, according to the introduction and Lemma 1 from the last paper you referenced (“Infinite products involving binary digit sums” by Samin Riasat), the left hand side of (2) equals
$$prod_{k=0}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13prod_{k=1}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13fleft(frac14,frac34right)=frac13cdotfrac32=frac12.$$
3) Similarly to the previous case we can show that the left hand side of (3) equals $tfrac12 fleft(tfrac 12,1right)=tfrac 1{sqrt2}$.
1) Here preliminary calculations are a bit longer. For $nge 2$ we have
$$prod_{k=0}^{2^n-1}(k+1)^{(-1)^kt_k}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_{2k}}(2k+1+1)^{-t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_k}(2k+2)^{t_k}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_{2k}}((4k+3)(4k+4))^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_k}((4k+3)(4k+4))^{-t_{k}}=$$
$$prod_{k=0}^{2^{n-2}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}left(frac{k+tfrac12}{k+1 }right)^{t_k}.$$
Thus the left hand side of (1) equals the product of the left hand sides of (2) and (3), which is $tfrac 1{2sqrt2}.$
$endgroup$
1
$begingroup$
The index splitting technique is indeed the correct way for calculating such products. As a note, I would like to mention the (fantastic) paper by Allouche, Shallit and Riasat, which derives many similar formulas: arxiv.org/pdf/1709.03398.pdf
$endgroup$
– Klangen
Mar 11 at 9:12
add a comment |
$begingroup$
2) For $nge 1$ we have
$$prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_{2k}}left(2k+1+tfrac12right)^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_k}left(2k+1+tfrac12right)^{-t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{2k+tfrac12}{2k+1+tfrac12}right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}.$$
So, according to the introduction and Lemma 1 from the last paper you referenced (“Infinite products involving binary digit sums” by Samin Riasat), the left hand side of (2) equals
$$prod_{k=0}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13prod_{k=1}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13fleft(frac14,frac34right)=frac13cdotfrac32=frac12.$$
3) Similarly to the previous case we can show that the left hand side of (3) equals $tfrac12 fleft(tfrac 12,1right)=tfrac 1{sqrt2}$.
1) Here preliminary calculations are a bit longer. For $nge 2$ we have
$$prod_{k=0}^{2^n-1}(k+1)^{(-1)^kt_k}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_{2k}}(2k+1+1)^{-t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_k}(2k+2)^{t_k}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_{2k}}((4k+3)(4k+4))^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_k}((4k+3)(4k+4))^{-t_{k}}=$$
$$prod_{k=0}^{2^{n-2}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}left(frac{k+tfrac12}{k+1 }right)^{t_k}.$$
Thus the left hand side of (1) equals the product of the left hand sides of (2) and (3), which is $tfrac 1{2sqrt2}.$
$endgroup$
1
$begingroup$
The index splitting technique is indeed the correct way for calculating such products. As a note, I would like to mention the (fantastic) paper by Allouche, Shallit and Riasat, which derives many similar formulas: arxiv.org/pdf/1709.03398.pdf
$endgroup$
– Klangen
Mar 11 at 9:12
add a comment |
$begingroup$
2) For $nge 1$ we have
$$prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_{2k}}left(2k+1+tfrac12right)^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_k}left(2k+1+tfrac12right)^{-t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{2k+tfrac12}{2k+1+tfrac12}right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}.$$
So, according to the introduction and Lemma 1 from the last paper you referenced (“Infinite products involving binary digit sums” by Samin Riasat), the left hand side of (2) equals
$$prod_{k=0}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13prod_{k=1}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13fleft(frac14,frac34right)=frac13cdotfrac32=frac12.$$
3) Similarly to the previous case we can show that the left hand side of (3) equals $tfrac12 fleft(tfrac 12,1right)=tfrac 1{sqrt2}$.
1) Here preliminary calculations are a bit longer. For $nge 2$ we have
$$prod_{k=0}^{2^n-1}(k+1)^{(-1)^kt_k}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_{2k}}(2k+1+1)^{-t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_k}(2k+2)^{t_k}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_{2k}}((4k+3)(4k+4))^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_k}((4k+3)(4k+4))^{-t_{k}}=$$
$$prod_{k=0}^{2^{n-2}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}left(frac{k+tfrac12}{k+1 }right)^{t_k}.$$
Thus the left hand side of (1) equals the product of the left hand sides of (2) and (3), which is $tfrac 1{2sqrt2}.$
$endgroup$
2) For $nge 1$ we have
$$prod_{k=0}^{2^n-1}left(k+tfrac12right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_{2k}}left(2k+1+tfrac12right)^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}left(2k+tfrac12right)^{t_k}left(2k+1+tfrac12right)^{-t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{2k+tfrac12}{2k+1+tfrac12}right)^{t_k}=$$
$$prod_{k=0}^{2^{n-1}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}.$$
So, according to the introduction and Lemma 1 from the last paper you referenced (“Infinite products involving binary digit sums” by Samin Riasat), the left hand side of (2) equals
$$prod_{k=0}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13prod_{k=1}^{infty}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}=$$
$$frac13fleft(frac14,frac34right)=frac13cdotfrac32=frac12.$$
3) Similarly to the previous case we can show that the left hand side of (3) equals $tfrac12 fleft(tfrac 12,1right)=tfrac 1{sqrt2}$.
1) Here preliminary calculations are a bit longer. For $nge 2$ we have
$$prod_{k=0}^{2^n-1}(k+1)^{(-1)^kt_k}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_{2k}}(2k+1+1)^{-t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-1}-1}(2k+1)^{t_k}(2k+2)^{t_k}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_{2k}}((4k+3)(4k+4))^{t_{2k+1}}=$$
$$prod_{k=0}^{2^{n-2}-1}((4k+1)(4k+2))^{t_k}((4k+3)(4k+4))^{-t_{k}}=$$
$$prod_{k=0}^{2^{n-2}-1}left(frac{k+tfrac14}{k+tfrac34}right)^{t_k}left(frac{k+tfrac12}{k+1 }right)^{t_k}.$$
Thus the left hand side of (1) equals the product of the left hand sides of (2) and (3), which is $tfrac 1{2sqrt2}.$
answered Jan 20 at 8:10
Alex RavskyAlex Ravsky
43.3k32583
43.3k32583
1
$begingroup$
The index splitting technique is indeed the correct way for calculating such products. As a note, I would like to mention the (fantastic) paper by Allouche, Shallit and Riasat, which derives many similar formulas: arxiv.org/pdf/1709.03398.pdf
$endgroup$
– Klangen
Mar 11 at 9:12
add a comment |
1
$begingroup$
The index splitting technique is indeed the correct way for calculating such products. As a note, I would like to mention the (fantastic) paper by Allouche, Shallit and Riasat, which derives many similar formulas: arxiv.org/pdf/1709.03398.pdf
$endgroup$
– Klangen
Mar 11 at 9:12
1
1
$begingroup$
The index splitting technique is indeed the correct way for calculating such products. As a note, I would like to mention the (fantastic) paper by Allouche, Shallit and Riasat, which derives many similar formulas: arxiv.org/pdf/1709.03398.pdf
$endgroup$
– Klangen
Mar 11 at 9:12
$begingroup$
The index splitting technique is indeed the correct way for calculating such products. As a note, I would like to mention the (fantastic) paper by Allouche, Shallit and Riasat, which derives many similar formulas: arxiv.org/pdf/1709.03398.pdf
$endgroup$
– Klangen
Mar 11 at 9:12
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2727194%2fa-few-conjectured-limits-of-products-involving-the-thue-morse-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Related papers: algo.inria.fr/seminars/sem92-93/allouche.pdf, pdfs.semanticscholar.org/a4dc/…, arxiv.org/abs/1709.03398, arxiv.org/abs/1406.7407, arxiv.org/abs/1709.04104
$endgroup$
– Vladimir Reshetnikov
Apr 9 '18 at 1:58
$begingroup$
Related questions: math.stackexchange.com/q/29234/19661, math.stackexchange.com/q/924601/19661
$endgroup$
– Vladimir Reshetnikov
Apr 11 '18 at 18:52