Prove $(b-a) cdot int_a^b alpha(x) beta(x) dx ge int_a^b alpha(x) dx cdot int_a^b beta(x) dx$.
Suppose $alpha: [a, b] to (-infty, infty)$ and $beta:[a,b] to (-infty, infty)$ are both nondecreasing. Then,
$$(b-a) cdot int_a^b alpha(x) beta(x) dx ge int_a^b alpha(x) dx cdot int_a^b beta(x) dx.$$
This is Lemma A.3 from Robson, A.J., 1992. Status, the distribution of wealth, private and social attitudes to risk. Econometrica: Journal of the Econometric Society, pp.837-857.
The author omit this proof since it is straightforward, but I am struggling to prove this. I appreciate if you give some help, and please tell me if more context is needed.
integration economics
add a comment |
Suppose $alpha: [a, b] to (-infty, infty)$ and $beta:[a,b] to (-infty, infty)$ are both nondecreasing. Then,
$$(b-a) cdot int_a^b alpha(x) beta(x) dx ge int_a^b alpha(x) dx cdot int_a^b beta(x) dx.$$
This is Lemma A.3 from Robson, A.J., 1992. Status, the distribution of wealth, private and social attitudes to risk. Econometrica: Journal of the Econometric Society, pp.837-857.
The author omit this proof since it is straightforward, but I am struggling to prove this. I appreciate if you give some help, and please tell me if more context is needed.
integration economics
add a comment |
Suppose $alpha: [a, b] to (-infty, infty)$ and $beta:[a,b] to (-infty, infty)$ are both nondecreasing. Then,
$$(b-a) cdot int_a^b alpha(x) beta(x) dx ge int_a^b alpha(x) dx cdot int_a^b beta(x) dx.$$
This is Lemma A.3 from Robson, A.J., 1992. Status, the distribution of wealth, private and social attitudes to risk. Econometrica: Journal of the Econometric Society, pp.837-857.
The author omit this proof since it is straightforward, but I am struggling to prove this. I appreciate if you give some help, and please tell me if more context is needed.
integration economics
Suppose $alpha: [a, b] to (-infty, infty)$ and $beta:[a,b] to (-infty, infty)$ are both nondecreasing. Then,
$$(b-a) cdot int_a^b alpha(x) beta(x) dx ge int_a^b alpha(x) dx cdot int_a^b beta(x) dx.$$
This is Lemma A.3 from Robson, A.J., 1992. Status, the distribution of wealth, private and social attitudes to risk. Econometrica: Journal of the Econometric Society, pp.837-857.
The author omit this proof since it is straightforward, but I am struggling to prove this. I appreciate if you give some help, and please tell me if more context is needed.
integration economics
integration economics
edited Dec 10 '18 at 3:11
the_fox
2,43411431
2,43411431
asked Dec 10 '18 at 3:00
Daeseon
818311
818311
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Proof.
Let $D = [a,b]^2$. Then
$$
int_a^b 1 int_a^b alphacdot beta- int_a^b alpha int_a^b betastackrel{(1)}= iint_D( alpha(y)beta(y)-alpha(x)beta(y) ),mathrm dx ,mathrm dy stackrel{(2)}= iint_D (alpha (x)beta(x)-alpha(y)beta(x)),mathrm dx,mathrm dy = frac 12 iint_D (alpha(x)beta(x)+alpha(y)beta(y)-alpha (x)beta(y)-alpha(y)beta(x)) ,mathrm dx ,mathrm dy = frac 12 iint_D (alpha(x)-alpha(y))(beta(x)-beta(y)),mathrm dx,mathrm dy geqslant 0,
$$
since both $alpha, beta$ are nondecreasing, i.e. $(alpha(x) - alpha (y)), (beta(x)- beta(y))$ have the same sign, equivalently $(alpha(x)-alpha(y))(beta(x)-beta(y)) geqslant 0$ for all $(x,y)in [a,b]^2$.
EXPLANATION
- For two functions $f,g colon [a,b] to mathbb R$,
$$
int_a^b f int_a^b g = int_a^b f(x),mathrm dx int_a^b g(x),mathrm dx = int_a^b f(x),mathrm dx int_a^b g(y),mathrm dy ;[text{change the integration parameter}] = iint_D f(x)g(y),mathrm dx ,mathrm dy ;[text{transfer to a double integral}].
$$
Hence the $(1)$. - Use a different parameter, we have
$$
int_a^b f int_a^b g = int_a^b f(y),mathrm dy int_a^b g(x), mathrm dx = iint_D f(y)g(x),mathrm dx ,mathrm dy.
$$
Go back to the question, we have
$$
(b-a)int_a^b alphacdot beta - int_a^b alpha int_a^b beta = iint_D (alpha(y)beta(y) - alpha(x)beta(y)),
$$
also
$$
(b-a)int_a^b alphacdot beta - int_a^b alpha int_a^b beta = iint_D (alpha(x)beta(x) - alpha(y)beta(x)),
$$
add these two equations we get the $(2)$.
Thanks for your answer. Could you explain how the first and second equality holds?
– Daeseon
Dec 10 '18 at 3:25
@Daeseon I add the explanation. Feel free to check it.
– xbh
Dec 10 '18 at 3:43
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033379%2fprove-b-a-cdot-int-ab-alphax-betax-dx-ge-int-ab-alphax-dx-cdo%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Proof.
Let $D = [a,b]^2$. Then
$$
int_a^b 1 int_a^b alphacdot beta- int_a^b alpha int_a^b betastackrel{(1)}= iint_D( alpha(y)beta(y)-alpha(x)beta(y) ),mathrm dx ,mathrm dy stackrel{(2)}= iint_D (alpha (x)beta(x)-alpha(y)beta(x)),mathrm dx,mathrm dy = frac 12 iint_D (alpha(x)beta(x)+alpha(y)beta(y)-alpha (x)beta(y)-alpha(y)beta(x)) ,mathrm dx ,mathrm dy = frac 12 iint_D (alpha(x)-alpha(y))(beta(x)-beta(y)),mathrm dx,mathrm dy geqslant 0,
$$
since both $alpha, beta$ are nondecreasing, i.e. $(alpha(x) - alpha (y)), (beta(x)- beta(y))$ have the same sign, equivalently $(alpha(x)-alpha(y))(beta(x)-beta(y)) geqslant 0$ for all $(x,y)in [a,b]^2$.
EXPLANATION
- For two functions $f,g colon [a,b] to mathbb R$,
$$
int_a^b f int_a^b g = int_a^b f(x),mathrm dx int_a^b g(x),mathrm dx = int_a^b f(x),mathrm dx int_a^b g(y),mathrm dy ;[text{change the integration parameter}] = iint_D f(x)g(y),mathrm dx ,mathrm dy ;[text{transfer to a double integral}].
$$
Hence the $(1)$. - Use a different parameter, we have
$$
int_a^b f int_a^b g = int_a^b f(y),mathrm dy int_a^b g(x), mathrm dx = iint_D f(y)g(x),mathrm dx ,mathrm dy.
$$
Go back to the question, we have
$$
(b-a)int_a^b alphacdot beta - int_a^b alpha int_a^b beta = iint_D (alpha(y)beta(y) - alpha(x)beta(y)),
$$
also
$$
(b-a)int_a^b alphacdot beta - int_a^b alpha int_a^b beta = iint_D (alpha(x)beta(x) - alpha(y)beta(x)),
$$
add these two equations we get the $(2)$.
Thanks for your answer. Could you explain how the first and second equality holds?
– Daeseon
Dec 10 '18 at 3:25
@Daeseon I add the explanation. Feel free to check it.
– xbh
Dec 10 '18 at 3:43
add a comment |
Proof.
Let $D = [a,b]^2$. Then
$$
int_a^b 1 int_a^b alphacdot beta- int_a^b alpha int_a^b betastackrel{(1)}= iint_D( alpha(y)beta(y)-alpha(x)beta(y) ),mathrm dx ,mathrm dy stackrel{(2)}= iint_D (alpha (x)beta(x)-alpha(y)beta(x)),mathrm dx,mathrm dy = frac 12 iint_D (alpha(x)beta(x)+alpha(y)beta(y)-alpha (x)beta(y)-alpha(y)beta(x)) ,mathrm dx ,mathrm dy = frac 12 iint_D (alpha(x)-alpha(y))(beta(x)-beta(y)),mathrm dx,mathrm dy geqslant 0,
$$
since both $alpha, beta$ are nondecreasing, i.e. $(alpha(x) - alpha (y)), (beta(x)- beta(y))$ have the same sign, equivalently $(alpha(x)-alpha(y))(beta(x)-beta(y)) geqslant 0$ for all $(x,y)in [a,b]^2$.
EXPLANATION
- For two functions $f,g colon [a,b] to mathbb R$,
$$
int_a^b f int_a^b g = int_a^b f(x),mathrm dx int_a^b g(x),mathrm dx = int_a^b f(x),mathrm dx int_a^b g(y),mathrm dy ;[text{change the integration parameter}] = iint_D f(x)g(y),mathrm dx ,mathrm dy ;[text{transfer to a double integral}].
$$
Hence the $(1)$. - Use a different parameter, we have
$$
int_a^b f int_a^b g = int_a^b f(y),mathrm dy int_a^b g(x), mathrm dx = iint_D f(y)g(x),mathrm dx ,mathrm dy.
$$
Go back to the question, we have
$$
(b-a)int_a^b alphacdot beta - int_a^b alpha int_a^b beta = iint_D (alpha(y)beta(y) - alpha(x)beta(y)),
$$
also
$$
(b-a)int_a^b alphacdot beta - int_a^b alpha int_a^b beta = iint_D (alpha(x)beta(x) - alpha(y)beta(x)),
$$
add these two equations we get the $(2)$.
Thanks for your answer. Could you explain how the first and second equality holds?
– Daeseon
Dec 10 '18 at 3:25
@Daeseon I add the explanation. Feel free to check it.
– xbh
Dec 10 '18 at 3:43
add a comment |
Proof.
Let $D = [a,b]^2$. Then
$$
int_a^b 1 int_a^b alphacdot beta- int_a^b alpha int_a^b betastackrel{(1)}= iint_D( alpha(y)beta(y)-alpha(x)beta(y) ),mathrm dx ,mathrm dy stackrel{(2)}= iint_D (alpha (x)beta(x)-alpha(y)beta(x)),mathrm dx,mathrm dy = frac 12 iint_D (alpha(x)beta(x)+alpha(y)beta(y)-alpha (x)beta(y)-alpha(y)beta(x)) ,mathrm dx ,mathrm dy = frac 12 iint_D (alpha(x)-alpha(y))(beta(x)-beta(y)),mathrm dx,mathrm dy geqslant 0,
$$
since both $alpha, beta$ are nondecreasing, i.e. $(alpha(x) - alpha (y)), (beta(x)- beta(y))$ have the same sign, equivalently $(alpha(x)-alpha(y))(beta(x)-beta(y)) geqslant 0$ for all $(x,y)in [a,b]^2$.
EXPLANATION
- For two functions $f,g colon [a,b] to mathbb R$,
$$
int_a^b f int_a^b g = int_a^b f(x),mathrm dx int_a^b g(x),mathrm dx = int_a^b f(x),mathrm dx int_a^b g(y),mathrm dy ;[text{change the integration parameter}] = iint_D f(x)g(y),mathrm dx ,mathrm dy ;[text{transfer to a double integral}].
$$
Hence the $(1)$. - Use a different parameter, we have
$$
int_a^b f int_a^b g = int_a^b f(y),mathrm dy int_a^b g(x), mathrm dx = iint_D f(y)g(x),mathrm dx ,mathrm dy.
$$
Go back to the question, we have
$$
(b-a)int_a^b alphacdot beta - int_a^b alpha int_a^b beta = iint_D (alpha(y)beta(y) - alpha(x)beta(y)),
$$
also
$$
(b-a)int_a^b alphacdot beta - int_a^b alpha int_a^b beta = iint_D (alpha(x)beta(x) - alpha(y)beta(x)),
$$
add these two equations we get the $(2)$.
Proof.
Let $D = [a,b]^2$. Then
$$
int_a^b 1 int_a^b alphacdot beta- int_a^b alpha int_a^b betastackrel{(1)}= iint_D( alpha(y)beta(y)-alpha(x)beta(y) ),mathrm dx ,mathrm dy stackrel{(2)}= iint_D (alpha (x)beta(x)-alpha(y)beta(x)),mathrm dx,mathrm dy = frac 12 iint_D (alpha(x)beta(x)+alpha(y)beta(y)-alpha (x)beta(y)-alpha(y)beta(x)) ,mathrm dx ,mathrm dy = frac 12 iint_D (alpha(x)-alpha(y))(beta(x)-beta(y)),mathrm dx,mathrm dy geqslant 0,
$$
since both $alpha, beta$ are nondecreasing, i.e. $(alpha(x) - alpha (y)), (beta(x)- beta(y))$ have the same sign, equivalently $(alpha(x)-alpha(y))(beta(x)-beta(y)) geqslant 0$ for all $(x,y)in [a,b]^2$.
EXPLANATION
- For two functions $f,g colon [a,b] to mathbb R$,
$$
int_a^b f int_a^b g = int_a^b f(x),mathrm dx int_a^b g(x),mathrm dx = int_a^b f(x),mathrm dx int_a^b g(y),mathrm dy ;[text{change the integration parameter}] = iint_D f(x)g(y),mathrm dx ,mathrm dy ;[text{transfer to a double integral}].
$$
Hence the $(1)$. - Use a different parameter, we have
$$
int_a^b f int_a^b g = int_a^b f(y),mathrm dy int_a^b g(x), mathrm dx = iint_D f(y)g(x),mathrm dx ,mathrm dy.
$$
Go back to the question, we have
$$
(b-a)int_a^b alphacdot beta - int_a^b alpha int_a^b beta = iint_D (alpha(y)beta(y) - alpha(x)beta(y)),
$$
also
$$
(b-a)int_a^b alphacdot beta - int_a^b alpha int_a^b beta = iint_D (alpha(x)beta(x) - alpha(y)beta(x)),
$$
add these two equations we get the $(2)$.
edited Dec 10 '18 at 3:39
answered Dec 10 '18 at 3:09
xbh
5,6551522
5,6551522
Thanks for your answer. Could you explain how the first and second equality holds?
– Daeseon
Dec 10 '18 at 3:25
@Daeseon I add the explanation. Feel free to check it.
– xbh
Dec 10 '18 at 3:43
add a comment |
Thanks for your answer. Could you explain how the first and second equality holds?
– Daeseon
Dec 10 '18 at 3:25
@Daeseon I add the explanation. Feel free to check it.
– xbh
Dec 10 '18 at 3:43
Thanks for your answer. Could you explain how the first and second equality holds?
– Daeseon
Dec 10 '18 at 3:25
Thanks for your answer. Could you explain how the first and second equality holds?
– Daeseon
Dec 10 '18 at 3:25
@Daeseon I add the explanation. Feel free to check it.
– xbh
Dec 10 '18 at 3:43
@Daeseon I add the explanation. Feel free to check it.
– xbh
Dec 10 '18 at 3:43
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033379%2fprove-b-a-cdot-int-ab-alphax-betax-dx-ge-int-ab-alphax-dx-cdo%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown