Find the smallest integer n such that the expression $40! cdot 5^n$ has the maximum number of trailing zeros.
$begingroup$
Find the smallest integer n such that the expression $$40! cdot 5^n$$ has the maximum number of
trailing zeros.
number-theory elementary-number-theory
$endgroup$
add a comment |
$begingroup$
Find the smallest integer n such that the expression $$40! cdot 5^n$$ has the maximum number of
trailing zeros.
number-theory elementary-number-theory
$endgroup$
1
$begingroup$
$text {Ans}=lfloor frac {40}{2} +frac {40}{4} +frac {40}{8} +frac {40}{16} +frac {40}{32} rfloor-lfloor frac {40}{5} +frac {40}{25} rfloor$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 16:17
1
$begingroup$
@MohammadZuhairKhan Shouldn't the floor function arguments be kept separate before addition? It doesn't make a difference in this case, but it might in general.
$endgroup$
– Deepak
Dec 14 '18 at 16:52
add a comment |
$begingroup$
Find the smallest integer n such that the expression $$40! cdot 5^n$$ has the maximum number of
trailing zeros.
number-theory elementary-number-theory
$endgroup$
Find the smallest integer n such that the expression $$40! cdot 5^n$$ has the maximum number of
trailing zeros.
number-theory elementary-number-theory
number-theory elementary-number-theory
edited Dec 14 '18 at 16:09
Peter
46.9k1039125
46.9k1039125
asked Dec 14 '18 at 16:07
Isaiah LeobreraIsaiah Leobrera
301
301
1
$begingroup$
$text {Ans}=lfloor frac {40}{2} +frac {40}{4} +frac {40}{8} +frac {40}{16} +frac {40}{32} rfloor-lfloor frac {40}{5} +frac {40}{25} rfloor$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 16:17
1
$begingroup$
@MohammadZuhairKhan Shouldn't the floor function arguments be kept separate before addition? It doesn't make a difference in this case, but it might in general.
$endgroup$
– Deepak
Dec 14 '18 at 16:52
add a comment |
1
$begingroup$
$text {Ans}=lfloor frac {40}{2} +frac {40}{4} +frac {40}{8} +frac {40}{16} +frac {40}{32} rfloor-lfloor frac {40}{5} +frac {40}{25} rfloor$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 16:17
1
$begingroup$
@MohammadZuhairKhan Shouldn't the floor function arguments be kept separate before addition? It doesn't make a difference in this case, but it might in general.
$endgroup$
– Deepak
Dec 14 '18 at 16:52
1
1
$begingroup$
$text {Ans}=lfloor frac {40}{2} +frac {40}{4} +frac {40}{8} +frac {40}{16} +frac {40}{32} rfloor-lfloor frac {40}{5} +frac {40}{25} rfloor$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 16:17
$begingroup$
$text {Ans}=lfloor frac {40}{2} +frac {40}{4} +frac {40}{8} +frac {40}{16} +frac {40}{32} rfloor-lfloor frac {40}{5} +frac {40}{25} rfloor$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 16:17
1
1
$begingroup$
@MohammadZuhairKhan Shouldn't the floor function arguments be kept separate before addition? It doesn't make a difference in this case, but it might in general.
$endgroup$
– Deepak
Dec 14 '18 at 16:52
$begingroup$
@MohammadZuhairKhan Shouldn't the floor function arguments be kept separate before addition? It doesn't make a difference in this case, but it might in general.
$endgroup$
– Deepak
Dec 14 '18 at 16:52
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint: Legendre's theorem
can be used to find the largest powers of $2$ and of $5$ that divide $40!$.
$endgroup$
add a comment |
$begingroup$
Basically, you need to count the number of factors $2$ and $5$ in the factorial $40!$:
$$begin{align}40!&=color{red}1cdot 2cdot color{red}3cdot 4cdot color{red}5cdots 38cdot color{red}{39}cdot 40=\
&=2^{20}cdot (color{blue}1cdot 2cdot color{blue}3cdots color{blue}{19}cdot 20)cdot (color{red}1cdot color{red}3cdot color{red}5cdots color{red}{37}cdot color{red}{39})=\
&=2^{20}cdot 2^{10}cdot (1cdot 2cdot 3cdots 9cdot 10)cdot (color{blue}1cdot color{blue}3cdots color{blue}{19})cdot (1cdot 3cdot 5cdots 37cdot 39)=\
&=2^{20}cdot 2^{10}cdot 2^5cdot (1cdot 2cdot 3cdot 4cdot 5)cdot (1cdot 3cdots 9)cdot (1cdot 3cdots 19)cdot (1cdot 3cdot 5cdots 37cdot 39)=\
&=2^{20}cdot 2^{10}cdot 2^5cdot 2^3cdot (1cdot 3cdot 5)cdot (1cdots 9)cdot (1cdots 19)cdot (1cdots 39)=\
&=2^{38}cdot (5A)cdot (5B)cdot (5^2C)cdot (5^5D)=\
&=2^{38}cdot 5^9E. end{align}$$
Hence, the minimum $n$ in $40!cdot 5^n$ is: $38=9+nRightarrow n=29$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039551%2ffind-the-smallest-integer-n-such-that-the-expression-40-cdot-5n-has-the-max%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Legendre's theorem
can be used to find the largest powers of $2$ and of $5$ that divide $40!$.
$endgroup$
add a comment |
$begingroup$
Hint: Legendre's theorem
can be used to find the largest powers of $2$ and of $5$ that divide $40!$.
$endgroup$
add a comment |
$begingroup$
Hint: Legendre's theorem
can be used to find the largest powers of $2$ and of $5$ that divide $40!$.
$endgroup$
Hint: Legendre's theorem
can be used to find the largest powers of $2$ and of $5$ that divide $40!$.
answered Dec 14 '18 at 16:14
Robert IsraelRobert Israel
319k23209460
319k23209460
add a comment |
add a comment |
$begingroup$
Basically, you need to count the number of factors $2$ and $5$ in the factorial $40!$:
$$begin{align}40!&=color{red}1cdot 2cdot color{red}3cdot 4cdot color{red}5cdots 38cdot color{red}{39}cdot 40=\
&=2^{20}cdot (color{blue}1cdot 2cdot color{blue}3cdots color{blue}{19}cdot 20)cdot (color{red}1cdot color{red}3cdot color{red}5cdots color{red}{37}cdot color{red}{39})=\
&=2^{20}cdot 2^{10}cdot (1cdot 2cdot 3cdots 9cdot 10)cdot (color{blue}1cdot color{blue}3cdots color{blue}{19})cdot (1cdot 3cdot 5cdots 37cdot 39)=\
&=2^{20}cdot 2^{10}cdot 2^5cdot (1cdot 2cdot 3cdot 4cdot 5)cdot (1cdot 3cdots 9)cdot (1cdot 3cdots 19)cdot (1cdot 3cdot 5cdots 37cdot 39)=\
&=2^{20}cdot 2^{10}cdot 2^5cdot 2^3cdot (1cdot 3cdot 5)cdot (1cdots 9)cdot (1cdots 19)cdot (1cdots 39)=\
&=2^{38}cdot (5A)cdot (5B)cdot (5^2C)cdot (5^5D)=\
&=2^{38}cdot 5^9E. end{align}$$
Hence, the minimum $n$ in $40!cdot 5^n$ is: $38=9+nRightarrow n=29$.
$endgroup$
add a comment |
$begingroup$
Basically, you need to count the number of factors $2$ and $5$ in the factorial $40!$:
$$begin{align}40!&=color{red}1cdot 2cdot color{red}3cdot 4cdot color{red}5cdots 38cdot color{red}{39}cdot 40=\
&=2^{20}cdot (color{blue}1cdot 2cdot color{blue}3cdots color{blue}{19}cdot 20)cdot (color{red}1cdot color{red}3cdot color{red}5cdots color{red}{37}cdot color{red}{39})=\
&=2^{20}cdot 2^{10}cdot (1cdot 2cdot 3cdots 9cdot 10)cdot (color{blue}1cdot color{blue}3cdots color{blue}{19})cdot (1cdot 3cdot 5cdots 37cdot 39)=\
&=2^{20}cdot 2^{10}cdot 2^5cdot (1cdot 2cdot 3cdot 4cdot 5)cdot (1cdot 3cdots 9)cdot (1cdot 3cdots 19)cdot (1cdot 3cdot 5cdots 37cdot 39)=\
&=2^{20}cdot 2^{10}cdot 2^5cdot 2^3cdot (1cdot 3cdot 5)cdot (1cdots 9)cdot (1cdots 19)cdot (1cdots 39)=\
&=2^{38}cdot (5A)cdot (5B)cdot (5^2C)cdot (5^5D)=\
&=2^{38}cdot 5^9E. end{align}$$
Hence, the minimum $n$ in $40!cdot 5^n$ is: $38=9+nRightarrow n=29$.
$endgroup$
add a comment |
$begingroup$
Basically, you need to count the number of factors $2$ and $5$ in the factorial $40!$:
$$begin{align}40!&=color{red}1cdot 2cdot color{red}3cdot 4cdot color{red}5cdots 38cdot color{red}{39}cdot 40=\
&=2^{20}cdot (color{blue}1cdot 2cdot color{blue}3cdots color{blue}{19}cdot 20)cdot (color{red}1cdot color{red}3cdot color{red}5cdots color{red}{37}cdot color{red}{39})=\
&=2^{20}cdot 2^{10}cdot (1cdot 2cdot 3cdots 9cdot 10)cdot (color{blue}1cdot color{blue}3cdots color{blue}{19})cdot (1cdot 3cdot 5cdots 37cdot 39)=\
&=2^{20}cdot 2^{10}cdot 2^5cdot (1cdot 2cdot 3cdot 4cdot 5)cdot (1cdot 3cdots 9)cdot (1cdot 3cdots 19)cdot (1cdot 3cdot 5cdots 37cdot 39)=\
&=2^{20}cdot 2^{10}cdot 2^5cdot 2^3cdot (1cdot 3cdot 5)cdot (1cdots 9)cdot (1cdots 19)cdot (1cdots 39)=\
&=2^{38}cdot (5A)cdot (5B)cdot (5^2C)cdot (5^5D)=\
&=2^{38}cdot 5^9E. end{align}$$
Hence, the minimum $n$ in $40!cdot 5^n$ is: $38=9+nRightarrow n=29$.
$endgroup$
Basically, you need to count the number of factors $2$ and $5$ in the factorial $40!$:
$$begin{align}40!&=color{red}1cdot 2cdot color{red}3cdot 4cdot color{red}5cdots 38cdot color{red}{39}cdot 40=\
&=2^{20}cdot (color{blue}1cdot 2cdot color{blue}3cdots color{blue}{19}cdot 20)cdot (color{red}1cdot color{red}3cdot color{red}5cdots color{red}{37}cdot color{red}{39})=\
&=2^{20}cdot 2^{10}cdot (1cdot 2cdot 3cdots 9cdot 10)cdot (color{blue}1cdot color{blue}3cdots color{blue}{19})cdot (1cdot 3cdot 5cdots 37cdot 39)=\
&=2^{20}cdot 2^{10}cdot 2^5cdot (1cdot 2cdot 3cdot 4cdot 5)cdot (1cdot 3cdots 9)cdot (1cdot 3cdots 19)cdot (1cdot 3cdot 5cdots 37cdot 39)=\
&=2^{20}cdot 2^{10}cdot 2^5cdot 2^3cdot (1cdot 3cdot 5)cdot (1cdots 9)cdot (1cdots 19)cdot (1cdots 39)=\
&=2^{38}cdot (5A)cdot (5B)cdot (5^2C)cdot (5^5D)=\
&=2^{38}cdot 5^9E. end{align}$$
Hence, the minimum $n$ in $40!cdot 5^n$ is: $38=9+nRightarrow n=29$.
answered Dec 14 '18 at 17:01
farruhotafarruhota
19.6k2738
19.6k2738
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039551%2ffind-the-smallest-integer-n-such-that-the-expression-40-cdot-5n-has-the-max%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
$text {Ans}=lfloor frac {40}{2} +frac {40}{4} +frac {40}{8} +frac {40}{16} +frac {40}{32} rfloor-lfloor frac {40}{5} +frac {40}{25} rfloor$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 16:17
1
$begingroup$
@MohammadZuhairKhan Shouldn't the floor function arguments be kept separate before addition? It doesn't make a difference in this case, but it might in general.
$endgroup$
– Deepak
Dec 14 '18 at 16:52