Radius of convergence of power series $sum_0^{infty} n!x^{n^2}$












2












$begingroup$


Radius of convergence of power series $sum_0^{infty} n!x^{n^2}$.



I applied ratio test, it went inconclusive and in root test i got $|x|^n n!^{1/n}$ but $n!^{1/n} $ diverges as n gets bigger.



So please help me to proceed










share|cite|improve this question









$endgroup$












  • $begingroup$
    I realize there is already an accepted answer, but just a a note: the ratio test is not inconclusive. Here we have $$a_n = n! x^{n^2}$$ and so $$lvert a_{n+1}/a_n rvert = (n+1) lvert x rvert ^{2n+1} = (n+1) e^{(2n+1)log(lvert x rvert)}.$$ Now if $lvert x rvert < 1$, so that $log(lvert x vert) < 0$, then this is a decaying exponential and the limit is zero as $n to infty$. If $ lvert x rvert ge 1$, then this limit is $+infty$. Hence the ratio test tells us that we have convergence iff $lvert x rvert < 1$.
    $endgroup$
    – User8128
    Jan 11 at 16:29










  • $begingroup$
    @User8128 thanks
    $endgroup$
    – Cloud JR
    Jan 11 at 17:15
















2












$begingroup$


Radius of convergence of power series $sum_0^{infty} n!x^{n^2}$.



I applied ratio test, it went inconclusive and in root test i got $|x|^n n!^{1/n}$ but $n!^{1/n} $ diverges as n gets bigger.



So please help me to proceed










share|cite|improve this question









$endgroup$












  • $begingroup$
    I realize there is already an accepted answer, but just a a note: the ratio test is not inconclusive. Here we have $$a_n = n! x^{n^2}$$ and so $$lvert a_{n+1}/a_n rvert = (n+1) lvert x rvert ^{2n+1} = (n+1) e^{(2n+1)log(lvert x rvert)}.$$ Now if $lvert x rvert < 1$, so that $log(lvert x vert) < 0$, then this is a decaying exponential and the limit is zero as $n to infty$. If $ lvert x rvert ge 1$, then this limit is $+infty$. Hence the ratio test tells us that we have convergence iff $lvert x rvert < 1$.
    $endgroup$
    – User8128
    Jan 11 at 16:29










  • $begingroup$
    @User8128 thanks
    $endgroup$
    – Cloud JR
    Jan 11 at 17:15














2












2








2





$begingroup$


Radius of convergence of power series $sum_0^{infty} n!x^{n^2}$.



I applied ratio test, it went inconclusive and in root test i got $|x|^n n!^{1/n}$ but $n!^{1/n} $ diverges as n gets bigger.



So please help me to proceed










share|cite|improve this question









$endgroup$




Radius of convergence of power series $sum_0^{infty} n!x^{n^2}$.



I applied ratio test, it went inconclusive and in root test i got $|x|^n n!^{1/n}$ but $n!^{1/n} $ diverges as n gets bigger.



So please help me to proceed







real-analysis sequences-and-series power-series






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 11 at 3:56









Cloud JRCloud JR

920518




920518












  • $begingroup$
    I realize there is already an accepted answer, but just a a note: the ratio test is not inconclusive. Here we have $$a_n = n! x^{n^2}$$ and so $$lvert a_{n+1}/a_n rvert = (n+1) lvert x rvert ^{2n+1} = (n+1) e^{(2n+1)log(lvert x rvert)}.$$ Now if $lvert x rvert < 1$, so that $log(lvert x vert) < 0$, then this is a decaying exponential and the limit is zero as $n to infty$. If $ lvert x rvert ge 1$, then this limit is $+infty$. Hence the ratio test tells us that we have convergence iff $lvert x rvert < 1$.
    $endgroup$
    – User8128
    Jan 11 at 16:29










  • $begingroup$
    @User8128 thanks
    $endgroup$
    – Cloud JR
    Jan 11 at 17:15


















  • $begingroup$
    I realize there is already an accepted answer, but just a a note: the ratio test is not inconclusive. Here we have $$a_n = n! x^{n^2}$$ and so $$lvert a_{n+1}/a_n rvert = (n+1) lvert x rvert ^{2n+1} = (n+1) e^{(2n+1)log(lvert x rvert)}.$$ Now if $lvert x rvert < 1$, so that $log(lvert x vert) < 0$, then this is a decaying exponential and the limit is zero as $n to infty$. If $ lvert x rvert ge 1$, then this limit is $+infty$. Hence the ratio test tells us that we have convergence iff $lvert x rvert < 1$.
    $endgroup$
    – User8128
    Jan 11 at 16:29










  • $begingroup$
    @User8128 thanks
    $endgroup$
    – Cloud JR
    Jan 11 at 17:15
















$begingroup$
I realize there is already an accepted answer, but just a a note: the ratio test is not inconclusive. Here we have $$a_n = n! x^{n^2}$$ and so $$lvert a_{n+1}/a_n rvert = (n+1) lvert x rvert ^{2n+1} = (n+1) e^{(2n+1)log(lvert x rvert)}.$$ Now if $lvert x rvert < 1$, so that $log(lvert x vert) < 0$, then this is a decaying exponential and the limit is zero as $n to infty$. If $ lvert x rvert ge 1$, then this limit is $+infty$. Hence the ratio test tells us that we have convergence iff $lvert x rvert < 1$.
$endgroup$
– User8128
Jan 11 at 16:29




$begingroup$
I realize there is already an accepted answer, but just a a note: the ratio test is not inconclusive. Here we have $$a_n = n! x^{n^2}$$ and so $$lvert a_{n+1}/a_n rvert = (n+1) lvert x rvert ^{2n+1} = (n+1) e^{(2n+1)log(lvert x rvert)}.$$ Now if $lvert x rvert < 1$, so that $log(lvert x vert) < 0$, then this is a decaying exponential and the limit is zero as $n to infty$. If $ lvert x rvert ge 1$, then this limit is $+infty$. Hence the ratio test tells us that we have convergence iff $lvert x rvert < 1$.
$endgroup$
– User8128
Jan 11 at 16:29












$begingroup$
@User8128 thanks
$endgroup$
– Cloud JR
Jan 11 at 17:15




$begingroup$
@User8128 thanks
$endgroup$
– Cloud JR
Jan 11 at 17:15










3 Answers
3






active

oldest

votes


















1












$begingroup$

HINT:



Note that we have



$$ limsup_{ntoinfty}sqrt[n]{left| n!x^{n^2}right|}=limsup_{ntoinfty}(n!)^{1/n}|x|^n$$



Now use Stirling' s Formula



$$n!sim sqrt{2pi n}left( frac ne right)^n$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    does error in stirling approximation tends to 0 as n gets bigger??
    $endgroup$
    – Cloud JR
    Jan 11 at 13:59










  • $begingroup$
    Would the downvoter care to comment?
    $endgroup$
    – Mark Viola
    Jan 11 at 15:56










  • $begingroup$
    No, but $$n!=left(sqrt{2pi n}left( frac ne right)^nright),left(1+O(1/n)right)$$
    $endgroup$
    – Mark Viola
    Jan 11 at 16:00










  • $begingroup$
    idk who downvote but i accept yours !
    $endgroup$
    – Cloud JR
    Jan 11 at 16:22










  • $begingroup$
    Much appreciated!!
    $endgroup$
    – Mark Viola
    Jan 11 at 18:05



















4












$begingroup$

The power series is $sum_0^infty a_m x^m$ where
$$
a_m = begin{cases}
n!, & m = n^2, n in mathbb N^*\
0, & text{otherwise},
end{cases}
$$

so by Hadamard formula,
$$
1/R =varlimsup |a_m|^{1/m} = varlimsup (n!)^{1/n^2} =varlimsup (sqrt{2pi} n^{n+1/2} mathrm e^{-n})^{1/n^2} = lim (2pi)^{1/2n^2} n^{1/n} n^{1/2n^2}mathrm e^{-1/n} = 1,
$$

where we use the Stirling approximation. Hence the radius of convergence is $1$.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Nothing wrong with using Stirling's formula, but more simply, for $nge 1 $ we have $1le(n!)^{1/n^2}le (n^n)^{1/n^2}=n^{1/n} to 1$ as $ ntoinfty$.
    $endgroup$
    – DanielWainfleet
    Jan 11 at 6:04








  • 1




    $begingroup$
    @DanielWainfleet Thanks for this trick!
    $endgroup$
    – xbh
    Jan 11 at 6:06










  • $begingroup$
    @xbh does error in stirling approximation tends to 0 as n gets bigger?? also is it valid to take$1/n^2$ th root of x... please explain
    $endgroup$
    – Cloud JR
    Jan 11 at 13:58












  • $begingroup$
    en.wikipedia.org/wiki/Cauchy%E2%80%93Hadamard_theorem. its not mentioned in hereto take 1/n^2 root , im confused.
    $endgroup$
    – Cloud JR
    Jan 11 at 14:04








  • 1




    $begingroup$
    @CloudJR I think my answer has said everything you need. The given series is a power series that a lot of terms lost, and $(n!)^{1/n}$ is not correct.
    $endgroup$
    – xbh
    Jan 11 at 14:41



















1












$begingroup$

Your formula is wrong because the exponent of $x$ is $n^2,$ but you can use the Weak form of Stirling’s Formula
begin{align} dfrac{n^n}{e^{n-1}}<n!<dfrac{n^{n+1}}{e^{n-1}} . end{align}
This implies that
begin{align} sum^{infty}_{n=0} n!{x^{n^2}}leq sum^{infty}_{n=0} dfrac{n^{n+1}}{e^{n-1}} {x^{n^2}}. end{align}
So, fix $xin Bbb{R},$ then by D'Alembert's ratio test
begin{align} limlimits_{nto infty}left|dfrac{n^{n+2}{x^{(n+1)^2}}}{e^{n}} dfrac{e^{n-1}} {n^{n+1} x^{n^2}}right|&=limlimits_{nto infty}left|dfrac{n }{e} {x^{(n+1)^2-n^2}}right|\&=limlimits_{nto infty}left|dfrac{n }{e} {x^{2n+1}}right|\&=dfrac{left|x right|}{e} limlimits_{nto infty}n, {left|xright|}^{2n}. end{align}



CASE I: $|x|<1$



Since $|x|<1$, then ${left|xright|}^{2n}to 0$, and so, there exists $Nin Bbb{N}$ such that
begin{align} {left|xright|}^{2n}<dfrac{1}{n^2},forall;ngeq N .end{align}
Thus,
begin{align} limlimits_{nto infty}left|dfrac{n^{n+2}{x^{(n+1)^2}}}{e^{n}} dfrac{e^{n-1}} {n^{n+1} x^{n^2}}right|&=dfrac{left|x right|}{e} limlimits_{nto infty}n, {left|xright|}^{2n}leq dfrac{left|x right|}{e} limlimits_{nto infty}n, left(dfrac{1}{n^2}right)=0<1. end{align}
Hence, the series converges when $|x|<1.$



CASE II: $|x|geq 1$
begin{align} limlimits_{nto infty}n!{x^{n^2}}=infty end{align}
which implies that the series cannot not converge. Consequently, the radius of convergence is $1$.






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069467%2fradius-of-convergence-of-power-series-sum-0-infty-nxn2%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    HINT:



    Note that we have



    $$ limsup_{ntoinfty}sqrt[n]{left| n!x^{n^2}right|}=limsup_{ntoinfty}(n!)^{1/n}|x|^n$$



    Now use Stirling' s Formula



    $$n!sim sqrt{2pi n}left( frac ne right)^n$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      does error in stirling approximation tends to 0 as n gets bigger??
      $endgroup$
      – Cloud JR
      Jan 11 at 13:59










    • $begingroup$
      Would the downvoter care to comment?
      $endgroup$
      – Mark Viola
      Jan 11 at 15:56










    • $begingroup$
      No, but $$n!=left(sqrt{2pi n}left( frac ne right)^nright),left(1+O(1/n)right)$$
      $endgroup$
      – Mark Viola
      Jan 11 at 16:00










    • $begingroup$
      idk who downvote but i accept yours !
      $endgroup$
      – Cloud JR
      Jan 11 at 16:22










    • $begingroup$
      Much appreciated!!
      $endgroup$
      – Mark Viola
      Jan 11 at 18:05
















    1












    $begingroup$

    HINT:



    Note that we have



    $$ limsup_{ntoinfty}sqrt[n]{left| n!x^{n^2}right|}=limsup_{ntoinfty}(n!)^{1/n}|x|^n$$



    Now use Stirling' s Formula



    $$n!sim sqrt{2pi n}left( frac ne right)^n$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      does error in stirling approximation tends to 0 as n gets bigger??
      $endgroup$
      – Cloud JR
      Jan 11 at 13:59










    • $begingroup$
      Would the downvoter care to comment?
      $endgroup$
      – Mark Viola
      Jan 11 at 15:56










    • $begingroup$
      No, but $$n!=left(sqrt{2pi n}left( frac ne right)^nright),left(1+O(1/n)right)$$
      $endgroup$
      – Mark Viola
      Jan 11 at 16:00










    • $begingroup$
      idk who downvote but i accept yours !
      $endgroup$
      – Cloud JR
      Jan 11 at 16:22










    • $begingroup$
      Much appreciated!!
      $endgroup$
      – Mark Viola
      Jan 11 at 18:05














    1












    1








    1





    $begingroup$

    HINT:



    Note that we have



    $$ limsup_{ntoinfty}sqrt[n]{left| n!x^{n^2}right|}=limsup_{ntoinfty}(n!)^{1/n}|x|^n$$



    Now use Stirling' s Formula



    $$n!sim sqrt{2pi n}left( frac ne right)^n$$






    share|cite|improve this answer









    $endgroup$



    HINT:



    Note that we have



    $$ limsup_{ntoinfty}sqrt[n]{left| n!x^{n^2}right|}=limsup_{ntoinfty}(n!)^{1/n}|x|^n$$



    Now use Stirling' s Formula



    $$n!sim sqrt{2pi n}left( frac ne right)^n$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 11 at 4:24









    Mark ViolaMark Viola

    134k1278177




    134k1278177












    • $begingroup$
      does error in stirling approximation tends to 0 as n gets bigger??
      $endgroup$
      – Cloud JR
      Jan 11 at 13:59










    • $begingroup$
      Would the downvoter care to comment?
      $endgroup$
      – Mark Viola
      Jan 11 at 15:56










    • $begingroup$
      No, but $$n!=left(sqrt{2pi n}left( frac ne right)^nright),left(1+O(1/n)right)$$
      $endgroup$
      – Mark Viola
      Jan 11 at 16:00










    • $begingroup$
      idk who downvote but i accept yours !
      $endgroup$
      – Cloud JR
      Jan 11 at 16:22










    • $begingroup$
      Much appreciated!!
      $endgroup$
      – Mark Viola
      Jan 11 at 18:05


















    • $begingroup$
      does error in stirling approximation tends to 0 as n gets bigger??
      $endgroup$
      – Cloud JR
      Jan 11 at 13:59










    • $begingroup$
      Would the downvoter care to comment?
      $endgroup$
      – Mark Viola
      Jan 11 at 15:56










    • $begingroup$
      No, but $$n!=left(sqrt{2pi n}left( frac ne right)^nright),left(1+O(1/n)right)$$
      $endgroup$
      – Mark Viola
      Jan 11 at 16:00










    • $begingroup$
      idk who downvote but i accept yours !
      $endgroup$
      – Cloud JR
      Jan 11 at 16:22










    • $begingroup$
      Much appreciated!!
      $endgroup$
      – Mark Viola
      Jan 11 at 18:05
















    $begingroup$
    does error in stirling approximation tends to 0 as n gets bigger??
    $endgroup$
    – Cloud JR
    Jan 11 at 13:59




    $begingroup$
    does error in stirling approximation tends to 0 as n gets bigger??
    $endgroup$
    – Cloud JR
    Jan 11 at 13:59












    $begingroup$
    Would the downvoter care to comment?
    $endgroup$
    – Mark Viola
    Jan 11 at 15:56




    $begingroup$
    Would the downvoter care to comment?
    $endgroup$
    – Mark Viola
    Jan 11 at 15:56












    $begingroup$
    No, but $$n!=left(sqrt{2pi n}left( frac ne right)^nright),left(1+O(1/n)right)$$
    $endgroup$
    – Mark Viola
    Jan 11 at 16:00




    $begingroup$
    No, but $$n!=left(sqrt{2pi n}left( frac ne right)^nright),left(1+O(1/n)right)$$
    $endgroup$
    – Mark Viola
    Jan 11 at 16:00












    $begingroup$
    idk who downvote but i accept yours !
    $endgroup$
    – Cloud JR
    Jan 11 at 16:22




    $begingroup$
    idk who downvote but i accept yours !
    $endgroup$
    – Cloud JR
    Jan 11 at 16:22












    $begingroup$
    Much appreciated!!
    $endgroup$
    – Mark Viola
    Jan 11 at 18:05




    $begingroup$
    Much appreciated!!
    $endgroup$
    – Mark Viola
    Jan 11 at 18:05











    4












    $begingroup$

    The power series is $sum_0^infty a_m x^m$ where
    $$
    a_m = begin{cases}
    n!, & m = n^2, n in mathbb N^*\
    0, & text{otherwise},
    end{cases}
    $$

    so by Hadamard formula,
    $$
    1/R =varlimsup |a_m|^{1/m} = varlimsup (n!)^{1/n^2} =varlimsup (sqrt{2pi} n^{n+1/2} mathrm e^{-n})^{1/n^2} = lim (2pi)^{1/2n^2} n^{1/n} n^{1/2n^2}mathrm e^{-1/n} = 1,
    $$

    where we use the Stirling approximation. Hence the radius of convergence is $1$.






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      Nothing wrong with using Stirling's formula, but more simply, for $nge 1 $ we have $1le(n!)^{1/n^2}le (n^n)^{1/n^2}=n^{1/n} to 1$ as $ ntoinfty$.
      $endgroup$
      – DanielWainfleet
      Jan 11 at 6:04








    • 1




      $begingroup$
      @DanielWainfleet Thanks for this trick!
      $endgroup$
      – xbh
      Jan 11 at 6:06










    • $begingroup$
      @xbh does error in stirling approximation tends to 0 as n gets bigger?? also is it valid to take$1/n^2$ th root of x... please explain
      $endgroup$
      – Cloud JR
      Jan 11 at 13:58












    • $begingroup$
      en.wikipedia.org/wiki/Cauchy%E2%80%93Hadamard_theorem. its not mentioned in hereto take 1/n^2 root , im confused.
      $endgroup$
      – Cloud JR
      Jan 11 at 14:04








    • 1




      $begingroup$
      @CloudJR I think my answer has said everything you need. The given series is a power series that a lot of terms lost, and $(n!)^{1/n}$ is not correct.
      $endgroup$
      – xbh
      Jan 11 at 14:41
















    4












    $begingroup$

    The power series is $sum_0^infty a_m x^m$ where
    $$
    a_m = begin{cases}
    n!, & m = n^2, n in mathbb N^*\
    0, & text{otherwise},
    end{cases}
    $$

    so by Hadamard formula,
    $$
    1/R =varlimsup |a_m|^{1/m} = varlimsup (n!)^{1/n^2} =varlimsup (sqrt{2pi} n^{n+1/2} mathrm e^{-n})^{1/n^2} = lim (2pi)^{1/2n^2} n^{1/n} n^{1/2n^2}mathrm e^{-1/n} = 1,
    $$

    where we use the Stirling approximation. Hence the radius of convergence is $1$.






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      Nothing wrong with using Stirling's formula, but more simply, for $nge 1 $ we have $1le(n!)^{1/n^2}le (n^n)^{1/n^2}=n^{1/n} to 1$ as $ ntoinfty$.
      $endgroup$
      – DanielWainfleet
      Jan 11 at 6:04








    • 1




      $begingroup$
      @DanielWainfleet Thanks for this trick!
      $endgroup$
      – xbh
      Jan 11 at 6:06










    • $begingroup$
      @xbh does error in stirling approximation tends to 0 as n gets bigger?? also is it valid to take$1/n^2$ th root of x... please explain
      $endgroup$
      – Cloud JR
      Jan 11 at 13:58












    • $begingroup$
      en.wikipedia.org/wiki/Cauchy%E2%80%93Hadamard_theorem. its not mentioned in hereto take 1/n^2 root , im confused.
      $endgroup$
      – Cloud JR
      Jan 11 at 14:04








    • 1




      $begingroup$
      @CloudJR I think my answer has said everything you need. The given series is a power series that a lot of terms lost, and $(n!)^{1/n}$ is not correct.
      $endgroup$
      – xbh
      Jan 11 at 14:41














    4












    4








    4





    $begingroup$

    The power series is $sum_0^infty a_m x^m$ where
    $$
    a_m = begin{cases}
    n!, & m = n^2, n in mathbb N^*\
    0, & text{otherwise},
    end{cases}
    $$

    so by Hadamard formula,
    $$
    1/R =varlimsup |a_m|^{1/m} = varlimsup (n!)^{1/n^2} =varlimsup (sqrt{2pi} n^{n+1/2} mathrm e^{-n})^{1/n^2} = lim (2pi)^{1/2n^2} n^{1/n} n^{1/2n^2}mathrm e^{-1/n} = 1,
    $$

    where we use the Stirling approximation. Hence the radius of convergence is $1$.






    share|cite|improve this answer









    $endgroup$



    The power series is $sum_0^infty a_m x^m$ where
    $$
    a_m = begin{cases}
    n!, & m = n^2, n in mathbb N^*\
    0, & text{otherwise},
    end{cases}
    $$

    so by Hadamard formula,
    $$
    1/R =varlimsup |a_m|^{1/m} = varlimsup (n!)^{1/n^2} =varlimsup (sqrt{2pi} n^{n+1/2} mathrm e^{-n})^{1/n^2} = lim (2pi)^{1/2n^2} n^{1/n} n^{1/2n^2}mathrm e^{-1/n} = 1,
    $$

    where we use the Stirling approximation. Hence the radius of convergence is $1$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 11 at 5:49









    xbhxbh

    6,3201522




    6,3201522








    • 1




      $begingroup$
      Nothing wrong with using Stirling's formula, but more simply, for $nge 1 $ we have $1le(n!)^{1/n^2}le (n^n)^{1/n^2}=n^{1/n} to 1$ as $ ntoinfty$.
      $endgroup$
      – DanielWainfleet
      Jan 11 at 6:04








    • 1




      $begingroup$
      @DanielWainfleet Thanks for this trick!
      $endgroup$
      – xbh
      Jan 11 at 6:06










    • $begingroup$
      @xbh does error in stirling approximation tends to 0 as n gets bigger?? also is it valid to take$1/n^2$ th root of x... please explain
      $endgroup$
      – Cloud JR
      Jan 11 at 13:58












    • $begingroup$
      en.wikipedia.org/wiki/Cauchy%E2%80%93Hadamard_theorem. its not mentioned in hereto take 1/n^2 root , im confused.
      $endgroup$
      – Cloud JR
      Jan 11 at 14:04








    • 1




      $begingroup$
      @CloudJR I think my answer has said everything you need. The given series is a power series that a lot of terms lost, and $(n!)^{1/n}$ is not correct.
      $endgroup$
      – xbh
      Jan 11 at 14:41














    • 1




      $begingroup$
      Nothing wrong with using Stirling's formula, but more simply, for $nge 1 $ we have $1le(n!)^{1/n^2}le (n^n)^{1/n^2}=n^{1/n} to 1$ as $ ntoinfty$.
      $endgroup$
      – DanielWainfleet
      Jan 11 at 6:04








    • 1




      $begingroup$
      @DanielWainfleet Thanks for this trick!
      $endgroup$
      – xbh
      Jan 11 at 6:06










    • $begingroup$
      @xbh does error in stirling approximation tends to 0 as n gets bigger?? also is it valid to take$1/n^2$ th root of x... please explain
      $endgroup$
      – Cloud JR
      Jan 11 at 13:58












    • $begingroup$
      en.wikipedia.org/wiki/Cauchy%E2%80%93Hadamard_theorem. its not mentioned in hereto take 1/n^2 root , im confused.
      $endgroup$
      – Cloud JR
      Jan 11 at 14:04








    • 1




      $begingroup$
      @CloudJR I think my answer has said everything you need. The given series is a power series that a lot of terms lost, and $(n!)^{1/n}$ is not correct.
      $endgroup$
      – xbh
      Jan 11 at 14:41








    1




    1




    $begingroup$
    Nothing wrong with using Stirling's formula, but more simply, for $nge 1 $ we have $1le(n!)^{1/n^2}le (n^n)^{1/n^2}=n^{1/n} to 1$ as $ ntoinfty$.
    $endgroup$
    – DanielWainfleet
    Jan 11 at 6:04






    $begingroup$
    Nothing wrong with using Stirling's formula, but more simply, for $nge 1 $ we have $1le(n!)^{1/n^2}le (n^n)^{1/n^2}=n^{1/n} to 1$ as $ ntoinfty$.
    $endgroup$
    – DanielWainfleet
    Jan 11 at 6:04






    1




    1




    $begingroup$
    @DanielWainfleet Thanks for this trick!
    $endgroup$
    – xbh
    Jan 11 at 6:06




    $begingroup$
    @DanielWainfleet Thanks for this trick!
    $endgroup$
    – xbh
    Jan 11 at 6:06












    $begingroup$
    @xbh does error in stirling approximation tends to 0 as n gets bigger?? also is it valid to take$1/n^2$ th root of x... please explain
    $endgroup$
    – Cloud JR
    Jan 11 at 13:58






    $begingroup$
    @xbh does error in stirling approximation tends to 0 as n gets bigger?? also is it valid to take$1/n^2$ th root of x... please explain
    $endgroup$
    – Cloud JR
    Jan 11 at 13:58














    $begingroup$
    en.wikipedia.org/wiki/Cauchy%E2%80%93Hadamard_theorem. its not mentioned in hereto take 1/n^2 root , im confused.
    $endgroup$
    – Cloud JR
    Jan 11 at 14:04






    $begingroup$
    en.wikipedia.org/wiki/Cauchy%E2%80%93Hadamard_theorem. its not mentioned in hereto take 1/n^2 root , im confused.
    $endgroup$
    – Cloud JR
    Jan 11 at 14:04






    1




    1




    $begingroup$
    @CloudJR I think my answer has said everything you need. The given series is a power series that a lot of terms lost, and $(n!)^{1/n}$ is not correct.
    $endgroup$
    – xbh
    Jan 11 at 14:41




    $begingroup$
    @CloudJR I think my answer has said everything you need. The given series is a power series that a lot of terms lost, and $(n!)^{1/n}$ is not correct.
    $endgroup$
    – xbh
    Jan 11 at 14:41











    1












    $begingroup$

    Your formula is wrong because the exponent of $x$ is $n^2,$ but you can use the Weak form of Stirling’s Formula
    begin{align} dfrac{n^n}{e^{n-1}}<n!<dfrac{n^{n+1}}{e^{n-1}} . end{align}
    This implies that
    begin{align} sum^{infty}_{n=0} n!{x^{n^2}}leq sum^{infty}_{n=0} dfrac{n^{n+1}}{e^{n-1}} {x^{n^2}}. end{align}
    So, fix $xin Bbb{R},$ then by D'Alembert's ratio test
    begin{align} limlimits_{nto infty}left|dfrac{n^{n+2}{x^{(n+1)^2}}}{e^{n}} dfrac{e^{n-1}} {n^{n+1} x^{n^2}}right|&=limlimits_{nto infty}left|dfrac{n }{e} {x^{(n+1)^2-n^2}}right|\&=limlimits_{nto infty}left|dfrac{n }{e} {x^{2n+1}}right|\&=dfrac{left|x right|}{e} limlimits_{nto infty}n, {left|xright|}^{2n}. end{align}



    CASE I: $|x|<1$



    Since $|x|<1$, then ${left|xright|}^{2n}to 0$, and so, there exists $Nin Bbb{N}$ such that
    begin{align} {left|xright|}^{2n}<dfrac{1}{n^2},forall;ngeq N .end{align}
    Thus,
    begin{align} limlimits_{nto infty}left|dfrac{n^{n+2}{x^{(n+1)^2}}}{e^{n}} dfrac{e^{n-1}} {n^{n+1} x^{n^2}}right|&=dfrac{left|x right|}{e} limlimits_{nto infty}n, {left|xright|}^{2n}leq dfrac{left|x right|}{e} limlimits_{nto infty}n, left(dfrac{1}{n^2}right)=0<1. end{align}
    Hence, the series converges when $|x|<1.$



    CASE II: $|x|geq 1$
    begin{align} limlimits_{nto infty}n!{x^{n^2}}=infty end{align}
    which implies that the series cannot not converge. Consequently, the radius of convergence is $1$.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      Your formula is wrong because the exponent of $x$ is $n^2,$ but you can use the Weak form of Stirling’s Formula
      begin{align} dfrac{n^n}{e^{n-1}}<n!<dfrac{n^{n+1}}{e^{n-1}} . end{align}
      This implies that
      begin{align} sum^{infty}_{n=0} n!{x^{n^2}}leq sum^{infty}_{n=0} dfrac{n^{n+1}}{e^{n-1}} {x^{n^2}}. end{align}
      So, fix $xin Bbb{R},$ then by D'Alembert's ratio test
      begin{align} limlimits_{nto infty}left|dfrac{n^{n+2}{x^{(n+1)^2}}}{e^{n}} dfrac{e^{n-1}} {n^{n+1} x^{n^2}}right|&=limlimits_{nto infty}left|dfrac{n }{e} {x^{(n+1)^2-n^2}}right|\&=limlimits_{nto infty}left|dfrac{n }{e} {x^{2n+1}}right|\&=dfrac{left|x right|}{e} limlimits_{nto infty}n, {left|xright|}^{2n}. end{align}



      CASE I: $|x|<1$



      Since $|x|<1$, then ${left|xright|}^{2n}to 0$, and so, there exists $Nin Bbb{N}$ such that
      begin{align} {left|xright|}^{2n}<dfrac{1}{n^2},forall;ngeq N .end{align}
      Thus,
      begin{align} limlimits_{nto infty}left|dfrac{n^{n+2}{x^{(n+1)^2}}}{e^{n}} dfrac{e^{n-1}} {n^{n+1} x^{n^2}}right|&=dfrac{left|x right|}{e} limlimits_{nto infty}n, {left|xright|}^{2n}leq dfrac{left|x right|}{e} limlimits_{nto infty}n, left(dfrac{1}{n^2}right)=0<1. end{align}
      Hence, the series converges when $|x|<1.$



      CASE II: $|x|geq 1$
      begin{align} limlimits_{nto infty}n!{x^{n^2}}=infty end{align}
      which implies that the series cannot not converge. Consequently, the radius of convergence is $1$.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        Your formula is wrong because the exponent of $x$ is $n^2,$ but you can use the Weak form of Stirling’s Formula
        begin{align} dfrac{n^n}{e^{n-1}}<n!<dfrac{n^{n+1}}{e^{n-1}} . end{align}
        This implies that
        begin{align} sum^{infty}_{n=0} n!{x^{n^2}}leq sum^{infty}_{n=0} dfrac{n^{n+1}}{e^{n-1}} {x^{n^2}}. end{align}
        So, fix $xin Bbb{R},$ then by D'Alembert's ratio test
        begin{align} limlimits_{nto infty}left|dfrac{n^{n+2}{x^{(n+1)^2}}}{e^{n}} dfrac{e^{n-1}} {n^{n+1} x^{n^2}}right|&=limlimits_{nto infty}left|dfrac{n }{e} {x^{(n+1)^2-n^2}}right|\&=limlimits_{nto infty}left|dfrac{n }{e} {x^{2n+1}}right|\&=dfrac{left|x right|}{e} limlimits_{nto infty}n, {left|xright|}^{2n}. end{align}



        CASE I: $|x|<1$



        Since $|x|<1$, then ${left|xright|}^{2n}to 0$, and so, there exists $Nin Bbb{N}$ such that
        begin{align} {left|xright|}^{2n}<dfrac{1}{n^2},forall;ngeq N .end{align}
        Thus,
        begin{align} limlimits_{nto infty}left|dfrac{n^{n+2}{x^{(n+1)^2}}}{e^{n}} dfrac{e^{n-1}} {n^{n+1} x^{n^2}}right|&=dfrac{left|x right|}{e} limlimits_{nto infty}n, {left|xright|}^{2n}leq dfrac{left|x right|}{e} limlimits_{nto infty}n, left(dfrac{1}{n^2}right)=0<1. end{align}
        Hence, the series converges when $|x|<1.$



        CASE II: $|x|geq 1$
        begin{align} limlimits_{nto infty}n!{x^{n^2}}=infty end{align}
        which implies that the series cannot not converge. Consequently, the radius of convergence is $1$.






        share|cite|improve this answer











        $endgroup$



        Your formula is wrong because the exponent of $x$ is $n^2,$ but you can use the Weak form of Stirling’s Formula
        begin{align} dfrac{n^n}{e^{n-1}}<n!<dfrac{n^{n+1}}{e^{n-1}} . end{align}
        This implies that
        begin{align} sum^{infty}_{n=0} n!{x^{n^2}}leq sum^{infty}_{n=0} dfrac{n^{n+1}}{e^{n-1}} {x^{n^2}}. end{align}
        So, fix $xin Bbb{R},$ then by D'Alembert's ratio test
        begin{align} limlimits_{nto infty}left|dfrac{n^{n+2}{x^{(n+1)^2}}}{e^{n}} dfrac{e^{n-1}} {n^{n+1} x^{n^2}}right|&=limlimits_{nto infty}left|dfrac{n }{e} {x^{(n+1)^2-n^2}}right|\&=limlimits_{nto infty}left|dfrac{n }{e} {x^{2n+1}}right|\&=dfrac{left|x right|}{e} limlimits_{nto infty}n, {left|xright|}^{2n}. end{align}



        CASE I: $|x|<1$



        Since $|x|<1$, then ${left|xright|}^{2n}to 0$, and so, there exists $Nin Bbb{N}$ such that
        begin{align} {left|xright|}^{2n}<dfrac{1}{n^2},forall;ngeq N .end{align}
        Thus,
        begin{align} limlimits_{nto infty}left|dfrac{n^{n+2}{x^{(n+1)^2}}}{e^{n}} dfrac{e^{n-1}} {n^{n+1} x^{n^2}}right|&=dfrac{left|x right|}{e} limlimits_{nto infty}n, {left|xright|}^{2n}leq dfrac{left|x right|}{e} limlimits_{nto infty}n, left(dfrac{1}{n^2}right)=0<1. end{align}
        Hence, the series converges when $|x|<1.$



        CASE II: $|x|geq 1$
        begin{align} limlimits_{nto infty}n!{x^{n^2}}=infty end{align}
        which implies that the series cannot not converge. Consequently, the radius of convergence is $1$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 11 at 13:58

























        answered Jan 11 at 13:51









        Omojola MichealOmojola Micheal

        2,064424




        2,064424






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069467%2fradius-of-convergence-of-power-series-sum-0-infty-nxn2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna