Suppose the logical expression $(((neg$ $P$) $leftrightarrow$ $Q$) $rightarrow$ $R$) $vee$ ($P$...
$begingroup$
Let $P$, $Q$, and $R$ be statement variables. Suppose the logical expression
$(((neg$$P$) $leftrightarrow$ $Q$) $rightarrow$ $R$) $vee$ ($P$ $leftrightarrow$ $R$)
is FALSE.
What are the possible truth values for $P$, $Q$, and $R$?
proof-writing
$endgroup$
add a comment |
$begingroup$
Let $P$, $Q$, and $R$ be statement variables. Suppose the logical expression
$(((neg$$P$) $leftrightarrow$ $Q$) $rightarrow$ $R$) $vee$ ($P$ $leftrightarrow$ $R$)
is FALSE.
What are the possible truth values for $P$, $Q$, and $R$?
proof-writing
$endgroup$
add a comment |
$begingroup$
Let $P$, $Q$, and $R$ be statement variables. Suppose the logical expression
$(((neg$$P$) $leftrightarrow$ $Q$) $rightarrow$ $R$) $vee$ ($P$ $leftrightarrow$ $R$)
is FALSE.
What are the possible truth values for $P$, $Q$, and $R$?
proof-writing
$endgroup$
Let $P$, $Q$, and $R$ be statement variables. Suppose the logical expression
$(((neg$$P$) $leftrightarrow$ $Q$) $rightarrow$ $R$) $vee$ ($P$ $leftrightarrow$ $R$)
is FALSE.
What are the possible truth values for $P$, $Q$, and $R$?
proof-writing
proof-writing
asked Jan 11 at 5:39
macymacy
526
526
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Both $(neg Pleftrightarrow Q)to R$ and $Pleftrightarrow R$ must be false. The latter is false only when $P=1,R=0$ or $P=0,R=1$.
For the former to be false, $R=0,neg Pleftrightarrow Q=1$. This leaves you with $P=1,R=0$. Now try out $Q=0,1$ to see which one makes $neg Pleftrightarrow Q=1$.
You should get $P=1,R=0,Q=0$.
$endgroup$
add a comment |
$begingroup$
The easiest (and also most tedious) route is to just make a truth table for that compound statement and see which values of $P$, $Q$ and $R$ make it false.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069508%2fsuppose-the-logical-expression-neg-p-leftrightarrow-q-rightarro%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Both $(neg Pleftrightarrow Q)to R$ and $Pleftrightarrow R$ must be false. The latter is false only when $P=1,R=0$ or $P=0,R=1$.
For the former to be false, $R=0,neg Pleftrightarrow Q=1$. This leaves you with $P=1,R=0$. Now try out $Q=0,1$ to see which one makes $neg Pleftrightarrow Q=1$.
You should get $P=1,R=0,Q=0$.
$endgroup$
add a comment |
$begingroup$
Both $(neg Pleftrightarrow Q)to R$ and $Pleftrightarrow R$ must be false. The latter is false only when $P=1,R=0$ or $P=0,R=1$.
For the former to be false, $R=0,neg Pleftrightarrow Q=1$. This leaves you with $P=1,R=0$. Now try out $Q=0,1$ to see which one makes $neg Pleftrightarrow Q=1$.
You should get $P=1,R=0,Q=0$.
$endgroup$
add a comment |
$begingroup$
Both $(neg Pleftrightarrow Q)to R$ and $Pleftrightarrow R$ must be false. The latter is false only when $P=1,R=0$ or $P=0,R=1$.
For the former to be false, $R=0,neg Pleftrightarrow Q=1$. This leaves you with $P=1,R=0$. Now try out $Q=0,1$ to see which one makes $neg Pleftrightarrow Q=1$.
You should get $P=1,R=0,Q=0$.
$endgroup$
Both $(neg Pleftrightarrow Q)to R$ and $Pleftrightarrow R$ must be false. The latter is false only when $P=1,R=0$ or $P=0,R=1$.
For the former to be false, $R=0,neg Pleftrightarrow Q=1$. This leaves you with $P=1,R=0$. Now try out $Q=0,1$ to see which one makes $neg Pleftrightarrow Q=1$.
You should get $P=1,R=0,Q=0$.
answered Jan 11 at 5:52
Shubham JohriShubham Johri
5,558818
5,558818
add a comment |
add a comment |
$begingroup$
The easiest (and also most tedious) route is to just make a truth table for that compound statement and see which values of $P$, $Q$ and $R$ make it false.
$endgroup$
add a comment |
$begingroup$
The easiest (and also most tedious) route is to just make a truth table for that compound statement and see which values of $P$, $Q$ and $R$ make it false.
$endgroup$
add a comment |
$begingroup$
The easiest (and also most tedious) route is to just make a truth table for that compound statement and see which values of $P$, $Q$ and $R$ make it false.
$endgroup$
The easiest (and also most tedious) route is to just make a truth table for that compound statement and see which values of $P$, $Q$ and $R$ make it false.
answered Jan 11 at 5:47
Stupid Questions IncStupid Questions Inc
12811
12811
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069508%2fsuppose-the-logical-expression-neg-p-leftrightarrow-q-rightarro%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown