Is this way for integrating has any fault?












1












$begingroup$


I have tried this $int_{-infty}^{infty}e^{-2|x|/a}cdot frac{d^2}{dx^2}(e^{-2|x|/a})~~dx $
integration in the method below-
$$int_{-infty}^{infty}e^{-2|x|/a}cdot frac{d^2}{dx^2}(e^{-2|x|/a})~~dx\=int_{-infty}^{0}e^{-2(-x)/a}cdot frac{d^2}{dx^2}(e^{-2(-x)/a})~~dx +int_{0}^{infty}e^{-2x/a}cdot frac{d^2}{dx^2}(e^{-2x/a})~~dx\
=int_{-infty}^{0}e^{2x/a}cdot frac{d^2}{dx^2}(e^{2x/a})~~dx+int_{0}^{infty}e^{-2x/a}cdot frac{d^2}{dx^2}(e^{-2x/a})~~dx\
=4int_{-infty}^{0}e^{4x/a}~~dx+4int_{0}^{infty}e^{-4x/a}~~dx\
=4cdot frac{a}{4}+4cdot frac a4=2a$$

I am not sure I am correct or not. Please help me with this integral and correct me if I am wrong at any step. Any help will be appreciated.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    The derivatives bring down $4/a^{2}$, not just 4.
    $endgroup$
    – Ininterrompue
    Jan 11 at 5:17
















1












$begingroup$


I have tried this $int_{-infty}^{infty}e^{-2|x|/a}cdot frac{d^2}{dx^2}(e^{-2|x|/a})~~dx $
integration in the method below-
$$int_{-infty}^{infty}e^{-2|x|/a}cdot frac{d^2}{dx^2}(e^{-2|x|/a})~~dx\=int_{-infty}^{0}e^{-2(-x)/a}cdot frac{d^2}{dx^2}(e^{-2(-x)/a})~~dx +int_{0}^{infty}e^{-2x/a}cdot frac{d^2}{dx^2}(e^{-2x/a})~~dx\
=int_{-infty}^{0}e^{2x/a}cdot frac{d^2}{dx^2}(e^{2x/a})~~dx+int_{0}^{infty}e^{-2x/a}cdot frac{d^2}{dx^2}(e^{-2x/a})~~dx\
=4int_{-infty}^{0}e^{4x/a}~~dx+4int_{0}^{infty}e^{-4x/a}~~dx\
=4cdot frac{a}{4}+4cdot frac a4=2a$$

I am not sure I am correct or not. Please help me with this integral and correct me if I am wrong at any step. Any help will be appreciated.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    The derivatives bring down $4/a^{2}$, not just 4.
    $endgroup$
    – Ininterrompue
    Jan 11 at 5:17














1












1








1





$begingroup$


I have tried this $int_{-infty}^{infty}e^{-2|x|/a}cdot frac{d^2}{dx^2}(e^{-2|x|/a})~~dx $
integration in the method below-
$$int_{-infty}^{infty}e^{-2|x|/a}cdot frac{d^2}{dx^2}(e^{-2|x|/a})~~dx\=int_{-infty}^{0}e^{-2(-x)/a}cdot frac{d^2}{dx^2}(e^{-2(-x)/a})~~dx +int_{0}^{infty}e^{-2x/a}cdot frac{d^2}{dx^2}(e^{-2x/a})~~dx\
=int_{-infty}^{0}e^{2x/a}cdot frac{d^2}{dx^2}(e^{2x/a})~~dx+int_{0}^{infty}e^{-2x/a}cdot frac{d^2}{dx^2}(e^{-2x/a})~~dx\
=4int_{-infty}^{0}e^{4x/a}~~dx+4int_{0}^{infty}e^{-4x/a}~~dx\
=4cdot frac{a}{4}+4cdot frac a4=2a$$

I am not sure I am correct or not. Please help me with this integral and correct me if I am wrong at any step. Any help will be appreciated.










share|cite|improve this question









$endgroup$




I have tried this $int_{-infty}^{infty}e^{-2|x|/a}cdot frac{d^2}{dx^2}(e^{-2|x|/a})~~dx $
integration in the method below-
$$int_{-infty}^{infty}e^{-2|x|/a}cdot frac{d^2}{dx^2}(e^{-2|x|/a})~~dx\=int_{-infty}^{0}e^{-2(-x)/a}cdot frac{d^2}{dx^2}(e^{-2(-x)/a})~~dx +int_{0}^{infty}e^{-2x/a}cdot frac{d^2}{dx^2}(e^{-2x/a})~~dx\
=int_{-infty}^{0}e^{2x/a}cdot frac{d^2}{dx^2}(e^{2x/a})~~dx+int_{0}^{infty}e^{-2x/a}cdot frac{d^2}{dx^2}(e^{-2x/a})~~dx\
=4int_{-infty}^{0}e^{4x/a}~~dx+4int_{0}^{infty}e^{-4x/a}~~dx\
=4cdot frac{a}{4}+4cdot frac a4=2a$$

I am not sure I am correct or not. Please help me with this integral and correct me if I am wrong at any step. Any help will be appreciated.







integration definite-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 11 at 5:07









OppoInfinityOppoInfinity

18911




18911








  • 1




    $begingroup$
    The derivatives bring down $4/a^{2}$, not just 4.
    $endgroup$
    – Ininterrompue
    Jan 11 at 5:17














  • 1




    $begingroup$
    The derivatives bring down $4/a^{2}$, not just 4.
    $endgroup$
    – Ininterrompue
    Jan 11 at 5:17








1




1




$begingroup$
The derivatives bring down $4/a^{2}$, not just 4.
$endgroup$
– Ininterrompue
Jan 11 at 5:17




$begingroup$
The derivatives bring down $4/a^{2}$, not just 4.
$endgroup$
– Ininterrompue
Jan 11 at 5:17










1 Answer
1






active

oldest

votes


















0












$begingroup$

Let $a>0$. Function $f=e^{-2|x|/a}cdot frac{d^2}{dx^2}(e^{-2|x|/a})$ is even. Then
$$int_{-infty}^{infty}f,dx=2int_{0}^{infty}f,dx\
=2int_{0}^{infty}e^{-2x/a}cdot frac{d^2}{dx^2}(e^{-2x/a}),dx\
=2int_{0}^{infty}frac{4 {e^{-frac{4 x}{a}}}}{{{a}^{2}}}dx=frac2a$$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069489%2fis-this-way-for-integrating-has-any-fault%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Let $a>0$. Function $f=e^{-2|x|/a}cdot frac{d^2}{dx^2}(e^{-2|x|/a})$ is even. Then
    $$int_{-infty}^{infty}f,dx=2int_{0}^{infty}f,dx\
    =2int_{0}^{infty}e^{-2x/a}cdot frac{d^2}{dx^2}(e^{-2x/a}),dx\
    =2int_{0}^{infty}frac{4 {e^{-frac{4 x}{a}}}}{{{a}^{2}}}dx=frac2a$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Let $a>0$. Function $f=e^{-2|x|/a}cdot frac{d^2}{dx^2}(e^{-2|x|/a})$ is even. Then
      $$int_{-infty}^{infty}f,dx=2int_{0}^{infty}f,dx\
      =2int_{0}^{infty}e^{-2x/a}cdot frac{d^2}{dx^2}(e^{-2x/a}),dx\
      =2int_{0}^{infty}frac{4 {e^{-frac{4 x}{a}}}}{{{a}^{2}}}dx=frac2a$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Let $a>0$. Function $f=e^{-2|x|/a}cdot frac{d^2}{dx^2}(e^{-2|x|/a})$ is even. Then
        $$int_{-infty}^{infty}f,dx=2int_{0}^{infty}f,dx\
        =2int_{0}^{infty}e^{-2x/a}cdot frac{d^2}{dx^2}(e^{-2x/a}),dx\
        =2int_{0}^{infty}frac{4 {e^{-frac{4 x}{a}}}}{{{a}^{2}}}dx=frac2a$$






        share|cite|improve this answer









        $endgroup$



        Let $a>0$. Function $f=e^{-2|x|/a}cdot frac{d^2}{dx^2}(e^{-2|x|/a})$ is even. Then
        $$int_{-infty}^{infty}f,dx=2int_{0}^{infty}f,dx\
        =2int_{0}^{infty}e^{-2x/a}cdot frac{d^2}{dx^2}(e^{-2x/a}),dx\
        =2int_{0}^{infty}frac{4 {e^{-frac{4 x}{a}}}}{{{a}^{2}}}dx=frac2a$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 11 at 8:45









        Aleksas DomarkasAleksas Domarkas

        1,62317




        1,62317






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069489%2fis-this-way-for-integrating-has-any-fault%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna