How to fill a hexagon with vertices obtained from intersecting lines?












7















documentclass[12pt,border=15pt]{standalone}
usepackage{pst-poly,pst-eucl}
begin{document}
begin{pspicture}(-4,-3.5)(4,3.5)
psset{unit=3.5cm,PstPicture=false,dotsize=.03}
PstHexagon[PolyName=A]
pspolygon(A1)(A3)(A5)
pspolygon(A2)(A4)(A6)
foreach m/n/p/q in
{3/2/1/90,2/1/2/45,1/6/3/-45,6/5/4/-90,5/4/5/-135,4/3/6/135}{%
pstMiddleAB[PosAngle=q]{Am}{An}{M_p}}
foreach m/n/p in {0/1/3,70/2/2,110/3/1,180/4/6,-110/5/5,-70/6/4}
{uput[m](An){$A_p$}}
foreach m/n/p/q/t/r in {1/3/4/2/90/1,2/6/1/3/45/2,1/5/2/6/-45/3,1/5/4/6/-90/4,3/5/4/6/-135/5,2/4/3/5/135/6}{pstInterLL[PosAngle=t]{Am}{An}{Ap}{Aq}{C_r}}
foreach m/n in {1/3,2/4,3/5,4/6,5/1,6/2}{ncLine{M_m}{C_n}}
foreach i in {1,...,6}{psdot(Ai)}
end{pspicture}
end{document}


enter image description here



I don't want to use many pstInterLL calls to fill the green region above.



documentclass[12pt,border=15pt]{standalone}
usepackage{tikz}
begin{document}
begin{tikzpicture}
defr{3}
pgfmathsetmacro{rm}{r *sqrt(3)/2}
pgfmathsetmacro{rc}{rm *2/3}
foreach i in {1,...,6}{
draw (180-60*i:r) coordinate[label=$A_{i}$] (ai) --(120-60*i:r);
draw (180-60*i:r)--(60-60*i:r);
draw (150-60*i:rm) coordinate[label=$M_{i}$] (mi) --(30-60*i:rc);
draw (150-60*i:rc) coordinate[label=$C_{i}$] (ci) --(90-60*i:rc);
fill[black] (ai) circle (0.05);
fill[black] (mi) circle (0.05);
fill[black] (ci) circle (0.05);
}
end{tikzpicture}
end{document}


enter image description here



Awesome ... TikZ code is serene.



documentclass[12pt,border=15pt]{standalone}
usepackage{pst-poly,pst-eucl}
begin{document}
begin{pspicture}(-4,-3.5)(4,3.5)
psset{unit=3.5cm,PstPicture=false,dotsize=.03}
PstHexagon[PolyName=A]
pspolygon(A1)(A3)(A5)
pspolygon(A2)(A4)(A6)
foreach m/n/p/q in
{3/2/1/90,2/1/2/45,1/6/3/-45,6/5/4/-90,5/4/5/-135,4/3/6/135}{%
pstMiddleAB[PosAngle=q]{Am}{An}{Mp}}
foreach m/n/p in {0/1/3,70/2/2,110/3/1,180/4/6,-110/5/5,-70/6/4}
{uput[m](An){$A_p$}}
foreach m/n/p/q/t/r in {1/3/4/2/90/1,2/6/1/3/45/2,1/5/2/6/-45/3,1/5/4/6/-90/4,3/5/4/6/-135/5,2/4/3/5/135/6}{pstInterLL[PosAngle=t]{Am}{An}{Ap}{Aq}{Cr}}
foreach m/n/p/q/r in
{1/3/6/2/1,1/3/2/4/2,3/5/2/4/3,3/5/4/6/4,5/1/4/6/5,5/1/6/2/6}
{pstInterLL[PointName=none,PointSymbol=none]{Mm}{Cn}{Mp}{Cq}{ir}}
pspolygon*[linecolor=green](i1)(i2)(i3)(i4)(i5)(i6)
foreach m/n in {1/3,2/4,3/5,4/6,5/1,6/2}{ncLine{Mm}{Cn}}
foreach i in {1,...,6}{psdot(Ai)}
end{pspicture}
end{document}


enter image description here










share|improve this question




















  • 3





    If this were TikZ, I would use the intersections library to find the vertices.

    – John Kormylo
    Jan 8 at 15:55
















7















documentclass[12pt,border=15pt]{standalone}
usepackage{pst-poly,pst-eucl}
begin{document}
begin{pspicture}(-4,-3.5)(4,3.5)
psset{unit=3.5cm,PstPicture=false,dotsize=.03}
PstHexagon[PolyName=A]
pspolygon(A1)(A3)(A5)
pspolygon(A2)(A4)(A6)
foreach m/n/p/q in
{3/2/1/90,2/1/2/45,1/6/3/-45,6/5/4/-90,5/4/5/-135,4/3/6/135}{%
pstMiddleAB[PosAngle=q]{Am}{An}{M_p}}
foreach m/n/p in {0/1/3,70/2/2,110/3/1,180/4/6,-110/5/5,-70/6/4}
{uput[m](An){$A_p$}}
foreach m/n/p/q/t/r in {1/3/4/2/90/1,2/6/1/3/45/2,1/5/2/6/-45/3,1/5/4/6/-90/4,3/5/4/6/-135/5,2/4/3/5/135/6}{pstInterLL[PosAngle=t]{Am}{An}{Ap}{Aq}{C_r}}
foreach m/n in {1/3,2/4,3/5,4/6,5/1,6/2}{ncLine{M_m}{C_n}}
foreach i in {1,...,6}{psdot(Ai)}
end{pspicture}
end{document}


enter image description here



I don't want to use many pstInterLL calls to fill the green region above.



documentclass[12pt,border=15pt]{standalone}
usepackage{tikz}
begin{document}
begin{tikzpicture}
defr{3}
pgfmathsetmacro{rm}{r *sqrt(3)/2}
pgfmathsetmacro{rc}{rm *2/3}
foreach i in {1,...,6}{
draw (180-60*i:r) coordinate[label=$A_{i}$] (ai) --(120-60*i:r);
draw (180-60*i:r)--(60-60*i:r);
draw (150-60*i:rm) coordinate[label=$M_{i}$] (mi) --(30-60*i:rc);
draw (150-60*i:rc) coordinate[label=$C_{i}$] (ci) --(90-60*i:rc);
fill[black] (ai) circle (0.05);
fill[black] (mi) circle (0.05);
fill[black] (ci) circle (0.05);
}
end{tikzpicture}
end{document}


enter image description here



Awesome ... TikZ code is serene.



documentclass[12pt,border=15pt]{standalone}
usepackage{pst-poly,pst-eucl}
begin{document}
begin{pspicture}(-4,-3.5)(4,3.5)
psset{unit=3.5cm,PstPicture=false,dotsize=.03}
PstHexagon[PolyName=A]
pspolygon(A1)(A3)(A5)
pspolygon(A2)(A4)(A6)
foreach m/n/p/q in
{3/2/1/90,2/1/2/45,1/6/3/-45,6/5/4/-90,5/4/5/-135,4/3/6/135}{%
pstMiddleAB[PosAngle=q]{Am}{An}{Mp}}
foreach m/n/p in {0/1/3,70/2/2,110/3/1,180/4/6,-110/5/5,-70/6/4}
{uput[m](An){$A_p$}}
foreach m/n/p/q/t/r in {1/3/4/2/90/1,2/6/1/3/45/2,1/5/2/6/-45/3,1/5/4/6/-90/4,3/5/4/6/-135/5,2/4/3/5/135/6}{pstInterLL[PosAngle=t]{Am}{An}{Ap}{Aq}{Cr}}
foreach m/n/p/q/r in
{1/3/6/2/1,1/3/2/4/2,3/5/2/4/3,3/5/4/6/4,5/1/4/6/5,5/1/6/2/6}
{pstInterLL[PointName=none,PointSymbol=none]{Mm}{Cn}{Mp}{Cq}{ir}}
pspolygon*[linecolor=green](i1)(i2)(i3)(i4)(i5)(i6)
foreach m/n in {1/3,2/4,3/5,4/6,5/1,6/2}{ncLine{Mm}{Cn}}
foreach i in {1,...,6}{psdot(Ai)}
end{pspicture}
end{document}


enter image description here










share|improve this question




















  • 3





    If this were TikZ, I would use the intersections library to find the vertices.

    – John Kormylo
    Jan 8 at 15:55














7












7








7


1






documentclass[12pt,border=15pt]{standalone}
usepackage{pst-poly,pst-eucl}
begin{document}
begin{pspicture}(-4,-3.5)(4,3.5)
psset{unit=3.5cm,PstPicture=false,dotsize=.03}
PstHexagon[PolyName=A]
pspolygon(A1)(A3)(A5)
pspolygon(A2)(A4)(A6)
foreach m/n/p/q in
{3/2/1/90,2/1/2/45,1/6/3/-45,6/5/4/-90,5/4/5/-135,4/3/6/135}{%
pstMiddleAB[PosAngle=q]{Am}{An}{M_p}}
foreach m/n/p in {0/1/3,70/2/2,110/3/1,180/4/6,-110/5/5,-70/6/4}
{uput[m](An){$A_p$}}
foreach m/n/p/q/t/r in {1/3/4/2/90/1,2/6/1/3/45/2,1/5/2/6/-45/3,1/5/4/6/-90/4,3/5/4/6/-135/5,2/4/3/5/135/6}{pstInterLL[PosAngle=t]{Am}{An}{Ap}{Aq}{C_r}}
foreach m/n in {1/3,2/4,3/5,4/6,5/1,6/2}{ncLine{M_m}{C_n}}
foreach i in {1,...,6}{psdot(Ai)}
end{pspicture}
end{document}


enter image description here



I don't want to use many pstInterLL calls to fill the green region above.



documentclass[12pt,border=15pt]{standalone}
usepackage{tikz}
begin{document}
begin{tikzpicture}
defr{3}
pgfmathsetmacro{rm}{r *sqrt(3)/2}
pgfmathsetmacro{rc}{rm *2/3}
foreach i in {1,...,6}{
draw (180-60*i:r) coordinate[label=$A_{i}$] (ai) --(120-60*i:r);
draw (180-60*i:r)--(60-60*i:r);
draw (150-60*i:rm) coordinate[label=$M_{i}$] (mi) --(30-60*i:rc);
draw (150-60*i:rc) coordinate[label=$C_{i}$] (ci) --(90-60*i:rc);
fill[black] (ai) circle (0.05);
fill[black] (mi) circle (0.05);
fill[black] (ci) circle (0.05);
}
end{tikzpicture}
end{document}


enter image description here



Awesome ... TikZ code is serene.



documentclass[12pt,border=15pt]{standalone}
usepackage{pst-poly,pst-eucl}
begin{document}
begin{pspicture}(-4,-3.5)(4,3.5)
psset{unit=3.5cm,PstPicture=false,dotsize=.03}
PstHexagon[PolyName=A]
pspolygon(A1)(A3)(A5)
pspolygon(A2)(A4)(A6)
foreach m/n/p/q in
{3/2/1/90,2/1/2/45,1/6/3/-45,6/5/4/-90,5/4/5/-135,4/3/6/135}{%
pstMiddleAB[PosAngle=q]{Am}{An}{Mp}}
foreach m/n/p in {0/1/3,70/2/2,110/3/1,180/4/6,-110/5/5,-70/6/4}
{uput[m](An){$A_p$}}
foreach m/n/p/q/t/r in {1/3/4/2/90/1,2/6/1/3/45/2,1/5/2/6/-45/3,1/5/4/6/-90/4,3/5/4/6/-135/5,2/4/3/5/135/6}{pstInterLL[PosAngle=t]{Am}{An}{Ap}{Aq}{Cr}}
foreach m/n/p/q/r in
{1/3/6/2/1,1/3/2/4/2,3/5/2/4/3,3/5/4/6/4,5/1/4/6/5,5/1/6/2/6}
{pstInterLL[PointName=none,PointSymbol=none]{Mm}{Cn}{Mp}{Cq}{ir}}
pspolygon*[linecolor=green](i1)(i2)(i3)(i4)(i5)(i6)
foreach m/n in {1/3,2/4,3/5,4/6,5/1,6/2}{ncLine{Mm}{Cn}}
foreach i in {1,...,6}{psdot(Ai)}
end{pspicture}
end{document}


enter image description here










share|improve this question
















documentclass[12pt,border=15pt]{standalone}
usepackage{pst-poly,pst-eucl}
begin{document}
begin{pspicture}(-4,-3.5)(4,3.5)
psset{unit=3.5cm,PstPicture=false,dotsize=.03}
PstHexagon[PolyName=A]
pspolygon(A1)(A3)(A5)
pspolygon(A2)(A4)(A6)
foreach m/n/p/q in
{3/2/1/90,2/1/2/45,1/6/3/-45,6/5/4/-90,5/4/5/-135,4/3/6/135}{%
pstMiddleAB[PosAngle=q]{Am}{An}{M_p}}
foreach m/n/p in {0/1/3,70/2/2,110/3/1,180/4/6,-110/5/5,-70/6/4}
{uput[m](An){$A_p$}}
foreach m/n/p/q/t/r in {1/3/4/2/90/1,2/6/1/3/45/2,1/5/2/6/-45/3,1/5/4/6/-90/4,3/5/4/6/-135/5,2/4/3/5/135/6}{pstInterLL[PosAngle=t]{Am}{An}{Ap}{Aq}{C_r}}
foreach m/n in {1/3,2/4,3/5,4/6,5/1,6/2}{ncLine{M_m}{C_n}}
foreach i in {1,...,6}{psdot(Ai)}
end{pspicture}
end{document}


enter image description here



I don't want to use many pstInterLL calls to fill the green region above.



documentclass[12pt,border=15pt]{standalone}
usepackage{tikz}
begin{document}
begin{tikzpicture}
defr{3}
pgfmathsetmacro{rm}{r *sqrt(3)/2}
pgfmathsetmacro{rc}{rm *2/3}
foreach i in {1,...,6}{
draw (180-60*i:r) coordinate[label=$A_{i}$] (ai) --(120-60*i:r);
draw (180-60*i:r)--(60-60*i:r);
draw (150-60*i:rm) coordinate[label=$M_{i}$] (mi) --(30-60*i:rc);
draw (150-60*i:rc) coordinate[label=$C_{i}$] (ci) --(90-60*i:rc);
fill[black] (ai) circle (0.05);
fill[black] (mi) circle (0.05);
fill[black] (ci) circle (0.05);
}
end{tikzpicture}
end{document}


enter image description here



Awesome ... TikZ code is serene.



documentclass[12pt,border=15pt]{standalone}
usepackage{pst-poly,pst-eucl}
begin{document}
begin{pspicture}(-4,-3.5)(4,3.5)
psset{unit=3.5cm,PstPicture=false,dotsize=.03}
PstHexagon[PolyName=A]
pspolygon(A1)(A3)(A5)
pspolygon(A2)(A4)(A6)
foreach m/n/p/q in
{3/2/1/90,2/1/2/45,1/6/3/-45,6/5/4/-90,5/4/5/-135,4/3/6/135}{%
pstMiddleAB[PosAngle=q]{Am}{An}{Mp}}
foreach m/n/p in {0/1/3,70/2/2,110/3/1,180/4/6,-110/5/5,-70/6/4}
{uput[m](An){$A_p$}}
foreach m/n/p/q/t/r in {1/3/4/2/90/1,2/6/1/3/45/2,1/5/2/6/-45/3,1/5/4/6/-90/4,3/5/4/6/-135/5,2/4/3/5/135/6}{pstInterLL[PosAngle=t]{Am}{An}{Ap}{Aq}{Cr}}
foreach m/n/p/q/r in
{1/3/6/2/1,1/3/2/4/2,3/5/2/4/3,3/5/4/6/4,5/1/4/6/5,5/1/6/2/6}
{pstInterLL[PointName=none,PointSymbol=none]{Mm}{Cn}{Mp}{Cq}{ir}}
pspolygon*[linecolor=green](i1)(i2)(i3)(i4)(i5)(i6)
foreach m/n in {1/3,2/4,3/5,4/6,5/1,6/2}{ncLine{Mm}{Cn}}
foreach i in {1,...,6}{psdot(Ai)}
end{pspicture}
end{document}


enter image description here







pstricks






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Jan 9 at 2:07







Trong Vuong

















asked Jan 8 at 15:46









Trong VuongTrong Vuong

7381323




7381323








  • 3





    If this were TikZ, I would use the intersections library to find the vertices.

    – John Kormylo
    Jan 8 at 15:55














  • 3





    If this were TikZ, I would use the intersections library to find the vertices.

    – John Kormylo
    Jan 8 at 15:55








3




3





If this were TikZ, I would use the intersections library to find the vertices.

– John Kormylo
Jan 8 at 15:55





If this were TikZ, I would use the intersections library to find the vertices.

– John Kormylo
Jan 8 at 15:55










4 Answers
4






active

oldest

votes


















4














Trivial lines are intentionally ignored for the sake of fun.



documentclass[pstricks,border=1cm,12pt]{standalone}
usepackage{pst-eucl}

begin{document}
pspicture(-5,-5)(5,5)
foreach i in {1,...,6}{%
pstGeonode[PointName=A_i,PosAngle=thenumexpr(-i+1)*60+120](!5 pscalculate{(-i+1)*60+120} PtoC){Athenumexpri-1}
pstGeonode[PointName=M_i,PosAngle=thenumexpr(-i+1)*60+90](!5 60 sin mul pscalculate{(-i+1)*60+90} PtoC){Mthenumexpri-1}
pstGeonode[PointName=C_i,PosAngle=thenumexpr(-i+1)*60+90](!3 pscalculate{(-i+1)*60+90} PtoC){Cthenumexpri-1}
}
psnpolygon(0,5){A}
psnpolygon(0,5){C}
psset{PointName=none,PointSymbol=none}
pstInterLL{C0}{M4}{C1}{M5}{N0}
pnode(0,0){O}
foreach i in {1,...,5}{pstRotation[RotAngle=thenumexpr60*i]{O}{N0}[Ni]}
psnpolygon[fillstyle=solid,fillcolor=yellow](0,5){N}
endpspicture
end{document}


enter image description here






share|improve this answer



















  • 1





    psnpolygon(startindex,stopindex){nodenameprefix} creates a polygon based on a series of consecutive nodes.

    – Artificial Hairless Armpit
    Jan 8 at 17:08











  • I made the labels radially outward because it is good.

    – Artificial Hairless Armpit
    Jan 8 at 17:33



















7














This is in the case you do not want to compute things by yourself and let TikZ find the contour.



documentclass[12pt,border=15pt]{standalone}
usepackage{tikz}
usetikzlibrary{intersections,backgrounds}
begin{document}
begin{tikzpicture}
defr{3}
pgfmathsetmacro{rm}{r *sqrt(3)/2}
pgfmathsetmacro{rc}{rm *2/3}
foreach i in {1,...,6}{
draw (180-60*i:r) coordinate[label=180-60*i:$A_{i}$] (ai) --(120-60*i:r);
draw (180-60*i:r)--(60-60*i:r);
draw[name path global=i-path] (150-60*i:rm) coordinate[label=150-60*i:$M_{i}$] (mi) --(30-60*i:rc);
draw (150-60*i:rc) coordinate[label=150-60*i:$C_{i}$] (ci) --(90-60*i:rc);
fill[black] (ai) circle (0.05);
fill[black] (mi) circle (0.05);
fill[black] (ci) circle (0.05);
}
foreach i [remember=i as j (initially 6)] in {1,...,6}
{
path[name intersections={of=i-path and j-path,by=i-i}];
}
begin{scope}[on background layer]
fill[blue] plot[variable=i,samples=6,domain=1:6] (i-i);
end{scope}
end{tikzpicture}
end{document}


enter image description here






share|improve this answer





















  • 2





    Making radially outward labels might make it look nicer. :-)

    – Artificial Hairless Armpit
    Jan 8 at 18:25






  • 1





    @GodMustBeCrazy You're right. Thanks! (Really easy to implement with TikZ.)

    – marmot
    Jan 8 at 18:29



















6














The shapes library can easily make hexagons:



documentclass[12pt,border=15pt]{standalone}
usepackage{tikz}
usetikzlibrary{shapes}
begin{document}
begin{tikzpicture}
node[fill=green!50!black,regular polygon, regular polygon sides=6,
inner sep=0.73cm,rotate=-7] at (0,0) {};
defr{3}
pgfmathsetmacro{rm}{r *sqrt(3)/2}
pgfmathsetmacro{rc}{rm *2/3}
foreach i in {1,...,6}{
draw (180-60*i:r) coordinate[label=$A_{i}$] (ai) --(120-60*i:r);
draw (180-60*i:r)--(60-60*i:r);
draw (150-60*i:rm) coordinate[label=$M_{i}$] (mi) --(30-60*i:rc);
draw (150-60*i:rc) coordinate[label=$C_{i}$] (ci) --(90-60*i:rc);
fill[black] (ai) circle (0.05);
fill[black] (mi) circle (0.05);
fill[black] (ci) circle (0.05);
}
end{tikzpicture}
end{document}


enter image description here






share|improve this answer































    5














    Can be simplified with some psforeach



    documentclass[12pt,border=15pt]{standalone}
    usepackage{pst-eucl}
    begin{document}
    begin{pspicture}(-4,-3.5)(4,3.5)
    degrees[6]
    multido{iA=1+1}{6}{pnode(3;iA){AiA}uput[iA]{0}(AiA){$A_iA$}}
    multido{iA=1+1,iB=2+1}{5}{psLNode(AiA)(AiB){0.5}{MiA}uput[iA]{0}(MiA){$M_iA$}}
    psLNode(A6)(A1){0.5}{M6}uput[6]{0}(M6){$M_6$}
    pspolygon[linejoin=2](A1)(A3)(A5)(A6)(A2)(A4)(A6)(A5)(A4)(A3)(A2)(A1)(A5)(A6)
    multido{iA=1+1,iB=3+1}{4}{%
    psLNode(AiA)(AiB){0.333}{CiA}qdisk(CiA){2pt}%
    uput[iA]{0}(CiA){$C_iA$}}
    psLNode(A5)(A1){0.333}{C5}qdisk(C5){2pt}uput[5]{0}(C5){$C_5$}
    psLNode(A6)(A2){0.333}{C6}qdisk(C6){2pt}uput[6]{0}(C6){$C_6$}
    multido{iA=3+1,iB=1+1}{4}{psline(MiA)(CiB)}
    psline(M1)(C5)psline(M2)(C6)
    psset{PointName=none,PointSymbol=none}
    pstInterLL{M1}{C5}{M2}{C6}{i1} pstInterLL{M2}{C6}{M3}{C1}{i2}
    pstInterLL{M3}{C1}{M4}{C2}{i3} pstInterLL{M4}{C2}{M5}{C3}{i4}
    pstInterLL{M5}{C3}{M6}{C4}{i5} pstInterLL{M6}{C4}{M1}{C5}{i6}
    pspolygon*[linecolor=blue](i1)(i2)(i3)(i4)(i5)(i6)
    end{pspicture}

    end{document}


    enter image description here



    and a shorter version without intersections:



    begin{pspicture}(-4,-3.5)(4,3.5)
    degrees[6]
    multido{iA=1+1}{6}{pnode(3;iA){AiA}uput[iA]{0}(AiA){$A_iA$}}
    multido{iA=1+1,iB=2+1}{5}{psLNode(AiA)(AiB){0.5}{MiA}uput[iA]{0}(MiA){$M_iA$}}
    psLNode(A6)(A1){0.5}{M6}uput[6]{0}(M6){$M_6$}
    pspolygon(A1)(A2)(A3)(A4)(A5)(A6)pspolygon(A1)(A3)(A5)pspolygon(A2)(A4)(A6)
    multido{iA=1+1,iB=3+1}{4}{%
    psLNode(AiA)(AiB){0.333}{CiA}qdisk(CiA){2pt}%
    uput[iA]{0}(CiA){$C_iA$}}
    psLNode(A5)(A1){0.333}{C5}qdisk(C5){2pt}uput[5]{0}(C5){$C_5$}
    psLNode(A6)(A2){0.333}{C6}qdisk(C6){2pt}uput[6]{0}(C6){$C_6$}
    multido{iA=3+1,iB=1+1}{4}{psline(MiA)(CiB)}
    psline(M1)(C5)psline(M2)(C6)
    pspolygon*[linecolor=red!40]%
    (1.19;0.9)(1.19;1.9)(1.19;2.9)(1.19;3.9)(1.19;4.9)(1.19;5.9)
    end{pspicture}





    share|improve this answer


























    • OP's node names are placed clockwise and you forgot the line A2-A4.

      – Artificial Hairless Armpit
      Jan 10 at 2:32












    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "85"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f469184%2fhow-to-fill-a-hexagon-with-vertices-obtained-from-intersecting-lines%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    4 Answers
    4






    active

    oldest

    votes








    4 Answers
    4






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4














    Trivial lines are intentionally ignored for the sake of fun.



    documentclass[pstricks,border=1cm,12pt]{standalone}
    usepackage{pst-eucl}

    begin{document}
    pspicture(-5,-5)(5,5)
    foreach i in {1,...,6}{%
    pstGeonode[PointName=A_i,PosAngle=thenumexpr(-i+1)*60+120](!5 pscalculate{(-i+1)*60+120} PtoC){Athenumexpri-1}
    pstGeonode[PointName=M_i,PosAngle=thenumexpr(-i+1)*60+90](!5 60 sin mul pscalculate{(-i+1)*60+90} PtoC){Mthenumexpri-1}
    pstGeonode[PointName=C_i,PosAngle=thenumexpr(-i+1)*60+90](!3 pscalculate{(-i+1)*60+90} PtoC){Cthenumexpri-1}
    }
    psnpolygon(0,5){A}
    psnpolygon(0,5){C}
    psset{PointName=none,PointSymbol=none}
    pstInterLL{C0}{M4}{C1}{M5}{N0}
    pnode(0,0){O}
    foreach i in {1,...,5}{pstRotation[RotAngle=thenumexpr60*i]{O}{N0}[Ni]}
    psnpolygon[fillstyle=solid,fillcolor=yellow](0,5){N}
    endpspicture
    end{document}


    enter image description here






    share|improve this answer



















    • 1





      psnpolygon(startindex,stopindex){nodenameprefix} creates a polygon based on a series of consecutive nodes.

      – Artificial Hairless Armpit
      Jan 8 at 17:08











    • I made the labels radially outward because it is good.

      – Artificial Hairless Armpit
      Jan 8 at 17:33
















    4














    Trivial lines are intentionally ignored for the sake of fun.



    documentclass[pstricks,border=1cm,12pt]{standalone}
    usepackage{pst-eucl}

    begin{document}
    pspicture(-5,-5)(5,5)
    foreach i in {1,...,6}{%
    pstGeonode[PointName=A_i,PosAngle=thenumexpr(-i+1)*60+120](!5 pscalculate{(-i+1)*60+120} PtoC){Athenumexpri-1}
    pstGeonode[PointName=M_i,PosAngle=thenumexpr(-i+1)*60+90](!5 60 sin mul pscalculate{(-i+1)*60+90} PtoC){Mthenumexpri-1}
    pstGeonode[PointName=C_i,PosAngle=thenumexpr(-i+1)*60+90](!3 pscalculate{(-i+1)*60+90} PtoC){Cthenumexpri-1}
    }
    psnpolygon(0,5){A}
    psnpolygon(0,5){C}
    psset{PointName=none,PointSymbol=none}
    pstInterLL{C0}{M4}{C1}{M5}{N0}
    pnode(0,0){O}
    foreach i in {1,...,5}{pstRotation[RotAngle=thenumexpr60*i]{O}{N0}[Ni]}
    psnpolygon[fillstyle=solid,fillcolor=yellow](0,5){N}
    endpspicture
    end{document}


    enter image description here






    share|improve this answer



















    • 1





      psnpolygon(startindex,stopindex){nodenameprefix} creates a polygon based on a series of consecutive nodes.

      – Artificial Hairless Armpit
      Jan 8 at 17:08











    • I made the labels radially outward because it is good.

      – Artificial Hairless Armpit
      Jan 8 at 17:33














    4












    4








    4







    Trivial lines are intentionally ignored for the sake of fun.



    documentclass[pstricks,border=1cm,12pt]{standalone}
    usepackage{pst-eucl}

    begin{document}
    pspicture(-5,-5)(5,5)
    foreach i in {1,...,6}{%
    pstGeonode[PointName=A_i,PosAngle=thenumexpr(-i+1)*60+120](!5 pscalculate{(-i+1)*60+120} PtoC){Athenumexpri-1}
    pstGeonode[PointName=M_i,PosAngle=thenumexpr(-i+1)*60+90](!5 60 sin mul pscalculate{(-i+1)*60+90} PtoC){Mthenumexpri-1}
    pstGeonode[PointName=C_i,PosAngle=thenumexpr(-i+1)*60+90](!3 pscalculate{(-i+1)*60+90} PtoC){Cthenumexpri-1}
    }
    psnpolygon(0,5){A}
    psnpolygon(0,5){C}
    psset{PointName=none,PointSymbol=none}
    pstInterLL{C0}{M4}{C1}{M5}{N0}
    pnode(0,0){O}
    foreach i in {1,...,5}{pstRotation[RotAngle=thenumexpr60*i]{O}{N0}[Ni]}
    psnpolygon[fillstyle=solid,fillcolor=yellow](0,5){N}
    endpspicture
    end{document}


    enter image description here






    share|improve this answer













    Trivial lines are intentionally ignored for the sake of fun.



    documentclass[pstricks,border=1cm,12pt]{standalone}
    usepackage{pst-eucl}

    begin{document}
    pspicture(-5,-5)(5,5)
    foreach i in {1,...,6}{%
    pstGeonode[PointName=A_i,PosAngle=thenumexpr(-i+1)*60+120](!5 pscalculate{(-i+1)*60+120} PtoC){Athenumexpri-1}
    pstGeonode[PointName=M_i,PosAngle=thenumexpr(-i+1)*60+90](!5 60 sin mul pscalculate{(-i+1)*60+90} PtoC){Mthenumexpri-1}
    pstGeonode[PointName=C_i,PosAngle=thenumexpr(-i+1)*60+90](!3 pscalculate{(-i+1)*60+90} PtoC){Cthenumexpri-1}
    }
    psnpolygon(0,5){A}
    psnpolygon(0,5){C}
    psset{PointName=none,PointSymbol=none}
    pstInterLL{C0}{M4}{C1}{M5}{N0}
    pnode(0,0){O}
    foreach i in {1,...,5}{pstRotation[RotAngle=thenumexpr60*i]{O}{N0}[Ni]}
    psnpolygon[fillstyle=solid,fillcolor=yellow](0,5){N}
    endpspicture
    end{document}


    enter image description here







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered Jan 8 at 17:00









    Artificial Hairless ArmpitArtificial Hairless Armpit

    5,02711142




    5,02711142








    • 1





      psnpolygon(startindex,stopindex){nodenameprefix} creates a polygon based on a series of consecutive nodes.

      – Artificial Hairless Armpit
      Jan 8 at 17:08











    • I made the labels radially outward because it is good.

      – Artificial Hairless Armpit
      Jan 8 at 17:33














    • 1





      psnpolygon(startindex,stopindex){nodenameprefix} creates a polygon based on a series of consecutive nodes.

      – Artificial Hairless Armpit
      Jan 8 at 17:08











    • I made the labels radially outward because it is good.

      – Artificial Hairless Armpit
      Jan 8 at 17:33








    1




    1





    psnpolygon(startindex,stopindex){nodenameprefix} creates a polygon based on a series of consecutive nodes.

    – Artificial Hairless Armpit
    Jan 8 at 17:08





    psnpolygon(startindex,stopindex){nodenameprefix} creates a polygon based on a series of consecutive nodes.

    – Artificial Hairless Armpit
    Jan 8 at 17:08













    I made the labels radially outward because it is good.

    – Artificial Hairless Armpit
    Jan 8 at 17:33





    I made the labels radially outward because it is good.

    – Artificial Hairless Armpit
    Jan 8 at 17:33











    7














    This is in the case you do not want to compute things by yourself and let TikZ find the contour.



    documentclass[12pt,border=15pt]{standalone}
    usepackage{tikz}
    usetikzlibrary{intersections,backgrounds}
    begin{document}
    begin{tikzpicture}
    defr{3}
    pgfmathsetmacro{rm}{r *sqrt(3)/2}
    pgfmathsetmacro{rc}{rm *2/3}
    foreach i in {1,...,6}{
    draw (180-60*i:r) coordinate[label=180-60*i:$A_{i}$] (ai) --(120-60*i:r);
    draw (180-60*i:r)--(60-60*i:r);
    draw[name path global=i-path] (150-60*i:rm) coordinate[label=150-60*i:$M_{i}$] (mi) --(30-60*i:rc);
    draw (150-60*i:rc) coordinate[label=150-60*i:$C_{i}$] (ci) --(90-60*i:rc);
    fill[black] (ai) circle (0.05);
    fill[black] (mi) circle (0.05);
    fill[black] (ci) circle (0.05);
    }
    foreach i [remember=i as j (initially 6)] in {1,...,6}
    {
    path[name intersections={of=i-path and j-path,by=i-i}];
    }
    begin{scope}[on background layer]
    fill[blue] plot[variable=i,samples=6,domain=1:6] (i-i);
    end{scope}
    end{tikzpicture}
    end{document}


    enter image description here






    share|improve this answer





















    • 2





      Making radially outward labels might make it look nicer. :-)

      – Artificial Hairless Armpit
      Jan 8 at 18:25






    • 1





      @GodMustBeCrazy You're right. Thanks! (Really easy to implement with TikZ.)

      – marmot
      Jan 8 at 18:29
















    7














    This is in the case you do not want to compute things by yourself and let TikZ find the contour.



    documentclass[12pt,border=15pt]{standalone}
    usepackage{tikz}
    usetikzlibrary{intersections,backgrounds}
    begin{document}
    begin{tikzpicture}
    defr{3}
    pgfmathsetmacro{rm}{r *sqrt(3)/2}
    pgfmathsetmacro{rc}{rm *2/3}
    foreach i in {1,...,6}{
    draw (180-60*i:r) coordinate[label=180-60*i:$A_{i}$] (ai) --(120-60*i:r);
    draw (180-60*i:r)--(60-60*i:r);
    draw[name path global=i-path] (150-60*i:rm) coordinate[label=150-60*i:$M_{i}$] (mi) --(30-60*i:rc);
    draw (150-60*i:rc) coordinate[label=150-60*i:$C_{i}$] (ci) --(90-60*i:rc);
    fill[black] (ai) circle (0.05);
    fill[black] (mi) circle (0.05);
    fill[black] (ci) circle (0.05);
    }
    foreach i [remember=i as j (initially 6)] in {1,...,6}
    {
    path[name intersections={of=i-path and j-path,by=i-i}];
    }
    begin{scope}[on background layer]
    fill[blue] plot[variable=i,samples=6,domain=1:6] (i-i);
    end{scope}
    end{tikzpicture}
    end{document}


    enter image description here






    share|improve this answer





















    • 2





      Making radially outward labels might make it look nicer. :-)

      – Artificial Hairless Armpit
      Jan 8 at 18:25






    • 1





      @GodMustBeCrazy You're right. Thanks! (Really easy to implement with TikZ.)

      – marmot
      Jan 8 at 18:29














    7












    7








    7







    This is in the case you do not want to compute things by yourself and let TikZ find the contour.



    documentclass[12pt,border=15pt]{standalone}
    usepackage{tikz}
    usetikzlibrary{intersections,backgrounds}
    begin{document}
    begin{tikzpicture}
    defr{3}
    pgfmathsetmacro{rm}{r *sqrt(3)/2}
    pgfmathsetmacro{rc}{rm *2/3}
    foreach i in {1,...,6}{
    draw (180-60*i:r) coordinate[label=180-60*i:$A_{i}$] (ai) --(120-60*i:r);
    draw (180-60*i:r)--(60-60*i:r);
    draw[name path global=i-path] (150-60*i:rm) coordinate[label=150-60*i:$M_{i}$] (mi) --(30-60*i:rc);
    draw (150-60*i:rc) coordinate[label=150-60*i:$C_{i}$] (ci) --(90-60*i:rc);
    fill[black] (ai) circle (0.05);
    fill[black] (mi) circle (0.05);
    fill[black] (ci) circle (0.05);
    }
    foreach i [remember=i as j (initially 6)] in {1,...,6}
    {
    path[name intersections={of=i-path and j-path,by=i-i}];
    }
    begin{scope}[on background layer]
    fill[blue] plot[variable=i,samples=6,domain=1:6] (i-i);
    end{scope}
    end{tikzpicture}
    end{document}


    enter image description here






    share|improve this answer















    This is in the case you do not want to compute things by yourself and let TikZ find the contour.



    documentclass[12pt,border=15pt]{standalone}
    usepackage{tikz}
    usetikzlibrary{intersections,backgrounds}
    begin{document}
    begin{tikzpicture}
    defr{3}
    pgfmathsetmacro{rm}{r *sqrt(3)/2}
    pgfmathsetmacro{rc}{rm *2/3}
    foreach i in {1,...,6}{
    draw (180-60*i:r) coordinate[label=180-60*i:$A_{i}$] (ai) --(120-60*i:r);
    draw (180-60*i:r)--(60-60*i:r);
    draw[name path global=i-path] (150-60*i:rm) coordinate[label=150-60*i:$M_{i}$] (mi) --(30-60*i:rc);
    draw (150-60*i:rc) coordinate[label=150-60*i:$C_{i}$] (ci) --(90-60*i:rc);
    fill[black] (ai) circle (0.05);
    fill[black] (mi) circle (0.05);
    fill[black] (ci) circle (0.05);
    }
    foreach i [remember=i as j (initially 6)] in {1,...,6}
    {
    path[name intersections={of=i-path and j-path,by=i-i}];
    }
    begin{scope}[on background layer]
    fill[blue] plot[variable=i,samples=6,domain=1:6] (i-i);
    end{scope}
    end{tikzpicture}
    end{document}


    enter image description here







    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited Jan 8 at 18:29

























    answered Jan 8 at 17:31









    marmotmarmot

    113k5145275




    113k5145275








    • 2





      Making radially outward labels might make it look nicer. :-)

      – Artificial Hairless Armpit
      Jan 8 at 18:25






    • 1





      @GodMustBeCrazy You're right. Thanks! (Really easy to implement with TikZ.)

      – marmot
      Jan 8 at 18:29














    • 2





      Making radially outward labels might make it look nicer. :-)

      – Artificial Hairless Armpit
      Jan 8 at 18:25






    • 1





      @GodMustBeCrazy You're right. Thanks! (Really easy to implement with TikZ.)

      – marmot
      Jan 8 at 18:29








    2




    2





    Making radially outward labels might make it look nicer. :-)

    – Artificial Hairless Armpit
    Jan 8 at 18:25





    Making radially outward labels might make it look nicer. :-)

    – Artificial Hairless Armpit
    Jan 8 at 18:25




    1




    1





    @GodMustBeCrazy You're right. Thanks! (Really easy to implement with TikZ.)

    – marmot
    Jan 8 at 18:29





    @GodMustBeCrazy You're right. Thanks! (Really easy to implement with TikZ.)

    – marmot
    Jan 8 at 18:29











    6














    The shapes library can easily make hexagons:



    documentclass[12pt,border=15pt]{standalone}
    usepackage{tikz}
    usetikzlibrary{shapes}
    begin{document}
    begin{tikzpicture}
    node[fill=green!50!black,regular polygon, regular polygon sides=6,
    inner sep=0.73cm,rotate=-7] at (0,0) {};
    defr{3}
    pgfmathsetmacro{rm}{r *sqrt(3)/2}
    pgfmathsetmacro{rc}{rm *2/3}
    foreach i in {1,...,6}{
    draw (180-60*i:r) coordinate[label=$A_{i}$] (ai) --(120-60*i:r);
    draw (180-60*i:r)--(60-60*i:r);
    draw (150-60*i:rm) coordinate[label=$M_{i}$] (mi) --(30-60*i:rc);
    draw (150-60*i:rc) coordinate[label=$C_{i}$] (ci) --(90-60*i:rc);
    fill[black] (ai) circle (0.05);
    fill[black] (mi) circle (0.05);
    fill[black] (ci) circle (0.05);
    }
    end{tikzpicture}
    end{document}


    enter image description here






    share|improve this answer




























      6














      The shapes library can easily make hexagons:



      documentclass[12pt,border=15pt]{standalone}
      usepackage{tikz}
      usetikzlibrary{shapes}
      begin{document}
      begin{tikzpicture}
      node[fill=green!50!black,regular polygon, regular polygon sides=6,
      inner sep=0.73cm,rotate=-7] at (0,0) {};
      defr{3}
      pgfmathsetmacro{rm}{r *sqrt(3)/2}
      pgfmathsetmacro{rc}{rm *2/3}
      foreach i in {1,...,6}{
      draw (180-60*i:r) coordinate[label=$A_{i}$] (ai) --(120-60*i:r);
      draw (180-60*i:r)--(60-60*i:r);
      draw (150-60*i:rm) coordinate[label=$M_{i}$] (mi) --(30-60*i:rc);
      draw (150-60*i:rc) coordinate[label=$C_{i}$] (ci) --(90-60*i:rc);
      fill[black] (ai) circle (0.05);
      fill[black] (mi) circle (0.05);
      fill[black] (ci) circle (0.05);
      }
      end{tikzpicture}
      end{document}


      enter image description here






      share|improve this answer


























        6












        6








        6







        The shapes library can easily make hexagons:



        documentclass[12pt,border=15pt]{standalone}
        usepackage{tikz}
        usetikzlibrary{shapes}
        begin{document}
        begin{tikzpicture}
        node[fill=green!50!black,regular polygon, regular polygon sides=6,
        inner sep=0.73cm,rotate=-7] at (0,0) {};
        defr{3}
        pgfmathsetmacro{rm}{r *sqrt(3)/2}
        pgfmathsetmacro{rc}{rm *2/3}
        foreach i in {1,...,6}{
        draw (180-60*i:r) coordinate[label=$A_{i}$] (ai) --(120-60*i:r);
        draw (180-60*i:r)--(60-60*i:r);
        draw (150-60*i:rm) coordinate[label=$M_{i}$] (mi) --(30-60*i:rc);
        draw (150-60*i:rc) coordinate[label=$C_{i}$] (ci) --(90-60*i:rc);
        fill[black] (ai) circle (0.05);
        fill[black] (mi) circle (0.05);
        fill[black] (ci) circle (0.05);
        }
        end{tikzpicture}
        end{document}


        enter image description here






        share|improve this answer













        The shapes library can easily make hexagons:



        documentclass[12pt,border=15pt]{standalone}
        usepackage{tikz}
        usetikzlibrary{shapes}
        begin{document}
        begin{tikzpicture}
        node[fill=green!50!black,regular polygon, regular polygon sides=6,
        inner sep=0.73cm,rotate=-7] at (0,0) {};
        defr{3}
        pgfmathsetmacro{rm}{r *sqrt(3)/2}
        pgfmathsetmacro{rc}{rm *2/3}
        foreach i in {1,...,6}{
        draw (180-60*i:r) coordinate[label=$A_{i}$] (ai) --(120-60*i:r);
        draw (180-60*i:r)--(60-60*i:r);
        draw (150-60*i:rm) coordinate[label=$M_{i}$] (mi) --(30-60*i:rc);
        draw (150-60*i:rc) coordinate[label=$C_{i}$] (ci) --(90-60*i:rc);
        fill[black] (ai) circle (0.05);
        fill[black] (mi) circle (0.05);
        fill[black] (ci) circle (0.05);
        }
        end{tikzpicture}
        end{document}


        enter image description here







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Jan 8 at 17:12







        user177954






























            5














            Can be simplified with some psforeach



            documentclass[12pt,border=15pt]{standalone}
            usepackage{pst-eucl}
            begin{document}
            begin{pspicture}(-4,-3.5)(4,3.5)
            degrees[6]
            multido{iA=1+1}{6}{pnode(3;iA){AiA}uput[iA]{0}(AiA){$A_iA$}}
            multido{iA=1+1,iB=2+1}{5}{psLNode(AiA)(AiB){0.5}{MiA}uput[iA]{0}(MiA){$M_iA$}}
            psLNode(A6)(A1){0.5}{M6}uput[6]{0}(M6){$M_6$}
            pspolygon[linejoin=2](A1)(A3)(A5)(A6)(A2)(A4)(A6)(A5)(A4)(A3)(A2)(A1)(A5)(A6)
            multido{iA=1+1,iB=3+1}{4}{%
            psLNode(AiA)(AiB){0.333}{CiA}qdisk(CiA){2pt}%
            uput[iA]{0}(CiA){$C_iA$}}
            psLNode(A5)(A1){0.333}{C5}qdisk(C5){2pt}uput[5]{0}(C5){$C_5$}
            psLNode(A6)(A2){0.333}{C6}qdisk(C6){2pt}uput[6]{0}(C6){$C_6$}
            multido{iA=3+1,iB=1+1}{4}{psline(MiA)(CiB)}
            psline(M1)(C5)psline(M2)(C6)
            psset{PointName=none,PointSymbol=none}
            pstInterLL{M1}{C5}{M2}{C6}{i1} pstInterLL{M2}{C6}{M3}{C1}{i2}
            pstInterLL{M3}{C1}{M4}{C2}{i3} pstInterLL{M4}{C2}{M5}{C3}{i4}
            pstInterLL{M5}{C3}{M6}{C4}{i5} pstInterLL{M6}{C4}{M1}{C5}{i6}
            pspolygon*[linecolor=blue](i1)(i2)(i3)(i4)(i5)(i6)
            end{pspicture}

            end{document}


            enter image description here



            and a shorter version without intersections:



            begin{pspicture}(-4,-3.5)(4,3.5)
            degrees[6]
            multido{iA=1+1}{6}{pnode(3;iA){AiA}uput[iA]{0}(AiA){$A_iA$}}
            multido{iA=1+1,iB=2+1}{5}{psLNode(AiA)(AiB){0.5}{MiA}uput[iA]{0}(MiA){$M_iA$}}
            psLNode(A6)(A1){0.5}{M6}uput[6]{0}(M6){$M_6$}
            pspolygon(A1)(A2)(A3)(A4)(A5)(A6)pspolygon(A1)(A3)(A5)pspolygon(A2)(A4)(A6)
            multido{iA=1+1,iB=3+1}{4}{%
            psLNode(AiA)(AiB){0.333}{CiA}qdisk(CiA){2pt}%
            uput[iA]{0}(CiA){$C_iA$}}
            psLNode(A5)(A1){0.333}{C5}qdisk(C5){2pt}uput[5]{0}(C5){$C_5$}
            psLNode(A6)(A2){0.333}{C6}qdisk(C6){2pt}uput[6]{0}(C6){$C_6$}
            multido{iA=3+1,iB=1+1}{4}{psline(MiA)(CiB)}
            psline(M1)(C5)psline(M2)(C6)
            pspolygon*[linecolor=red!40]%
            (1.19;0.9)(1.19;1.9)(1.19;2.9)(1.19;3.9)(1.19;4.9)(1.19;5.9)
            end{pspicture}





            share|improve this answer


























            • OP's node names are placed clockwise and you forgot the line A2-A4.

              – Artificial Hairless Armpit
              Jan 10 at 2:32
















            5














            Can be simplified with some psforeach



            documentclass[12pt,border=15pt]{standalone}
            usepackage{pst-eucl}
            begin{document}
            begin{pspicture}(-4,-3.5)(4,3.5)
            degrees[6]
            multido{iA=1+1}{6}{pnode(3;iA){AiA}uput[iA]{0}(AiA){$A_iA$}}
            multido{iA=1+1,iB=2+1}{5}{psLNode(AiA)(AiB){0.5}{MiA}uput[iA]{0}(MiA){$M_iA$}}
            psLNode(A6)(A1){0.5}{M6}uput[6]{0}(M6){$M_6$}
            pspolygon[linejoin=2](A1)(A3)(A5)(A6)(A2)(A4)(A6)(A5)(A4)(A3)(A2)(A1)(A5)(A6)
            multido{iA=1+1,iB=3+1}{4}{%
            psLNode(AiA)(AiB){0.333}{CiA}qdisk(CiA){2pt}%
            uput[iA]{0}(CiA){$C_iA$}}
            psLNode(A5)(A1){0.333}{C5}qdisk(C5){2pt}uput[5]{0}(C5){$C_5$}
            psLNode(A6)(A2){0.333}{C6}qdisk(C6){2pt}uput[6]{0}(C6){$C_6$}
            multido{iA=3+1,iB=1+1}{4}{psline(MiA)(CiB)}
            psline(M1)(C5)psline(M2)(C6)
            psset{PointName=none,PointSymbol=none}
            pstInterLL{M1}{C5}{M2}{C6}{i1} pstInterLL{M2}{C6}{M3}{C1}{i2}
            pstInterLL{M3}{C1}{M4}{C2}{i3} pstInterLL{M4}{C2}{M5}{C3}{i4}
            pstInterLL{M5}{C3}{M6}{C4}{i5} pstInterLL{M6}{C4}{M1}{C5}{i6}
            pspolygon*[linecolor=blue](i1)(i2)(i3)(i4)(i5)(i6)
            end{pspicture}

            end{document}


            enter image description here



            and a shorter version without intersections:



            begin{pspicture}(-4,-3.5)(4,3.5)
            degrees[6]
            multido{iA=1+1}{6}{pnode(3;iA){AiA}uput[iA]{0}(AiA){$A_iA$}}
            multido{iA=1+1,iB=2+1}{5}{psLNode(AiA)(AiB){0.5}{MiA}uput[iA]{0}(MiA){$M_iA$}}
            psLNode(A6)(A1){0.5}{M6}uput[6]{0}(M6){$M_6$}
            pspolygon(A1)(A2)(A3)(A4)(A5)(A6)pspolygon(A1)(A3)(A5)pspolygon(A2)(A4)(A6)
            multido{iA=1+1,iB=3+1}{4}{%
            psLNode(AiA)(AiB){0.333}{CiA}qdisk(CiA){2pt}%
            uput[iA]{0}(CiA){$C_iA$}}
            psLNode(A5)(A1){0.333}{C5}qdisk(C5){2pt}uput[5]{0}(C5){$C_5$}
            psLNode(A6)(A2){0.333}{C6}qdisk(C6){2pt}uput[6]{0}(C6){$C_6$}
            multido{iA=3+1,iB=1+1}{4}{psline(MiA)(CiB)}
            psline(M1)(C5)psline(M2)(C6)
            pspolygon*[linecolor=red!40]%
            (1.19;0.9)(1.19;1.9)(1.19;2.9)(1.19;3.9)(1.19;4.9)(1.19;5.9)
            end{pspicture}





            share|improve this answer


























            • OP's node names are placed clockwise and you forgot the line A2-A4.

              – Artificial Hairless Armpit
              Jan 10 at 2:32














            5












            5








            5







            Can be simplified with some psforeach



            documentclass[12pt,border=15pt]{standalone}
            usepackage{pst-eucl}
            begin{document}
            begin{pspicture}(-4,-3.5)(4,3.5)
            degrees[6]
            multido{iA=1+1}{6}{pnode(3;iA){AiA}uput[iA]{0}(AiA){$A_iA$}}
            multido{iA=1+1,iB=2+1}{5}{psLNode(AiA)(AiB){0.5}{MiA}uput[iA]{0}(MiA){$M_iA$}}
            psLNode(A6)(A1){0.5}{M6}uput[6]{0}(M6){$M_6$}
            pspolygon[linejoin=2](A1)(A3)(A5)(A6)(A2)(A4)(A6)(A5)(A4)(A3)(A2)(A1)(A5)(A6)
            multido{iA=1+1,iB=3+1}{4}{%
            psLNode(AiA)(AiB){0.333}{CiA}qdisk(CiA){2pt}%
            uput[iA]{0}(CiA){$C_iA$}}
            psLNode(A5)(A1){0.333}{C5}qdisk(C5){2pt}uput[5]{0}(C5){$C_5$}
            psLNode(A6)(A2){0.333}{C6}qdisk(C6){2pt}uput[6]{0}(C6){$C_6$}
            multido{iA=3+1,iB=1+1}{4}{psline(MiA)(CiB)}
            psline(M1)(C5)psline(M2)(C6)
            psset{PointName=none,PointSymbol=none}
            pstInterLL{M1}{C5}{M2}{C6}{i1} pstInterLL{M2}{C6}{M3}{C1}{i2}
            pstInterLL{M3}{C1}{M4}{C2}{i3} pstInterLL{M4}{C2}{M5}{C3}{i4}
            pstInterLL{M5}{C3}{M6}{C4}{i5} pstInterLL{M6}{C4}{M1}{C5}{i6}
            pspolygon*[linecolor=blue](i1)(i2)(i3)(i4)(i5)(i6)
            end{pspicture}

            end{document}


            enter image description here



            and a shorter version without intersections:



            begin{pspicture}(-4,-3.5)(4,3.5)
            degrees[6]
            multido{iA=1+1}{6}{pnode(3;iA){AiA}uput[iA]{0}(AiA){$A_iA$}}
            multido{iA=1+1,iB=2+1}{5}{psLNode(AiA)(AiB){0.5}{MiA}uput[iA]{0}(MiA){$M_iA$}}
            psLNode(A6)(A1){0.5}{M6}uput[6]{0}(M6){$M_6$}
            pspolygon(A1)(A2)(A3)(A4)(A5)(A6)pspolygon(A1)(A3)(A5)pspolygon(A2)(A4)(A6)
            multido{iA=1+1,iB=3+1}{4}{%
            psLNode(AiA)(AiB){0.333}{CiA}qdisk(CiA){2pt}%
            uput[iA]{0}(CiA){$C_iA$}}
            psLNode(A5)(A1){0.333}{C5}qdisk(C5){2pt}uput[5]{0}(C5){$C_5$}
            psLNode(A6)(A2){0.333}{C6}qdisk(C6){2pt}uput[6]{0}(C6){$C_6$}
            multido{iA=3+1,iB=1+1}{4}{psline(MiA)(CiB)}
            psline(M1)(C5)psline(M2)(C6)
            pspolygon*[linecolor=red!40]%
            (1.19;0.9)(1.19;1.9)(1.19;2.9)(1.19;3.9)(1.19;4.9)(1.19;5.9)
            end{pspicture}





            share|improve this answer















            Can be simplified with some psforeach



            documentclass[12pt,border=15pt]{standalone}
            usepackage{pst-eucl}
            begin{document}
            begin{pspicture}(-4,-3.5)(4,3.5)
            degrees[6]
            multido{iA=1+1}{6}{pnode(3;iA){AiA}uput[iA]{0}(AiA){$A_iA$}}
            multido{iA=1+1,iB=2+1}{5}{psLNode(AiA)(AiB){0.5}{MiA}uput[iA]{0}(MiA){$M_iA$}}
            psLNode(A6)(A1){0.5}{M6}uput[6]{0}(M6){$M_6$}
            pspolygon[linejoin=2](A1)(A3)(A5)(A6)(A2)(A4)(A6)(A5)(A4)(A3)(A2)(A1)(A5)(A6)
            multido{iA=1+1,iB=3+1}{4}{%
            psLNode(AiA)(AiB){0.333}{CiA}qdisk(CiA){2pt}%
            uput[iA]{0}(CiA){$C_iA$}}
            psLNode(A5)(A1){0.333}{C5}qdisk(C5){2pt}uput[5]{0}(C5){$C_5$}
            psLNode(A6)(A2){0.333}{C6}qdisk(C6){2pt}uput[6]{0}(C6){$C_6$}
            multido{iA=3+1,iB=1+1}{4}{psline(MiA)(CiB)}
            psline(M1)(C5)psline(M2)(C6)
            psset{PointName=none,PointSymbol=none}
            pstInterLL{M1}{C5}{M2}{C6}{i1} pstInterLL{M2}{C6}{M3}{C1}{i2}
            pstInterLL{M3}{C1}{M4}{C2}{i3} pstInterLL{M4}{C2}{M5}{C3}{i4}
            pstInterLL{M5}{C3}{M6}{C4}{i5} pstInterLL{M6}{C4}{M1}{C5}{i6}
            pspolygon*[linecolor=blue](i1)(i2)(i3)(i4)(i5)(i6)
            end{pspicture}

            end{document}


            enter image description here



            and a shorter version without intersections:



            begin{pspicture}(-4,-3.5)(4,3.5)
            degrees[6]
            multido{iA=1+1}{6}{pnode(3;iA){AiA}uput[iA]{0}(AiA){$A_iA$}}
            multido{iA=1+1,iB=2+1}{5}{psLNode(AiA)(AiB){0.5}{MiA}uput[iA]{0}(MiA){$M_iA$}}
            psLNode(A6)(A1){0.5}{M6}uput[6]{0}(M6){$M_6$}
            pspolygon(A1)(A2)(A3)(A4)(A5)(A6)pspolygon(A1)(A3)(A5)pspolygon(A2)(A4)(A6)
            multido{iA=1+1,iB=3+1}{4}{%
            psLNode(AiA)(AiB){0.333}{CiA}qdisk(CiA){2pt}%
            uput[iA]{0}(CiA){$C_iA$}}
            psLNode(A5)(A1){0.333}{C5}qdisk(C5){2pt}uput[5]{0}(C5){$C_5$}
            psLNode(A6)(A2){0.333}{C6}qdisk(C6){2pt}uput[6]{0}(C6){$C_6$}
            multido{iA=3+1,iB=1+1}{4}{psline(MiA)(CiB)}
            psline(M1)(C5)psline(M2)(C6)
            pspolygon*[linecolor=red!40]%
            (1.19;0.9)(1.19;1.9)(1.19;2.9)(1.19;3.9)(1.19;4.9)(1.19;5.9)
            end{pspicture}






            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited Jan 10 at 7:18

























            answered Jan 8 at 19:23







            user2478




















            • OP's node names are placed clockwise and you forgot the line A2-A4.

              – Artificial Hairless Armpit
              Jan 10 at 2:32



















            • OP's node names are placed clockwise and you forgot the line A2-A4.

              – Artificial Hairless Armpit
              Jan 10 at 2:32

















            OP's node names are placed clockwise and you forgot the line A2-A4.

            – Artificial Hairless Armpit
            Jan 10 at 2:32





            OP's node names are placed clockwise and you forgot the line A2-A4.

            – Artificial Hairless Armpit
            Jan 10 at 2:32


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f469184%2fhow-to-fill-a-hexagon-with-vertices-obtained-from-intersecting-lines%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna