What's the value of $int_0^1frac{1}{2y} ln(y) ln^2(1-y) , dy$?












12












$begingroup$


I came across this integral while doing a different problem:




$$ int_0^1frac{1}{2y} ln (y)ln^2(1-y) , dy$$




I think we can evaluate this integral by differentiating the common integral representation of the beta function, but it seems to get a bit messy.










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    Hint: Introduce $I(a,b)=int_0^1frac{1}{2y}y^a(1-y)^b,dy$. Calculate $$partial_{a,b,b}I(a,b)$$ and study the limit of it as $ato0^+$ and $bto0^+$. You will get a rational constant times $pi^4$ if I'm not completely mistaken.
    $endgroup$
    – mickep
    Jan 6 '16 at 12:47










  • $begingroup$
    $-pi^4/360$ to be precise [thx to Mathematica]
    $endgroup$
    – Pierpaolo Vivo
    Jan 6 '16 at 13:51








  • 1




    $begingroup$
    @mickep Mind giving a complete answer? I'm slightly confused as to how taking the limits does anything except revert back to our original integral (I'm not particularly good at analysis).
    $endgroup$
    – Mattos
    Jan 6 '16 at 14:10










  • $begingroup$
    I deleted my answer because the same approach was used HERE to evaluate $int_{0}^{1}frac{ln(1-x)ln^{2} (x)}{x-1} , dx $.
    $endgroup$
    – Random Variable
    Oct 4 '16 at 15:28
















12












$begingroup$


I came across this integral while doing a different problem:




$$ int_0^1frac{1}{2y} ln (y)ln^2(1-y) , dy$$




I think we can evaluate this integral by differentiating the common integral representation of the beta function, but it seems to get a bit messy.










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    Hint: Introduce $I(a,b)=int_0^1frac{1}{2y}y^a(1-y)^b,dy$. Calculate $$partial_{a,b,b}I(a,b)$$ and study the limit of it as $ato0^+$ and $bto0^+$. You will get a rational constant times $pi^4$ if I'm not completely mistaken.
    $endgroup$
    – mickep
    Jan 6 '16 at 12:47










  • $begingroup$
    $-pi^4/360$ to be precise [thx to Mathematica]
    $endgroup$
    – Pierpaolo Vivo
    Jan 6 '16 at 13:51








  • 1




    $begingroup$
    @mickep Mind giving a complete answer? I'm slightly confused as to how taking the limits does anything except revert back to our original integral (I'm not particularly good at analysis).
    $endgroup$
    – Mattos
    Jan 6 '16 at 14:10










  • $begingroup$
    I deleted my answer because the same approach was used HERE to evaluate $int_{0}^{1}frac{ln(1-x)ln^{2} (x)}{x-1} , dx $.
    $endgroup$
    – Random Variable
    Oct 4 '16 at 15:28














12












12








12


5



$begingroup$


I came across this integral while doing a different problem:




$$ int_0^1frac{1}{2y} ln (y)ln^2(1-y) , dy$$




I think we can evaluate this integral by differentiating the common integral representation of the beta function, but it seems to get a bit messy.










share|cite|improve this question











$endgroup$




I came across this integral while doing a different problem:




$$ int_0^1frac{1}{2y} ln (y)ln^2(1-y) , dy$$




I think we can evaluate this integral by differentiating the common integral representation of the beta function, but it seems to get a bit messy.







integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 23 '16 at 3:31









Random Variable

25.6k173139




25.6k173139










asked Jan 6 '16 at 12:36









LontLont

1296




1296








  • 4




    $begingroup$
    Hint: Introduce $I(a,b)=int_0^1frac{1}{2y}y^a(1-y)^b,dy$. Calculate $$partial_{a,b,b}I(a,b)$$ and study the limit of it as $ato0^+$ and $bto0^+$. You will get a rational constant times $pi^4$ if I'm not completely mistaken.
    $endgroup$
    – mickep
    Jan 6 '16 at 12:47










  • $begingroup$
    $-pi^4/360$ to be precise [thx to Mathematica]
    $endgroup$
    – Pierpaolo Vivo
    Jan 6 '16 at 13:51








  • 1




    $begingroup$
    @mickep Mind giving a complete answer? I'm slightly confused as to how taking the limits does anything except revert back to our original integral (I'm not particularly good at analysis).
    $endgroup$
    – Mattos
    Jan 6 '16 at 14:10










  • $begingroup$
    I deleted my answer because the same approach was used HERE to evaluate $int_{0}^{1}frac{ln(1-x)ln^{2} (x)}{x-1} , dx $.
    $endgroup$
    – Random Variable
    Oct 4 '16 at 15:28














  • 4




    $begingroup$
    Hint: Introduce $I(a,b)=int_0^1frac{1}{2y}y^a(1-y)^b,dy$. Calculate $$partial_{a,b,b}I(a,b)$$ and study the limit of it as $ato0^+$ and $bto0^+$. You will get a rational constant times $pi^4$ if I'm not completely mistaken.
    $endgroup$
    – mickep
    Jan 6 '16 at 12:47










  • $begingroup$
    $-pi^4/360$ to be precise [thx to Mathematica]
    $endgroup$
    – Pierpaolo Vivo
    Jan 6 '16 at 13:51








  • 1




    $begingroup$
    @mickep Mind giving a complete answer? I'm slightly confused as to how taking the limits does anything except revert back to our original integral (I'm not particularly good at analysis).
    $endgroup$
    – Mattos
    Jan 6 '16 at 14:10










  • $begingroup$
    I deleted my answer because the same approach was used HERE to evaluate $int_{0}^{1}frac{ln(1-x)ln^{2} (x)}{x-1} , dx $.
    $endgroup$
    – Random Variable
    Oct 4 '16 at 15:28








4




4




$begingroup$
Hint: Introduce $I(a,b)=int_0^1frac{1}{2y}y^a(1-y)^b,dy$. Calculate $$partial_{a,b,b}I(a,b)$$ and study the limit of it as $ato0^+$ and $bto0^+$. You will get a rational constant times $pi^4$ if I'm not completely mistaken.
$endgroup$
– mickep
Jan 6 '16 at 12:47




$begingroup$
Hint: Introduce $I(a,b)=int_0^1frac{1}{2y}y^a(1-y)^b,dy$. Calculate $$partial_{a,b,b}I(a,b)$$ and study the limit of it as $ato0^+$ and $bto0^+$. You will get a rational constant times $pi^4$ if I'm not completely mistaken.
$endgroup$
– mickep
Jan 6 '16 at 12:47












$begingroup$
$-pi^4/360$ to be precise [thx to Mathematica]
$endgroup$
– Pierpaolo Vivo
Jan 6 '16 at 13:51






$begingroup$
$-pi^4/360$ to be precise [thx to Mathematica]
$endgroup$
– Pierpaolo Vivo
Jan 6 '16 at 13:51






1




1




$begingroup$
@mickep Mind giving a complete answer? I'm slightly confused as to how taking the limits does anything except revert back to our original integral (I'm not particularly good at analysis).
$endgroup$
– Mattos
Jan 6 '16 at 14:10




$begingroup$
@mickep Mind giving a complete answer? I'm slightly confused as to how taking the limits does anything except revert back to our original integral (I'm not particularly good at analysis).
$endgroup$
– Mattos
Jan 6 '16 at 14:10












$begingroup$
I deleted my answer because the same approach was used HERE to evaluate $int_{0}^{1}frac{ln(1-x)ln^{2} (x)}{x-1} , dx $.
$endgroup$
– Random Variable
Oct 4 '16 at 15:28




$begingroup$
I deleted my answer because the same approach was used HERE to evaluate $int_{0}^{1}frac{ln(1-x)ln^{2} (x)}{x-1} , dx $.
$endgroup$
– Random Variable
Oct 4 '16 at 15:28










6 Answers
6






active

oldest

votes


















10












$begingroup$

We start by introducing the integral
$$
I(a,b)=frac{1}{2}int_0^1y^{a-1}(1-y)^b,dy=frac{1}{2}B(a,1+b),
$$
where $B$ denotes the beta function. Note that this integral is singular at $a=0$ and $b=-1$. Since $partial_a y^a=y^aln y$ we are
led to calculate
$$
partial_{a,b,b}I(a,b)=frac{1}{2}int_0^1 y^{a-1}(1-y)^bln ybigl(ln(1-y)bigr)^2,dy
$$
as $a$ and $b$ tend to $0$. We will below inser the "non-dangerous" point $b=0$. In other words, we want to calculate
$$
partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}.
$$
When differentiating the beta function, polygammas appear. Indeed,
$$
begin{aligned}
partial_bB(a,1+b)&=B(a,1+b)bigl(psi_0(1+b)-psi_0(1+a+b)bigr)\
partial_{b,b}B(a,1+b)&=B(a,1+b)Bigl(bigl(psi_0(1+b)-psi_0(1+a+b)bigr)^2
+psi_1(1+b)-psi_1(1+a+b)Bigr).
end{aligned}
$$
Next, we can actually insert $b=0$ before we differentiate with respect to
$a$ and take the limit $ato 0$. We should differentiate the function (here we have used the facts that $psi_0(1)=-gamma$ (Euler's constant) and that $psi_1(1)=pi^2/6$)
$$
f(a)=B(a,1)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)
$$
and calculate $lim_{ato 0^+}f'(a)$. We get that
$$
begin{aligned}
f'(a)&=B(a,1)bigl(psi_0(a)-psi_0(1+a)bigr)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)\
&quad+B(a,1)Bigl(2bigl(gamma+psi_0(1+a)bigr)psi_1(1+a)-psi_2(1+a)Bigr)
end{aligned}
$$
Next, we use the (non-obvious) expansions around $a=0$
$$
begin{aligned}
B(a,1)&=frac{1}{a}+O(1)\
psi_0(a)&=-frac{1}{a}-gamma+O(a)\
psi_0(1+a)&=-gamma+frac{pi^2}{6}a+O(a^2)\
psi_1(1+a)&=frac{pi^2}{6}+psi_2(1)a+frac{pi^4}{30}a^2+O(a^3)\
psi_2(1+a)&=psi_2(1)+frac{pi^4}{15}a+O(a^2).
end{aligned}
$$
to find that, as $ato0^+$,
$$
begin{aligned}
f'(a)&approx -frac{1}{a^2}Bigl(bigl(frac{pi^2}{6}abigr)^2-psi_2(1)a-frac{pi^4}{30}a^2Bigr)+frac{1}{a}Bigl(2frac{pi^2}{6}afrac{pi^2}{6}-psi_2(1)-frac{pi^4}{15}aBigr)+O(a)\
&=-frac{pi^4}{180}+O(a)
end{aligned}
$$
as $ato 0^+$. We conclude that
$$
partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}=-frac{pi^4}{180}.
$$
Finally, dividing by $2$ (remember, we had a one-half in front of the beta function in the beginning), we get that
$$
int_0^1frac{1}{2y}ln y(ln(1-y))^2,dy=-frac{1}{360}pi^4.
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Nice (+1) i am asking myself if there may be a more elementary way to derive this...
    $endgroup$
    – tired
    Jan 6 '16 at 21:35










  • $begingroup$
    @tired Thank you. I also wondered if there was a slimmer way, and I think that Random Variable indeed has found one. Perhaps there is even more elementary ways...
    $endgroup$
    – mickep
    Jan 7 '16 at 6:06



















7












$begingroup$

There is a closed form antiderivative that can be found using repeated integration by parts:
$$begin{align}intfrac{ln ycdotln^2(1-y)}{2y}dy=frac{ln^4(1-y)}8+frac{ln ycdotln ^3(1-y)}6+left(frac{pi^2}{12}-frac{ln ^2y}2right)cdotln ^2(1-y)\
+left[left(frac{pi^2}6+operatorname{Li}_2left(tfrac y{y-1}right)right)cdotln y-operatorname{Li}_3(1-y)-operatorname{Li}_3left(tfrac y{y-1}right)right]cdotln(1-y)\
+left[vphantom{Large|}zeta(3)-operatorname{Li}_3(1-y)right]cdotln y+operatorname{Li}_4(1-y)-operatorname{Li}_4(y)-operatorname{Li}_4left(tfrac y{y-1}right)color{gray}{+C}end{align}$$






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    Another one:



    Write $log^2(1-y)=sum_{n,m=1}^{infty}frac{y^{m+n}}{mn}$



    we obtain (exchanging summation and integration)



    $$
    2I=sum_{n,m=1}^{infty}frac{1}{mn}int_0^1log(y)y^{m+n-1}=\
    -underbrace{sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}}_{S}
    $$



    the double sum can be tackeled by writing (i shamelessly benefit from this awesome answer)



    $$
    S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}=frac{1}{2}sum_{n,m=1}^{infty}frac{1}{m^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2m^2}
    $$



    shifting arguments in the last two sums gives



    $$
    2S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}-sum_{m=1,n<m}^{infty}frac{1}{n^2m^2}-sum_{m=1,n>m}^{infty}frac{1}{n^2m^2}
    $$



    which yields



    $$
    2S=sum_{n=m=1}^{infty}frac{1}{m^2n^2}=zeta(4)=frac{pi^4}{90}
    $$



    and therefore



    $$
    I=-S/2=-frac{pi^4}{360}
    $$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      (+1) :-) Please don't call it a shameless benefit, I originally got the sum while replicating the process of the evaluation of $sumlimits_{n=1}^{infty} frac{H_n}{n^3}$, see where that puts me?! :P
      $endgroup$
      – r9m
      Jan 7 '16 at 13:36






    • 1




      $begingroup$
      @r9m Let me borrow something from Issac Newton: ''If I have seen further, it is by standing on the shoulders of giants'' ;-)
      $endgroup$
      – tired
      Jan 7 '16 at 13:44










    • $begingroup$
      Here's the link to Felix Marin's evaluation of the sum. :-)
      $endgroup$
      – r9m
      Jan 7 '16 at 13:48



















    1












    $begingroup$

    This question, for some reason, popped up in the Top Questions tab, and I thought I'd share another way to solve this integral using Harmonic Numbers. I hope you guys don't mind!



    First, we use integration by parts on $u=log^2(1-x)$ to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =frac 12log^2xlog^2(1-x),Biggrrvert_0^1+intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}\ & =intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}end{align*}$$Now use the fact that




    $$H(x)=-frac {log(1-x)}{1-x}=sumlimits_{ngeq1}H_nx^n$$




    And substitute to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =-sumlimits_{ngeq1}H_nintlimits_0^1dx,x^nlog^2x\ & =-limlimits_{muto0}sumlimits_{ngeq1}H_nfrac {partial^2}{partialmu^2}frac 1{n+mu+1}\ & =-2sumlimits_{ngeq1}frac {H_n}{(n+1)^3}end{align*}$$Split the sum up and use a well-known formula due to Euler




    $$sumlimits_{ngeq1}frac {H_n}{n^m}=frac 12(m+2)zeta(m+1)-frac 12sumlimits_{n=1}^{m-2}zeta(m-n)zeta(n+1)$$




    Therefore$$I=2zeta(4)-5zeta(4)+zeta^2(2)=-frac {pi^4}{180}$$Our desired integral is half of that, so take half and the answer is$$intlimits_0^1dx,frac {log xlog^2(1-x)}{2x}color{blue}{=-frac {pi^4}{360}}$$






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      I offer up yet another approach, this one relying on the Maclaurin series expansion for $ln^2 (1 - x)$. It is similar to that used by @Frank W.



      As was shown here
      $$ln^2 (1 - x) = 2 sum_{n = 2}^infty frac{H_{n - 1} x^n}{n}, qquad |x| < 1.$$
      Here $H_n$ denotes the Harmonic number. So for the integral we may write
      begin{align}
      int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{H_{n - 1}}{n} int_0^1 x^{n - 1} ln x , dx = -sum_{n = 2}^infty frac{H_{n - 1}}{n^3},
      end{align}

      after integrating by parts. From properties for the Harmonic number, since
      $$H_n = H_{n - 1} + frac{1}{n},$$
      the infinite sum can be rewritten as
      begin{align}
      int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{1}{n^4} - sum_{n = 2}^infty frac{H_n}{n^4} = sum_{n = 1}^infty frac{1}{n^4} - sum_{n = 1}^infty frac{H_n}{n^4}.
      end{align}

      Values for each of these sums are well known. For the first
      $$sum_{n = 1}^infty frac{1}{n^4} = zeta (4) = frac{pi^4}{90}.$$
      For the second sum
      $$sum_{n = 1}^infty frac{H_n}{n^4} = frac{pi^4}{72}.$$
      (for various proofs of this result, see here) Thus
      $$int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx = frac{pi^4}{90} - frac{pi^4}{72} = -frac{pi^4}{360}.$$






      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{ic}{mathrm{i}}
        newcommand{mc}[1]{mathcal{#1}}
        newcommand{mrm}[1]{mathrm{#1}}
        newcommand{pars}[1]{left(,{#1},right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert,{#1},rightvert}$




        $ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y =
        -,{pi^{4} over 360}:
        {large ?}}$.




        begin{align}
        &bbox[10px,#ffd]{ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y}} =
        left.{1 over 2},{partial^{3} over partialnu^{2}partialmu}int_{0}^{1}{y^{mu}bracks{pars{1 - y}^{nu} - 1} over y},dd y,rightvert_{ {largemu = 0^{+}} atop {largenu = 0}}
        \[5mm] = &
        {1 over 2},{partial^{3} over partialnu^{2}partialmu}
        bracks{{Gammapars{mu}Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}quad
        pars{~Gamma: Gamma Function~}
        \[5mm] = &
        {1 over 2},{partial^{3} over partialnu^{2}partialmu}
        bracks{{pi over Gammapars{1 - mu}sinpars{pimu}},{Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}
        \[5mm] = &
        {1 over 2},{partial^{3} over partialnu^{2}partialmu}
        bracks{{1 over mu},{Gammapars{nu + 1} over Gammapars{1 - mu}Gammapars{mu + nu + 1}} + {pi^{2} over 6},mu}
        _{ {largemu = 0^{+}} atop {largenu = 0}}
        \[5mm] = &
        {1 over 2},{partial^{3} over partialnu^{2}partialmu}
        bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}}mu + {pi^{2} over 6},mu}_{ {largemu = 0^{+}} atop {largenu = 0}}
        \[5mm] = &
        {1 over 2},{partial^{2} over partialnu^{2}}
        bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}
        Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}} + {pi^{2} over 6}}
        _{ {largemu = 0^{+}} atop {largenu = 0}} =
        {1 over 4},{partial^{4} over partialnu^{2}partialmu^{2}}
        {nu choose mu + nu}_{ {largemu = 0^{+}} atop {largenu = 0}}
        \[5mm] = &
        {1 over 4},partiald[2]{}{nu}
        bracks{-,{pi^{2} over 6} + H^{2}_{nu} - Psi, 'pars{1 + nu}}
        _{ nu = 0}quad
        pars{~H_{z}: Harmonic Number~}
        \[5mm] = &
        {1 over 4}bracks{2Psi, '^{2}pars{1} + 2H_{0},Psi,''pars{1}- Psi, '''pars{1}}
        qquadqquadqquadqquad
        left{begin{array}{lcr}
        ds{Psi, 'pars{1}} & ds{=} & ds{pi^{2} over 6}
        \
        ds{Psi, '''pars{1}} & ds{=} & ds{pi^{4} over 15}
        \
        ds{H_{0}} & ds{=} & ds{0}
        end{array}right.
        \[5mm] = &
        {1 over 4}bracks{2pars{pi^{2} over 6}^{2} + 0 - {pi^{4} over 15}} =
        bbx{-,{pi^{4} over 360}}
        end{align}






        share|cite|improve this answer











        $endgroup$














          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1601957%2fwhats-the-value-of-int-01-frac12y-lny-ln21-y-dy%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          6 Answers
          6






          active

          oldest

          votes








          6 Answers
          6






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          10












          $begingroup$

          We start by introducing the integral
          $$
          I(a,b)=frac{1}{2}int_0^1y^{a-1}(1-y)^b,dy=frac{1}{2}B(a,1+b),
          $$
          where $B$ denotes the beta function. Note that this integral is singular at $a=0$ and $b=-1$. Since $partial_a y^a=y^aln y$ we are
          led to calculate
          $$
          partial_{a,b,b}I(a,b)=frac{1}{2}int_0^1 y^{a-1}(1-y)^bln ybigl(ln(1-y)bigr)^2,dy
          $$
          as $a$ and $b$ tend to $0$. We will below inser the "non-dangerous" point $b=0$. In other words, we want to calculate
          $$
          partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}.
          $$
          When differentiating the beta function, polygammas appear. Indeed,
          $$
          begin{aligned}
          partial_bB(a,1+b)&=B(a,1+b)bigl(psi_0(1+b)-psi_0(1+a+b)bigr)\
          partial_{b,b}B(a,1+b)&=B(a,1+b)Bigl(bigl(psi_0(1+b)-psi_0(1+a+b)bigr)^2
          +psi_1(1+b)-psi_1(1+a+b)Bigr).
          end{aligned}
          $$
          Next, we can actually insert $b=0$ before we differentiate with respect to
          $a$ and take the limit $ato 0$. We should differentiate the function (here we have used the facts that $psi_0(1)=-gamma$ (Euler's constant) and that $psi_1(1)=pi^2/6$)
          $$
          f(a)=B(a,1)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)
          $$
          and calculate $lim_{ato 0^+}f'(a)$. We get that
          $$
          begin{aligned}
          f'(a)&=B(a,1)bigl(psi_0(a)-psi_0(1+a)bigr)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)\
          &quad+B(a,1)Bigl(2bigl(gamma+psi_0(1+a)bigr)psi_1(1+a)-psi_2(1+a)Bigr)
          end{aligned}
          $$
          Next, we use the (non-obvious) expansions around $a=0$
          $$
          begin{aligned}
          B(a,1)&=frac{1}{a}+O(1)\
          psi_0(a)&=-frac{1}{a}-gamma+O(a)\
          psi_0(1+a)&=-gamma+frac{pi^2}{6}a+O(a^2)\
          psi_1(1+a)&=frac{pi^2}{6}+psi_2(1)a+frac{pi^4}{30}a^2+O(a^3)\
          psi_2(1+a)&=psi_2(1)+frac{pi^4}{15}a+O(a^2).
          end{aligned}
          $$
          to find that, as $ato0^+$,
          $$
          begin{aligned}
          f'(a)&approx -frac{1}{a^2}Bigl(bigl(frac{pi^2}{6}abigr)^2-psi_2(1)a-frac{pi^4}{30}a^2Bigr)+frac{1}{a}Bigl(2frac{pi^2}{6}afrac{pi^2}{6}-psi_2(1)-frac{pi^4}{15}aBigr)+O(a)\
          &=-frac{pi^4}{180}+O(a)
          end{aligned}
          $$
          as $ato 0^+$. We conclude that
          $$
          partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}=-frac{pi^4}{180}.
          $$
          Finally, dividing by $2$ (remember, we had a one-half in front of the beta function in the beginning), we get that
          $$
          int_0^1frac{1}{2y}ln y(ln(1-y))^2,dy=-frac{1}{360}pi^4.
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Nice (+1) i am asking myself if there may be a more elementary way to derive this...
            $endgroup$
            – tired
            Jan 6 '16 at 21:35










          • $begingroup$
            @tired Thank you. I also wondered if there was a slimmer way, and I think that Random Variable indeed has found one. Perhaps there is even more elementary ways...
            $endgroup$
            – mickep
            Jan 7 '16 at 6:06
















          10












          $begingroup$

          We start by introducing the integral
          $$
          I(a,b)=frac{1}{2}int_0^1y^{a-1}(1-y)^b,dy=frac{1}{2}B(a,1+b),
          $$
          where $B$ denotes the beta function. Note that this integral is singular at $a=0$ and $b=-1$. Since $partial_a y^a=y^aln y$ we are
          led to calculate
          $$
          partial_{a,b,b}I(a,b)=frac{1}{2}int_0^1 y^{a-1}(1-y)^bln ybigl(ln(1-y)bigr)^2,dy
          $$
          as $a$ and $b$ tend to $0$. We will below inser the "non-dangerous" point $b=0$. In other words, we want to calculate
          $$
          partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}.
          $$
          When differentiating the beta function, polygammas appear. Indeed,
          $$
          begin{aligned}
          partial_bB(a,1+b)&=B(a,1+b)bigl(psi_0(1+b)-psi_0(1+a+b)bigr)\
          partial_{b,b}B(a,1+b)&=B(a,1+b)Bigl(bigl(psi_0(1+b)-psi_0(1+a+b)bigr)^2
          +psi_1(1+b)-psi_1(1+a+b)Bigr).
          end{aligned}
          $$
          Next, we can actually insert $b=0$ before we differentiate with respect to
          $a$ and take the limit $ato 0$. We should differentiate the function (here we have used the facts that $psi_0(1)=-gamma$ (Euler's constant) and that $psi_1(1)=pi^2/6$)
          $$
          f(a)=B(a,1)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)
          $$
          and calculate $lim_{ato 0^+}f'(a)$. We get that
          $$
          begin{aligned}
          f'(a)&=B(a,1)bigl(psi_0(a)-psi_0(1+a)bigr)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)\
          &quad+B(a,1)Bigl(2bigl(gamma+psi_0(1+a)bigr)psi_1(1+a)-psi_2(1+a)Bigr)
          end{aligned}
          $$
          Next, we use the (non-obvious) expansions around $a=0$
          $$
          begin{aligned}
          B(a,1)&=frac{1}{a}+O(1)\
          psi_0(a)&=-frac{1}{a}-gamma+O(a)\
          psi_0(1+a)&=-gamma+frac{pi^2}{6}a+O(a^2)\
          psi_1(1+a)&=frac{pi^2}{6}+psi_2(1)a+frac{pi^4}{30}a^2+O(a^3)\
          psi_2(1+a)&=psi_2(1)+frac{pi^4}{15}a+O(a^2).
          end{aligned}
          $$
          to find that, as $ato0^+$,
          $$
          begin{aligned}
          f'(a)&approx -frac{1}{a^2}Bigl(bigl(frac{pi^2}{6}abigr)^2-psi_2(1)a-frac{pi^4}{30}a^2Bigr)+frac{1}{a}Bigl(2frac{pi^2}{6}afrac{pi^2}{6}-psi_2(1)-frac{pi^4}{15}aBigr)+O(a)\
          &=-frac{pi^4}{180}+O(a)
          end{aligned}
          $$
          as $ato 0^+$. We conclude that
          $$
          partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}=-frac{pi^4}{180}.
          $$
          Finally, dividing by $2$ (remember, we had a one-half in front of the beta function in the beginning), we get that
          $$
          int_0^1frac{1}{2y}ln y(ln(1-y))^2,dy=-frac{1}{360}pi^4.
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Nice (+1) i am asking myself if there may be a more elementary way to derive this...
            $endgroup$
            – tired
            Jan 6 '16 at 21:35










          • $begingroup$
            @tired Thank you. I also wondered if there was a slimmer way, and I think that Random Variable indeed has found one. Perhaps there is even more elementary ways...
            $endgroup$
            – mickep
            Jan 7 '16 at 6:06














          10












          10








          10





          $begingroup$

          We start by introducing the integral
          $$
          I(a,b)=frac{1}{2}int_0^1y^{a-1}(1-y)^b,dy=frac{1}{2}B(a,1+b),
          $$
          where $B$ denotes the beta function. Note that this integral is singular at $a=0$ and $b=-1$. Since $partial_a y^a=y^aln y$ we are
          led to calculate
          $$
          partial_{a,b,b}I(a,b)=frac{1}{2}int_0^1 y^{a-1}(1-y)^bln ybigl(ln(1-y)bigr)^2,dy
          $$
          as $a$ and $b$ tend to $0$. We will below inser the "non-dangerous" point $b=0$. In other words, we want to calculate
          $$
          partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}.
          $$
          When differentiating the beta function, polygammas appear. Indeed,
          $$
          begin{aligned}
          partial_bB(a,1+b)&=B(a,1+b)bigl(psi_0(1+b)-psi_0(1+a+b)bigr)\
          partial_{b,b}B(a,1+b)&=B(a,1+b)Bigl(bigl(psi_0(1+b)-psi_0(1+a+b)bigr)^2
          +psi_1(1+b)-psi_1(1+a+b)Bigr).
          end{aligned}
          $$
          Next, we can actually insert $b=0$ before we differentiate with respect to
          $a$ and take the limit $ato 0$. We should differentiate the function (here we have used the facts that $psi_0(1)=-gamma$ (Euler's constant) and that $psi_1(1)=pi^2/6$)
          $$
          f(a)=B(a,1)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)
          $$
          and calculate $lim_{ato 0^+}f'(a)$. We get that
          $$
          begin{aligned}
          f'(a)&=B(a,1)bigl(psi_0(a)-psi_0(1+a)bigr)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)\
          &quad+B(a,1)Bigl(2bigl(gamma+psi_0(1+a)bigr)psi_1(1+a)-psi_2(1+a)Bigr)
          end{aligned}
          $$
          Next, we use the (non-obvious) expansions around $a=0$
          $$
          begin{aligned}
          B(a,1)&=frac{1}{a}+O(1)\
          psi_0(a)&=-frac{1}{a}-gamma+O(a)\
          psi_0(1+a)&=-gamma+frac{pi^2}{6}a+O(a^2)\
          psi_1(1+a)&=frac{pi^2}{6}+psi_2(1)a+frac{pi^4}{30}a^2+O(a^3)\
          psi_2(1+a)&=psi_2(1)+frac{pi^4}{15}a+O(a^2).
          end{aligned}
          $$
          to find that, as $ato0^+$,
          $$
          begin{aligned}
          f'(a)&approx -frac{1}{a^2}Bigl(bigl(frac{pi^2}{6}abigr)^2-psi_2(1)a-frac{pi^4}{30}a^2Bigr)+frac{1}{a}Bigl(2frac{pi^2}{6}afrac{pi^2}{6}-psi_2(1)-frac{pi^4}{15}aBigr)+O(a)\
          &=-frac{pi^4}{180}+O(a)
          end{aligned}
          $$
          as $ato 0^+$. We conclude that
          $$
          partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}=-frac{pi^4}{180}.
          $$
          Finally, dividing by $2$ (remember, we had a one-half in front of the beta function in the beginning), we get that
          $$
          int_0^1frac{1}{2y}ln y(ln(1-y))^2,dy=-frac{1}{360}pi^4.
          $$






          share|cite|improve this answer









          $endgroup$



          We start by introducing the integral
          $$
          I(a,b)=frac{1}{2}int_0^1y^{a-1}(1-y)^b,dy=frac{1}{2}B(a,1+b),
          $$
          where $B$ denotes the beta function. Note that this integral is singular at $a=0$ and $b=-1$. Since $partial_a y^a=y^aln y$ we are
          led to calculate
          $$
          partial_{a,b,b}I(a,b)=frac{1}{2}int_0^1 y^{a-1}(1-y)^bln ybigl(ln(1-y)bigr)^2,dy
          $$
          as $a$ and $b$ tend to $0$. We will below inser the "non-dangerous" point $b=0$. In other words, we want to calculate
          $$
          partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}.
          $$
          When differentiating the beta function, polygammas appear. Indeed,
          $$
          begin{aligned}
          partial_bB(a,1+b)&=B(a,1+b)bigl(psi_0(1+b)-psi_0(1+a+b)bigr)\
          partial_{b,b}B(a,1+b)&=B(a,1+b)Bigl(bigl(psi_0(1+b)-psi_0(1+a+b)bigr)^2
          +psi_1(1+b)-psi_1(1+a+b)Bigr).
          end{aligned}
          $$
          Next, we can actually insert $b=0$ before we differentiate with respect to
          $a$ and take the limit $ato 0$. We should differentiate the function (here we have used the facts that $psi_0(1)=-gamma$ (Euler's constant) and that $psi_1(1)=pi^2/6$)
          $$
          f(a)=B(a,1)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)
          $$
          and calculate $lim_{ato 0^+}f'(a)$. We get that
          $$
          begin{aligned}
          f'(a)&=B(a,1)bigl(psi_0(a)-psi_0(1+a)bigr)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)\
          &quad+B(a,1)Bigl(2bigl(gamma+psi_0(1+a)bigr)psi_1(1+a)-psi_2(1+a)Bigr)
          end{aligned}
          $$
          Next, we use the (non-obvious) expansions around $a=0$
          $$
          begin{aligned}
          B(a,1)&=frac{1}{a}+O(1)\
          psi_0(a)&=-frac{1}{a}-gamma+O(a)\
          psi_0(1+a)&=-gamma+frac{pi^2}{6}a+O(a^2)\
          psi_1(1+a)&=frac{pi^2}{6}+psi_2(1)a+frac{pi^4}{30}a^2+O(a^3)\
          psi_2(1+a)&=psi_2(1)+frac{pi^4}{15}a+O(a^2).
          end{aligned}
          $$
          to find that, as $ato0^+$,
          $$
          begin{aligned}
          f'(a)&approx -frac{1}{a^2}Bigl(bigl(frac{pi^2}{6}abigr)^2-psi_2(1)a-frac{pi^4}{30}a^2Bigr)+frac{1}{a}Bigl(2frac{pi^2}{6}afrac{pi^2}{6}-psi_2(1)-frac{pi^4}{15}aBigr)+O(a)\
          &=-frac{pi^4}{180}+O(a)
          end{aligned}
          $$
          as $ato 0^+$. We conclude that
          $$
          partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}=-frac{pi^4}{180}.
          $$
          Finally, dividing by $2$ (remember, we had a one-half in front of the beta function in the beginning), we get that
          $$
          int_0^1frac{1}{2y}ln y(ln(1-y))^2,dy=-frac{1}{360}pi^4.
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 6 '16 at 15:38









          mickepmickep

          18.7k12351




          18.7k12351












          • $begingroup$
            Nice (+1) i am asking myself if there may be a more elementary way to derive this...
            $endgroup$
            – tired
            Jan 6 '16 at 21:35










          • $begingroup$
            @tired Thank you. I also wondered if there was a slimmer way, and I think that Random Variable indeed has found one. Perhaps there is even more elementary ways...
            $endgroup$
            – mickep
            Jan 7 '16 at 6:06


















          • $begingroup$
            Nice (+1) i am asking myself if there may be a more elementary way to derive this...
            $endgroup$
            – tired
            Jan 6 '16 at 21:35










          • $begingroup$
            @tired Thank you. I also wondered if there was a slimmer way, and I think that Random Variable indeed has found one. Perhaps there is even more elementary ways...
            $endgroup$
            – mickep
            Jan 7 '16 at 6:06
















          $begingroup$
          Nice (+1) i am asking myself if there may be a more elementary way to derive this...
          $endgroup$
          – tired
          Jan 6 '16 at 21:35




          $begingroup$
          Nice (+1) i am asking myself if there may be a more elementary way to derive this...
          $endgroup$
          – tired
          Jan 6 '16 at 21:35












          $begingroup$
          @tired Thank you. I also wondered if there was a slimmer way, and I think that Random Variable indeed has found one. Perhaps there is even more elementary ways...
          $endgroup$
          – mickep
          Jan 7 '16 at 6:06




          $begingroup$
          @tired Thank you. I also wondered if there was a slimmer way, and I think that Random Variable indeed has found one. Perhaps there is even more elementary ways...
          $endgroup$
          – mickep
          Jan 7 '16 at 6:06











          7












          $begingroup$

          There is a closed form antiderivative that can be found using repeated integration by parts:
          $$begin{align}intfrac{ln ycdotln^2(1-y)}{2y}dy=frac{ln^4(1-y)}8+frac{ln ycdotln ^3(1-y)}6+left(frac{pi^2}{12}-frac{ln ^2y}2right)cdotln ^2(1-y)\
          +left[left(frac{pi^2}6+operatorname{Li}_2left(tfrac y{y-1}right)right)cdotln y-operatorname{Li}_3(1-y)-operatorname{Li}_3left(tfrac y{y-1}right)right]cdotln(1-y)\
          +left[vphantom{Large|}zeta(3)-operatorname{Li}_3(1-y)right]cdotln y+operatorname{Li}_4(1-y)-operatorname{Li}_4(y)-operatorname{Li}_4left(tfrac y{y-1}right)color{gray}{+C}end{align}$$






          share|cite|improve this answer









          $endgroup$


















            7












            $begingroup$

            There is a closed form antiderivative that can be found using repeated integration by parts:
            $$begin{align}intfrac{ln ycdotln^2(1-y)}{2y}dy=frac{ln^4(1-y)}8+frac{ln ycdotln ^3(1-y)}6+left(frac{pi^2}{12}-frac{ln ^2y}2right)cdotln ^2(1-y)\
            +left[left(frac{pi^2}6+operatorname{Li}_2left(tfrac y{y-1}right)right)cdotln y-operatorname{Li}_3(1-y)-operatorname{Li}_3left(tfrac y{y-1}right)right]cdotln(1-y)\
            +left[vphantom{Large|}zeta(3)-operatorname{Li}_3(1-y)right]cdotln y+operatorname{Li}_4(1-y)-operatorname{Li}_4(y)-operatorname{Li}_4left(tfrac y{y-1}right)color{gray}{+C}end{align}$$






            share|cite|improve this answer









            $endgroup$
















              7












              7








              7





              $begingroup$

              There is a closed form antiderivative that can be found using repeated integration by parts:
              $$begin{align}intfrac{ln ycdotln^2(1-y)}{2y}dy=frac{ln^4(1-y)}8+frac{ln ycdotln ^3(1-y)}6+left(frac{pi^2}{12}-frac{ln ^2y}2right)cdotln ^2(1-y)\
              +left[left(frac{pi^2}6+operatorname{Li}_2left(tfrac y{y-1}right)right)cdotln y-operatorname{Li}_3(1-y)-operatorname{Li}_3left(tfrac y{y-1}right)right]cdotln(1-y)\
              +left[vphantom{Large|}zeta(3)-operatorname{Li}_3(1-y)right]cdotln y+operatorname{Li}_4(1-y)-operatorname{Li}_4(y)-operatorname{Li}_4left(tfrac y{y-1}right)color{gray}{+C}end{align}$$






              share|cite|improve this answer









              $endgroup$



              There is a closed form antiderivative that can be found using repeated integration by parts:
              $$begin{align}intfrac{ln ycdotln^2(1-y)}{2y}dy=frac{ln^4(1-y)}8+frac{ln ycdotln ^3(1-y)}6+left(frac{pi^2}{12}-frac{ln ^2y}2right)cdotln ^2(1-y)\
              +left[left(frac{pi^2}6+operatorname{Li}_2left(tfrac y{y-1}right)right)cdotln y-operatorname{Li}_3(1-y)-operatorname{Li}_3left(tfrac y{y-1}right)right]cdotln(1-y)\
              +left[vphantom{Large|}zeta(3)-operatorname{Li}_3(1-y)right]cdotln y+operatorname{Li}_4(1-y)-operatorname{Li}_4(y)-operatorname{Li}_4left(tfrac y{y-1}right)color{gray}{+C}end{align}$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 6 '16 at 21:34









              Vladimir ReshetnikovVladimir Reshetnikov

              24.6k5121235




              24.6k5121235























                  3












                  $begingroup$

                  Another one:



                  Write $log^2(1-y)=sum_{n,m=1}^{infty}frac{y^{m+n}}{mn}$



                  we obtain (exchanging summation and integration)



                  $$
                  2I=sum_{n,m=1}^{infty}frac{1}{mn}int_0^1log(y)y^{m+n-1}=\
                  -underbrace{sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}}_{S}
                  $$



                  the double sum can be tackeled by writing (i shamelessly benefit from this awesome answer)



                  $$
                  S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}=frac{1}{2}sum_{n,m=1}^{infty}frac{1}{m^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2m^2}
                  $$



                  shifting arguments in the last two sums gives



                  $$
                  2S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}-sum_{m=1,n<m}^{infty}frac{1}{n^2m^2}-sum_{m=1,n>m}^{infty}frac{1}{n^2m^2}
                  $$



                  which yields



                  $$
                  2S=sum_{n=m=1}^{infty}frac{1}{m^2n^2}=zeta(4)=frac{pi^4}{90}
                  $$



                  and therefore



                  $$
                  I=-S/2=-frac{pi^4}{360}
                  $$






                  share|cite|improve this answer











                  $endgroup$













                  • $begingroup$
                    (+1) :-) Please don't call it a shameless benefit, I originally got the sum while replicating the process of the evaluation of $sumlimits_{n=1}^{infty} frac{H_n}{n^3}$, see where that puts me?! :P
                    $endgroup$
                    – r9m
                    Jan 7 '16 at 13:36






                  • 1




                    $begingroup$
                    @r9m Let me borrow something from Issac Newton: ''If I have seen further, it is by standing on the shoulders of giants'' ;-)
                    $endgroup$
                    – tired
                    Jan 7 '16 at 13:44










                  • $begingroup$
                    Here's the link to Felix Marin's evaluation of the sum. :-)
                    $endgroup$
                    – r9m
                    Jan 7 '16 at 13:48
















                  3












                  $begingroup$

                  Another one:



                  Write $log^2(1-y)=sum_{n,m=1}^{infty}frac{y^{m+n}}{mn}$



                  we obtain (exchanging summation and integration)



                  $$
                  2I=sum_{n,m=1}^{infty}frac{1}{mn}int_0^1log(y)y^{m+n-1}=\
                  -underbrace{sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}}_{S}
                  $$



                  the double sum can be tackeled by writing (i shamelessly benefit from this awesome answer)



                  $$
                  S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}=frac{1}{2}sum_{n,m=1}^{infty}frac{1}{m^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2m^2}
                  $$



                  shifting arguments in the last two sums gives



                  $$
                  2S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}-sum_{m=1,n<m}^{infty}frac{1}{n^2m^2}-sum_{m=1,n>m}^{infty}frac{1}{n^2m^2}
                  $$



                  which yields



                  $$
                  2S=sum_{n=m=1}^{infty}frac{1}{m^2n^2}=zeta(4)=frac{pi^4}{90}
                  $$



                  and therefore



                  $$
                  I=-S/2=-frac{pi^4}{360}
                  $$






                  share|cite|improve this answer











                  $endgroup$













                  • $begingroup$
                    (+1) :-) Please don't call it a shameless benefit, I originally got the sum while replicating the process of the evaluation of $sumlimits_{n=1}^{infty} frac{H_n}{n^3}$, see where that puts me?! :P
                    $endgroup$
                    – r9m
                    Jan 7 '16 at 13:36






                  • 1




                    $begingroup$
                    @r9m Let me borrow something from Issac Newton: ''If I have seen further, it is by standing on the shoulders of giants'' ;-)
                    $endgroup$
                    – tired
                    Jan 7 '16 at 13:44










                  • $begingroup$
                    Here's the link to Felix Marin's evaluation of the sum. :-)
                    $endgroup$
                    – r9m
                    Jan 7 '16 at 13:48














                  3












                  3








                  3





                  $begingroup$

                  Another one:



                  Write $log^2(1-y)=sum_{n,m=1}^{infty}frac{y^{m+n}}{mn}$



                  we obtain (exchanging summation and integration)



                  $$
                  2I=sum_{n,m=1}^{infty}frac{1}{mn}int_0^1log(y)y^{m+n-1}=\
                  -underbrace{sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}}_{S}
                  $$



                  the double sum can be tackeled by writing (i shamelessly benefit from this awesome answer)



                  $$
                  S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}=frac{1}{2}sum_{n,m=1}^{infty}frac{1}{m^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2m^2}
                  $$



                  shifting arguments in the last two sums gives



                  $$
                  2S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}-sum_{m=1,n<m}^{infty}frac{1}{n^2m^2}-sum_{m=1,n>m}^{infty}frac{1}{n^2m^2}
                  $$



                  which yields



                  $$
                  2S=sum_{n=m=1}^{infty}frac{1}{m^2n^2}=zeta(4)=frac{pi^4}{90}
                  $$



                  and therefore



                  $$
                  I=-S/2=-frac{pi^4}{360}
                  $$






                  share|cite|improve this answer











                  $endgroup$



                  Another one:



                  Write $log^2(1-y)=sum_{n,m=1}^{infty}frac{y^{m+n}}{mn}$



                  we obtain (exchanging summation and integration)



                  $$
                  2I=sum_{n,m=1}^{infty}frac{1}{mn}int_0^1log(y)y^{m+n-1}=\
                  -underbrace{sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}}_{S}
                  $$



                  the double sum can be tackeled by writing (i shamelessly benefit from this awesome answer)



                  $$
                  S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}=frac{1}{2}sum_{n,m=1}^{infty}frac{1}{m^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2m^2}
                  $$



                  shifting arguments in the last two sums gives



                  $$
                  2S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}-sum_{m=1,n<m}^{infty}frac{1}{n^2m^2}-sum_{m=1,n>m}^{infty}frac{1}{n^2m^2}
                  $$



                  which yields



                  $$
                  2S=sum_{n=m=1}^{infty}frac{1}{m^2n^2}=zeta(4)=frac{pi^4}{90}
                  $$



                  and therefore



                  $$
                  I=-S/2=-frac{pi^4}{360}
                  $$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Apr 13 '17 at 12:21









                  Community

                  1




                  1










                  answered Jan 7 '16 at 11:20









                  tiredtired

                  10.6k12045




                  10.6k12045












                  • $begingroup$
                    (+1) :-) Please don't call it a shameless benefit, I originally got the sum while replicating the process of the evaluation of $sumlimits_{n=1}^{infty} frac{H_n}{n^3}$, see where that puts me?! :P
                    $endgroup$
                    – r9m
                    Jan 7 '16 at 13:36






                  • 1




                    $begingroup$
                    @r9m Let me borrow something from Issac Newton: ''If I have seen further, it is by standing on the shoulders of giants'' ;-)
                    $endgroup$
                    – tired
                    Jan 7 '16 at 13:44










                  • $begingroup$
                    Here's the link to Felix Marin's evaluation of the sum. :-)
                    $endgroup$
                    – r9m
                    Jan 7 '16 at 13:48


















                  • $begingroup$
                    (+1) :-) Please don't call it a shameless benefit, I originally got the sum while replicating the process of the evaluation of $sumlimits_{n=1}^{infty} frac{H_n}{n^3}$, see where that puts me?! :P
                    $endgroup$
                    – r9m
                    Jan 7 '16 at 13:36






                  • 1




                    $begingroup$
                    @r9m Let me borrow something from Issac Newton: ''If I have seen further, it is by standing on the shoulders of giants'' ;-)
                    $endgroup$
                    – tired
                    Jan 7 '16 at 13:44










                  • $begingroup$
                    Here's the link to Felix Marin's evaluation of the sum. :-)
                    $endgroup$
                    – r9m
                    Jan 7 '16 at 13:48
















                  $begingroup$
                  (+1) :-) Please don't call it a shameless benefit, I originally got the sum while replicating the process of the evaluation of $sumlimits_{n=1}^{infty} frac{H_n}{n^3}$, see where that puts me?! :P
                  $endgroup$
                  – r9m
                  Jan 7 '16 at 13:36




                  $begingroup$
                  (+1) :-) Please don't call it a shameless benefit, I originally got the sum while replicating the process of the evaluation of $sumlimits_{n=1}^{infty} frac{H_n}{n^3}$, see where that puts me?! :P
                  $endgroup$
                  – r9m
                  Jan 7 '16 at 13:36




                  1




                  1




                  $begingroup$
                  @r9m Let me borrow something from Issac Newton: ''If I have seen further, it is by standing on the shoulders of giants'' ;-)
                  $endgroup$
                  – tired
                  Jan 7 '16 at 13:44




                  $begingroup$
                  @r9m Let me borrow something from Issac Newton: ''If I have seen further, it is by standing on the shoulders of giants'' ;-)
                  $endgroup$
                  – tired
                  Jan 7 '16 at 13:44












                  $begingroup$
                  Here's the link to Felix Marin's evaluation of the sum. :-)
                  $endgroup$
                  – r9m
                  Jan 7 '16 at 13:48




                  $begingroup$
                  Here's the link to Felix Marin's evaluation of the sum. :-)
                  $endgroup$
                  – r9m
                  Jan 7 '16 at 13:48











                  1












                  $begingroup$

                  This question, for some reason, popped up in the Top Questions tab, and I thought I'd share another way to solve this integral using Harmonic Numbers. I hope you guys don't mind!



                  First, we use integration by parts on $u=log^2(1-x)$ to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =frac 12log^2xlog^2(1-x),Biggrrvert_0^1+intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}\ & =intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}end{align*}$$Now use the fact that




                  $$H(x)=-frac {log(1-x)}{1-x}=sumlimits_{ngeq1}H_nx^n$$




                  And substitute to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =-sumlimits_{ngeq1}H_nintlimits_0^1dx,x^nlog^2x\ & =-limlimits_{muto0}sumlimits_{ngeq1}H_nfrac {partial^2}{partialmu^2}frac 1{n+mu+1}\ & =-2sumlimits_{ngeq1}frac {H_n}{(n+1)^3}end{align*}$$Split the sum up and use a well-known formula due to Euler




                  $$sumlimits_{ngeq1}frac {H_n}{n^m}=frac 12(m+2)zeta(m+1)-frac 12sumlimits_{n=1}^{m-2}zeta(m-n)zeta(n+1)$$




                  Therefore$$I=2zeta(4)-5zeta(4)+zeta^2(2)=-frac {pi^4}{180}$$Our desired integral is half of that, so take half and the answer is$$intlimits_0^1dx,frac {log xlog^2(1-x)}{2x}color{blue}{=-frac {pi^4}{360}}$$






                  share|cite|improve this answer









                  $endgroup$


















                    1












                    $begingroup$

                    This question, for some reason, popped up in the Top Questions tab, and I thought I'd share another way to solve this integral using Harmonic Numbers. I hope you guys don't mind!



                    First, we use integration by parts on $u=log^2(1-x)$ to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =frac 12log^2xlog^2(1-x),Biggrrvert_0^1+intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}\ & =intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}end{align*}$$Now use the fact that




                    $$H(x)=-frac {log(1-x)}{1-x}=sumlimits_{ngeq1}H_nx^n$$




                    And substitute to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =-sumlimits_{ngeq1}H_nintlimits_0^1dx,x^nlog^2x\ & =-limlimits_{muto0}sumlimits_{ngeq1}H_nfrac {partial^2}{partialmu^2}frac 1{n+mu+1}\ & =-2sumlimits_{ngeq1}frac {H_n}{(n+1)^3}end{align*}$$Split the sum up and use a well-known formula due to Euler




                    $$sumlimits_{ngeq1}frac {H_n}{n^m}=frac 12(m+2)zeta(m+1)-frac 12sumlimits_{n=1}^{m-2}zeta(m-n)zeta(n+1)$$




                    Therefore$$I=2zeta(4)-5zeta(4)+zeta^2(2)=-frac {pi^4}{180}$$Our desired integral is half of that, so take half and the answer is$$intlimits_0^1dx,frac {log xlog^2(1-x)}{2x}color{blue}{=-frac {pi^4}{360}}$$






                    share|cite|improve this answer









                    $endgroup$
















                      1












                      1








                      1





                      $begingroup$

                      This question, for some reason, popped up in the Top Questions tab, and I thought I'd share another way to solve this integral using Harmonic Numbers. I hope you guys don't mind!



                      First, we use integration by parts on $u=log^2(1-x)$ to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =frac 12log^2xlog^2(1-x),Biggrrvert_0^1+intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}\ & =intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}end{align*}$$Now use the fact that




                      $$H(x)=-frac {log(1-x)}{1-x}=sumlimits_{ngeq1}H_nx^n$$




                      And substitute to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =-sumlimits_{ngeq1}H_nintlimits_0^1dx,x^nlog^2x\ & =-limlimits_{muto0}sumlimits_{ngeq1}H_nfrac {partial^2}{partialmu^2}frac 1{n+mu+1}\ & =-2sumlimits_{ngeq1}frac {H_n}{(n+1)^3}end{align*}$$Split the sum up and use a well-known formula due to Euler




                      $$sumlimits_{ngeq1}frac {H_n}{n^m}=frac 12(m+2)zeta(m+1)-frac 12sumlimits_{n=1}^{m-2}zeta(m-n)zeta(n+1)$$




                      Therefore$$I=2zeta(4)-5zeta(4)+zeta^2(2)=-frac {pi^4}{180}$$Our desired integral is half of that, so take half and the answer is$$intlimits_0^1dx,frac {log xlog^2(1-x)}{2x}color{blue}{=-frac {pi^4}{360}}$$






                      share|cite|improve this answer









                      $endgroup$



                      This question, for some reason, popped up in the Top Questions tab, and I thought I'd share another way to solve this integral using Harmonic Numbers. I hope you guys don't mind!



                      First, we use integration by parts on $u=log^2(1-x)$ to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =frac 12log^2xlog^2(1-x),Biggrrvert_0^1+intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}\ & =intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}end{align*}$$Now use the fact that




                      $$H(x)=-frac {log(1-x)}{1-x}=sumlimits_{ngeq1}H_nx^n$$




                      And substitute to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =-sumlimits_{ngeq1}H_nintlimits_0^1dx,x^nlog^2x\ & =-limlimits_{muto0}sumlimits_{ngeq1}H_nfrac {partial^2}{partialmu^2}frac 1{n+mu+1}\ & =-2sumlimits_{ngeq1}frac {H_n}{(n+1)^3}end{align*}$$Split the sum up and use a well-known formula due to Euler




                      $$sumlimits_{ngeq1}frac {H_n}{n^m}=frac 12(m+2)zeta(m+1)-frac 12sumlimits_{n=1}^{m-2}zeta(m-n)zeta(n+1)$$




                      Therefore$$I=2zeta(4)-5zeta(4)+zeta^2(2)=-frac {pi^4}{180}$$Our desired integral is half of that, so take half and the answer is$$intlimits_0^1dx,frac {log xlog^2(1-x)}{2x}color{blue}{=-frac {pi^4}{360}}$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered May 19 '18 at 4:17









                      Frank W.Frank W.

                      3,7371321




                      3,7371321























                          1












                          $begingroup$

                          I offer up yet another approach, this one relying on the Maclaurin series expansion for $ln^2 (1 - x)$. It is similar to that used by @Frank W.



                          As was shown here
                          $$ln^2 (1 - x) = 2 sum_{n = 2}^infty frac{H_{n - 1} x^n}{n}, qquad |x| < 1.$$
                          Here $H_n$ denotes the Harmonic number. So for the integral we may write
                          begin{align}
                          int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{H_{n - 1}}{n} int_0^1 x^{n - 1} ln x , dx = -sum_{n = 2}^infty frac{H_{n - 1}}{n^3},
                          end{align}

                          after integrating by parts. From properties for the Harmonic number, since
                          $$H_n = H_{n - 1} + frac{1}{n},$$
                          the infinite sum can be rewritten as
                          begin{align}
                          int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{1}{n^4} - sum_{n = 2}^infty frac{H_n}{n^4} = sum_{n = 1}^infty frac{1}{n^4} - sum_{n = 1}^infty frac{H_n}{n^4}.
                          end{align}

                          Values for each of these sums are well known. For the first
                          $$sum_{n = 1}^infty frac{1}{n^4} = zeta (4) = frac{pi^4}{90}.$$
                          For the second sum
                          $$sum_{n = 1}^infty frac{H_n}{n^4} = frac{pi^4}{72}.$$
                          (for various proofs of this result, see here) Thus
                          $$int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx = frac{pi^4}{90} - frac{pi^4}{72} = -frac{pi^4}{360}.$$






                          share|cite|improve this answer









                          $endgroup$


















                            1












                            $begingroup$

                            I offer up yet another approach, this one relying on the Maclaurin series expansion for $ln^2 (1 - x)$. It is similar to that used by @Frank W.



                            As was shown here
                            $$ln^2 (1 - x) = 2 sum_{n = 2}^infty frac{H_{n - 1} x^n}{n}, qquad |x| < 1.$$
                            Here $H_n$ denotes the Harmonic number. So for the integral we may write
                            begin{align}
                            int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{H_{n - 1}}{n} int_0^1 x^{n - 1} ln x , dx = -sum_{n = 2}^infty frac{H_{n - 1}}{n^3},
                            end{align}

                            after integrating by parts. From properties for the Harmonic number, since
                            $$H_n = H_{n - 1} + frac{1}{n},$$
                            the infinite sum can be rewritten as
                            begin{align}
                            int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{1}{n^4} - sum_{n = 2}^infty frac{H_n}{n^4} = sum_{n = 1}^infty frac{1}{n^4} - sum_{n = 1}^infty frac{H_n}{n^4}.
                            end{align}

                            Values for each of these sums are well known. For the first
                            $$sum_{n = 1}^infty frac{1}{n^4} = zeta (4) = frac{pi^4}{90}.$$
                            For the second sum
                            $$sum_{n = 1}^infty frac{H_n}{n^4} = frac{pi^4}{72}.$$
                            (for various proofs of this result, see here) Thus
                            $$int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx = frac{pi^4}{90} - frac{pi^4}{72} = -frac{pi^4}{360}.$$






                            share|cite|improve this answer









                            $endgroup$
















                              1












                              1








                              1





                              $begingroup$

                              I offer up yet another approach, this one relying on the Maclaurin series expansion for $ln^2 (1 - x)$. It is similar to that used by @Frank W.



                              As was shown here
                              $$ln^2 (1 - x) = 2 sum_{n = 2}^infty frac{H_{n - 1} x^n}{n}, qquad |x| < 1.$$
                              Here $H_n$ denotes the Harmonic number. So for the integral we may write
                              begin{align}
                              int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{H_{n - 1}}{n} int_0^1 x^{n - 1} ln x , dx = -sum_{n = 2}^infty frac{H_{n - 1}}{n^3},
                              end{align}

                              after integrating by parts. From properties for the Harmonic number, since
                              $$H_n = H_{n - 1} + frac{1}{n},$$
                              the infinite sum can be rewritten as
                              begin{align}
                              int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{1}{n^4} - sum_{n = 2}^infty frac{H_n}{n^4} = sum_{n = 1}^infty frac{1}{n^4} - sum_{n = 1}^infty frac{H_n}{n^4}.
                              end{align}

                              Values for each of these sums are well known. For the first
                              $$sum_{n = 1}^infty frac{1}{n^4} = zeta (4) = frac{pi^4}{90}.$$
                              For the second sum
                              $$sum_{n = 1}^infty frac{H_n}{n^4} = frac{pi^4}{72}.$$
                              (for various proofs of this result, see here) Thus
                              $$int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx = frac{pi^4}{90} - frac{pi^4}{72} = -frac{pi^4}{360}.$$






                              share|cite|improve this answer









                              $endgroup$



                              I offer up yet another approach, this one relying on the Maclaurin series expansion for $ln^2 (1 - x)$. It is similar to that used by @Frank W.



                              As was shown here
                              $$ln^2 (1 - x) = 2 sum_{n = 2}^infty frac{H_{n - 1} x^n}{n}, qquad |x| < 1.$$
                              Here $H_n$ denotes the Harmonic number. So for the integral we may write
                              begin{align}
                              int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{H_{n - 1}}{n} int_0^1 x^{n - 1} ln x , dx = -sum_{n = 2}^infty frac{H_{n - 1}}{n^3},
                              end{align}

                              after integrating by parts. From properties for the Harmonic number, since
                              $$H_n = H_{n - 1} + frac{1}{n},$$
                              the infinite sum can be rewritten as
                              begin{align}
                              int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{1}{n^4} - sum_{n = 2}^infty frac{H_n}{n^4} = sum_{n = 1}^infty frac{1}{n^4} - sum_{n = 1}^infty frac{H_n}{n^4}.
                              end{align}

                              Values for each of these sums are well known. For the first
                              $$sum_{n = 1}^infty frac{1}{n^4} = zeta (4) = frac{pi^4}{90}.$$
                              For the second sum
                              $$sum_{n = 1}^infty frac{H_n}{n^4} = frac{pi^4}{72}.$$
                              (for various proofs of this result, see here) Thus
                              $$int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx = frac{pi^4}{90} - frac{pi^4}{72} = -frac{pi^4}{360}.$$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Jan 11 at 1:59









                              omegadotomegadot

                              6,2692829




                              6,2692829























                                  0












                                  $begingroup$

                                  $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                                  newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                                  newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                                  newcommand{dd}{mathrm{d}}
                                  newcommand{ds}[1]{displaystyle{#1}}
                                  newcommand{expo}[1]{,mathrm{e}^{#1},}
                                  newcommand{ic}{mathrm{i}}
                                  newcommand{mc}[1]{mathcal{#1}}
                                  newcommand{mrm}[1]{mathrm{#1}}
                                  newcommand{pars}[1]{left(,{#1},right)}
                                  newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                  newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                                  newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                                  newcommand{verts}[1]{leftvert,{#1},rightvert}$




                                  $ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y =
                                  -,{pi^{4} over 360}:
                                  {large ?}}$.




                                  begin{align}
                                  &bbox[10px,#ffd]{ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y}} =
                                  left.{1 over 2},{partial^{3} over partialnu^{2}partialmu}int_{0}^{1}{y^{mu}bracks{pars{1 - y}^{nu} - 1} over y},dd y,rightvert_{ {largemu = 0^{+}} atop {largenu = 0}}
                                  \[5mm] = &
                                  {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                  bracks{{Gammapars{mu}Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}quad
                                  pars{~Gamma: Gamma Function~}
                                  \[5mm] = &
                                  {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                  bracks{{pi over Gammapars{1 - mu}sinpars{pimu}},{Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}
                                  \[5mm] = &
                                  {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                  bracks{{1 over mu},{Gammapars{nu + 1} over Gammapars{1 - mu}Gammapars{mu + nu + 1}} + {pi^{2} over 6},mu}
                                  _{ {largemu = 0^{+}} atop {largenu = 0}}
                                  \[5mm] = &
                                  {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                  bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}}mu + {pi^{2} over 6},mu}_{ {largemu = 0^{+}} atop {largenu = 0}}
                                  \[5mm] = &
                                  {1 over 2},{partial^{2} over partialnu^{2}}
                                  bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}
                                  Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}} + {pi^{2} over 6}}
                                  _{ {largemu = 0^{+}} atop {largenu = 0}} =
                                  {1 over 4},{partial^{4} over partialnu^{2}partialmu^{2}}
                                  {nu choose mu + nu}_{ {largemu = 0^{+}} atop {largenu = 0}}
                                  \[5mm] = &
                                  {1 over 4},partiald[2]{}{nu}
                                  bracks{-,{pi^{2} over 6} + H^{2}_{nu} - Psi, 'pars{1 + nu}}
                                  _{ nu = 0}quad
                                  pars{~H_{z}: Harmonic Number~}
                                  \[5mm] = &
                                  {1 over 4}bracks{2Psi, '^{2}pars{1} + 2H_{0},Psi,''pars{1}- Psi, '''pars{1}}
                                  qquadqquadqquadqquad
                                  left{begin{array}{lcr}
                                  ds{Psi, 'pars{1}} & ds{=} & ds{pi^{2} over 6}
                                  \
                                  ds{Psi, '''pars{1}} & ds{=} & ds{pi^{4} over 15}
                                  \
                                  ds{H_{0}} & ds{=} & ds{0}
                                  end{array}right.
                                  \[5mm] = &
                                  {1 over 4}bracks{2pars{pi^{2} over 6}^{2} + 0 - {pi^{4} over 15}} =
                                  bbx{-,{pi^{4} over 360}}
                                  end{align}






                                  share|cite|improve this answer











                                  $endgroup$


















                                    0












                                    $begingroup$

                                    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                                    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                                    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                                    newcommand{dd}{mathrm{d}}
                                    newcommand{ds}[1]{displaystyle{#1}}
                                    newcommand{expo}[1]{,mathrm{e}^{#1},}
                                    newcommand{ic}{mathrm{i}}
                                    newcommand{mc}[1]{mathcal{#1}}
                                    newcommand{mrm}[1]{mathrm{#1}}
                                    newcommand{pars}[1]{left(,{#1},right)}
                                    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                                    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                                    newcommand{verts}[1]{leftvert,{#1},rightvert}$




                                    $ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y =
                                    -,{pi^{4} over 360}:
                                    {large ?}}$.




                                    begin{align}
                                    &bbox[10px,#ffd]{ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y}} =
                                    left.{1 over 2},{partial^{3} over partialnu^{2}partialmu}int_{0}^{1}{y^{mu}bracks{pars{1 - y}^{nu} - 1} over y},dd y,rightvert_{ {largemu = 0^{+}} atop {largenu = 0}}
                                    \[5mm] = &
                                    {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                    bracks{{Gammapars{mu}Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}quad
                                    pars{~Gamma: Gamma Function~}
                                    \[5mm] = &
                                    {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                    bracks{{pi over Gammapars{1 - mu}sinpars{pimu}},{Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}
                                    \[5mm] = &
                                    {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                    bracks{{1 over mu},{Gammapars{nu + 1} over Gammapars{1 - mu}Gammapars{mu + nu + 1}} + {pi^{2} over 6},mu}
                                    _{ {largemu = 0^{+}} atop {largenu = 0}}
                                    \[5mm] = &
                                    {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                    bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}}mu + {pi^{2} over 6},mu}_{ {largemu = 0^{+}} atop {largenu = 0}}
                                    \[5mm] = &
                                    {1 over 2},{partial^{2} over partialnu^{2}}
                                    bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}
                                    Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}} + {pi^{2} over 6}}
                                    _{ {largemu = 0^{+}} atop {largenu = 0}} =
                                    {1 over 4},{partial^{4} over partialnu^{2}partialmu^{2}}
                                    {nu choose mu + nu}_{ {largemu = 0^{+}} atop {largenu = 0}}
                                    \[5mm] = &
                                    {1 over 4},partiald[2]{}{nu}
                                    bracks{-,{pi^{2} over 6} + H^{2}_{nu} - Psi, 'pars{1 + nu}}
                                    _{ nu = 0}quad
                                    pars{~H_{z}: Harmonic Number~}
                                    \[5mm] = &
                                    {1 over 4}bracks{2Psi, '^{2}pars{1} + 2H_{0},Psi,''pars{1}- Psi, '''pars{1}}
                                    qquadqquadqquadqquad
                                    left{begin{array}{lcr}
                                    ds{Psi, 'pars{1}} & ds{=} & ds{pi^{2} over 6}
                                    \
                                    ds{Psi, '''pars{1}} & ds{=} & ds{pi^{4} over 15}
                                    \
                                    ds{H_{0}} & ds{=} & ds{0}
                                    end{array}right.
                                    \[5mm] = &
                                    {1 over 4}bracks{2pars{pi^{2} over 6}^{2} + 0 - {pi^{4} over 15}} =
                                    bbx{-,{pi^{4} over 360}}
                                    end{align}






                                    share|cite|improve this answer











                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                                      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                                      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                                      newcommand{dd}{mathrm{d}}
                                      newcommand{ds}[1]{displaystyle{#1}}
                                      newcommand{expo}[1]{,mathrm{e}^{#1},}
                                      newcommand{ic}{mathrm{i}}
                                      newcommand{mc}[1]{mathcal{#1}}
                                      newcommand{mrm}[1]{mathrm{#1}}
                                      newcommand{pars}[1]{left(,{#1},right)}
                                      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                                      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                                      newcommand{verts}[1]{leftvert,{#1},rightvert}$




                                      $ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y =
                                      -,{pi^{4} over 360}:
                                      {large ?}}$.




                                      begin{align}
                                      &bbox[10px,#ffd]{ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y}} =
                                      left.{1 over 2},{partial^{3} over partialnu^{2}partialmu}int_{0}^{1}{y^{mu}bracks{pars{1 - y}^{nu} - 1} over y},dd y,rightvert_{ {largemu = 0^{+}} atop {largenu = 0}}
                                      \[5mm] = &
                                      {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                      bracks{{Gammapars{mu}Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}quad
                                      pars{~Gamma: Gamma Function~}
                                      \[5mm] = &
                                      {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                      bracks{{pi over Gammapars{1 - mu}sinpars{pimu}},{Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}
                                      \[5mm] = &
                                      {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                      bracks{{1 over mu},{Gammapars{nu + 1} over Gammapars{1 - mu}Gammapars{mu + nu + 1}} + {pi^{2} over 6},mu}
                                      _{ {largemu = 0^{+}} atop {largenu = 0}}
                                      \[5mm] = &
                                      {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                      bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}}mu + {pi^{2} over 6},mu}_{ {largemu = 0^{+}} atop {largenu = 0}}
                                      \[5mm] = &
                                      {1 over 2},{partial^{2} over partialnu^{2}}
                                      bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}
                                      Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}} + {pi^{2} over 6}}
                                      _{ {largemu = 0^{+}} atop {largenu = 0}} =
                                      {1 over 4},{partial^{4} over partialnu^{2}partialmu^{2}}
                                      {nu choose mu + nu}_{ {largemu = 0^{+}} atop {largenu = 0}}
                                      \[5mm] = &
                                      {1 over 4},partiald[2]{}{nu}
                                      bracks{-,{pi^{2} over 6} + H^{2}_{nu} - Psi, 'pars{1 + nu}}
                                      _{ nu = 0}quad
                                      pars{~H_{z}: Harmonic Number~}
                                      \[5mm] = &
                                      {1 over 4}bracks{2Psi, '^{2}pars{1} + 2H_{0},Psi,''pars{1}- Psi, '''pars{1}}
                                      qquadqquadqquadqquad
                                      left{begin{array}{lcr}
                                      ds{Psi, 'pars{1}} & ds{=} & ds{pi^{2} over 6}
                                      \
                                      ds{Psi, '''pars{1}} & ds{=} & ds{pi^{4} over 15}
                                      \
                                      ds{H_{0}} & ds{=} & ds{0}
                                      end{array}right.
                                      \[5mm] = &
                                      {1 over 4}bracks{2pars{pi^{2} over 6}^{2} + 0 - {pi^{4} over 15}} =
                                      bbx{-,{pi^{4} over 360}}
                                      end{align}






                                      share|cite|improve this answer











                                      $endgroup$



                                      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                                      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                                      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                                      newcommand{dd}{mathrm{d}}
                                      newcommand{ds}[1]{displaystyle{#1}}
                                      newcommand{expo}[1]{,mathrm{e}^{#1},}
                                      newcommand{ic}{mathrm{i}}
                                      newcommand{mc}[1]{mathcal{#1}}
                                      newcommand{mrm}[1]{mathrm{#1}}
                                      newcommand{pars}[1]{left(,{#1},right)}
                                      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                                      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                                      newcommand{verts}[1]{leftvert,{#1},rightvert}$




                                      $ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y =
                                      -,{pi^{4} over 360}:
                                      {large ?}}$.




                                      begin{align}
                                      &bbox[10px,#ffd]{ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y}} =
                                      left.{1 over 2},{partial^{3} over partialnu^{2}partialmu}int_{0}^{1}{y^{mu}bracks{pars{1 - y}^{nu} - 1} over y},dd y,rightvert_{ {largemu = 0^{+}} atop {largenu = 0}}
                                      \[5mm] = &
                                      {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                      bracks{{Gammapars{mu}Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}quad
                                      pars{~Gamma: Gamma Function~}
                                      \[5mm] = &
                                      {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                      bracks{{pi over Gammapars{1 - mu}sinpars{pimu}},{Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}
                                      \[5mm] = &
                                      {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                      bracks{{1 over mu},{Gammapars{nu + 1} over Gammapars{1 - mu}Gammapars{mu + nu + 1}} + {pi^{2} over 6},mu}
                                      _{ {largemu = 0^{+}} atop {largenu = 0}}
                                      \[5mm] = &
                                      {1 over 2},{partial^{3} over partialnu^{2}partialmu}
                                      bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}}mu + {pi^{2} over 6},mu}_{ {largemu = 0^{+}} atop {largenu = 0}}
                                      \[5mm] = &
                                      {1 over 2},{partial^{2} over partialnu^{2}}
                                      bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}
                                      Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}} + {pi^{2} over 6}}
                                      _{ {largemu = 0^{+}} atop {largenu = 0}} =
                                      {1 over 4},{partial^{4} over partialnu^{2}partialmu^{2}}
                                      {nu choose mu + nu}_{ {largemu = 0^{+}} atop {largenu = 0}}
                                      \[5mm] = &
                                      {1 over 4},partiald[2]{}{nu}
                                      bracks{-,{pi^{2} over 6} + H^{2}_{nu} - Psi, 'pars{1 + nu}}
                                      _{ nu = 0}quad
                                      pars{~H_{z}: Harmonic Number~}
                                      \[5mm] = &
                                      {1 over 4}bracks{2Psi, '^{2}pars{1} + 2H_{0},Psi,''pars{1}- Psi, '''pars{1}}
                                      qquadqquadqquadqquad
                                      left{begin{array}{lcr}
                                      ds{Psi, 'pars{1}} & ds{=} & ds{pi^{2} over 6}
                                      \
                                      ds{Psi, '''pars{1}} & ds{=} & ds{pi^{4} over 15}
                                      \
                                      ds{H_{0}} & ds{=} & ds{0}
                                      end{array}right.
                                      \[5mm] = &
                                      {1 over 4}bracks{2pars{pi^{2} over 6}^{2} + 0 - {pi^{4} over 15}} =
                                      bbx{-,{pi^{4} over 360}}
                                      end{align}







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited May 18 '18 at 23:38

























                                      answered May 2 '18 at 2:34









                                      Felix MarinFelix Marin

                                      68.9k7110147




                                      68.9k7110147






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1601957%2fwhats-the-value-of-int-01-frac12y-lny-ln21-y-dy%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Bressuire

                                          Cabo Verde

                                          Gyllenstierna