What's the value of $int_0^1frac{1}{2y} ln(y) ln^2(1-y) , dy$?
$begingroup$
I came across this integral while doing a different problem:
$$ int_0^1frac{1}{2y} ln (y)ln^2(1-y) , dy$$
I think we can evaluate this integral by differentiating the common integral representation of the beta function, but it seems to get a bit messy.
integration definite-integrals
$endgroup$
add a comment |
$begingroup$
I came across this integral while doing a different problem:
$$ int_0^1frac{1}{2y} ln (y)ln^2(1-y) , dy$$
I think we can evaluate this integral by differentiating the common integral representation of the beta function, but it seems to get a bit messy.
integration definite-integrals
$endgroup$
4
$begingroup$
Hint: Introduce $I(a,b)=int_0^1frac{1}{2y}y^a(1-y)^b,dy$. Calculate $$partial_{a,b,b}I(a,b)$$ and study the limit of it as $ato0^+$ and $bto0^+$. You will get a rational constant times $pi^4$ if I'm not completely mistaken.
$endgroup$
– mickep
Jan 6 '16 at 12:47
$begingroup$
$-pi^4/360$ to be precise [thx to Mathematica]
$endgroup$
– Pierpaolo Vivo
Jan 6 '16 at 13:51
1
$begingroup$
@mickep Mind giving a complete answer? I'm slightly confused as to how taking the limits does anything except revert back to our original integral (I'm not particularly good at analysis).
$endgroup$
– Mattos
Jan 6 '16 at 14:10
$begingroup$
I deleted my answer because the same approach was used HERE to evaluate $int_{0}^{1}frac{ln(1-x)ln^{2} (x)}{x-1} , dx $.
$endgroup$
– Random Variable
Oct 4 '16 at 15:28
add a comment |
$begingroup$
I came across this integral while doing a different problem:
$$ int_0^1frac{1}{2y} ln (y)ln^2(1-y) , dy$$
I think we can evaluate this integral by differentiating the common integral representation of the beta function, but it seems to get a bit messy.
integration definite-integrals
$endgroup$
I came across this integral while doing a different problem:
$$ int_0^1frac{1}{2y} ln (y)ln^2(1-y) , dy$$
I think we can evaluate this integral by differentiating the common integral representation of the beta function, but it seems to get a bit messy.
integration definite-integrals
integration definite-integrals
edited Aug 23 '16 at 3:31
Random Variable
25.6k173139
25.6k173139
asked Jan 6 '16 at 12:36
LontLont
1296
1296
4
$begingroup$
Hint: Introduce $I(a,b)=int_0^1frac{1}{2y}y^a(1-y)^b,dy$. Calculate $$partial_{a,b,b}I(a,b)$$ and study the limit of it as $ato0^+$ and $bto0^+$. You will get a rational constant times $pi^4$ if I'm not completely mistaken.
$endgroup$
– mickep
Jan 6 '16 at 12:47
$begingroup$
$-pi^4/360$ to be precise [thx to Mathematica]
$endgroup$
– Pierpaolo Vivo
Jan 6 '16 at 13:51
1
$begingroup$
@mickep Mind giving a complete answer? I'm slightly confused as to how taking the limits does anything except revert back to our original integral (I'm not particularly good at analysis).
$endgroup$
– Mattos
Jan 6 '16 at 14:10
$begingroup$
I deleted my answer because the same approach was used HERE to evaluate $int_{0}^{1}frac{ln(1-x)ln^{2} (x)}{x-1} , dx $.
$endgroup$
– Random Variable
Oct 4 '16 at 15:28
add a comment |
4
$begingroup$
Hint: Introduce $I(a,b)=int_0^1frac{1}{2y}y^a(1-y)^b,dy$. Calculate $$partial_{a,b,b}I(a,b)$$ and study the limit of it as $ato0^+$ and $bto0^+$. You will get a rational constant times $pi^4$ if I'm not completely mistaken.
$endgroup$
– mickep
Jan 6 '16 at 12:47
$begingroup$
$-pi^4/360$ to be precise [thx to Mathematica]
$endgroup$
– Pierpaolo Vivo
Jan 6 '16 at 13:51
1
$begingroup$
@mickep Mind giving a complete answer? I'm slightly confused as to how taking the limits does anything except revert back to our original integral (I'm not particularly good at analysis).
$endgroup$
– Mattos
Jan 6 '16 at 14:10
$begingroup$
I deleted my answer because the same approach was used HERE to evaluate $int_{0}^{1}frac{ln(1-x)ln^{2} (x)}{x-1} , dx $.
$endgroup$
– Random Variable
Oct 4 '16 at 15:28
4
4
$begingroup$
Hint: Introduce $I(a,b)=int_0^1frac{1}{2y}y^a(1-y)^b,dy$. Calculate $$partial_{a,b,b}I(a,b)$$ and study the limit of it as $ato0^+$ and $bto0^+$. You will get a rational constant times $pi^4$ if I'm not completely mistaken.
$endgroup$
– mickep
Jan 6 '16 at 12:47
$begingroup$
Hint: Introduce $I(a,b)=int_0^1frac{1}{2y}y^a(1-y)^b,dy$. Calculate $$partial_{a,b,b}I(a,b)$$ and study the limit of it as $ato0^+$ and $bto0^+$. You will get a rational constant times $pi^4$ if I'm not completely mistaken.
$endgroup$
– mickep
Jan 6 '16 at 12:47
$begingroup$
$-pi^4/360$ to be precise [thx to Mathematica]
$endgroup$
– Pierpaolo Vivo
Jan 6 '16 at 13:51
$begingroup$
$-pi^4/360$ to be precise [thx to Mathematica]
$endgroup$
– Pierpaolo Vivo
Jan 6 '16 at 13:51
1
1
$begingroup$
@mickep Mind giving a complete answer? I'm slightly confused as to how taking the limits does anything except revert back to our original integral (I'm not particularly good at analysis).
$endgroup$
– Mattos
Jan 6 '16 at 14:10
$begingroup$
@mickep Mind giving a complete answer? I'm slightly confused as to how taking the limits does anything except revert back to our original integral (I'm not particularly good at analysis).
$endgroup$
– Mattos
Jan 6 '16 at 14:10
$begingroup$
I deleted my answer because the same approach was used HERE to evaluate $int_{0}^{1}frac{ln(1-x)ln^{2} (x)}{x-1} , dx $.
$endgroup$
– Random Variable
Oct 4 '16 at 15:28
$begingroup$
I deleted my answer because the same approach was used HERE to evaluate $int_{0}^{1}frac{ln(1-x)ln^{2} (x)}{x-1} , dx $.
$endgroup$
– Random Variable
Oct 4 '16 at 15:28
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
We start by introducing the integral
$$
I(a,b)=frac{1}{2}int_0^1y^{a-1}(1-y)^b,dy=frac{1}{2}B(a,1+b),
$$
where $B$ denotes the beta function. Note that this integral is singular at $a=0$ and $b=-1$. Since $partial_a y^a=y^aln y$ we are
led to calculate
$$
partial_{a,b,b}I(a,b)=frac{1}{2}int_0^1 y^{a-1}(1-y)^bln ybigl(ln(1-y)bigr)^2,dy
$$
as $a$ and $b$ tend to $0$. We will below inser the "non-dangerous" point $b=0$. In other words, we want to calculate
$$
partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}.
$$
When differentiating the beta function, polygammas appear. Indeed,
$$
begin{aligned}
partial_bB(a,1+b)&=B(a,1+b)bigl(psi_0(1+b)-psi_0(1+a+b)bigr)\
partial_{b,b}B(a,1+b)&=B(a,1+b)Bigl(bigl(psi_0(1+b)-psi_0(1+a+b)bigr)^2
+psi_1(1+b)-psi_1(1+a+b)Bigr).
end{aligned}
$$
Next, we can actually insert $b=0$ before we differentiate with respect to
$a$ and take the limit $ato 0$. We should differentiate the function (here we have used the facts that $psi_0(1)=-gamma$ (Euler's constant) and that $psi_1(1)=pi^2/6$)
$$
f(a)=B(a,1)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)
$$
and calculate $lim_{ato 0^+}f'(a)$. We get that
$$
begin{aligned}
f'(a)&=B(a,1)bigl(psi_0(a)-psi_0(1+a)bigr)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)\
&quad+B(a,1)Bigl(2bigl(gamma+psi_0(1+a)bigr)psi_1(1+a)-psi_2(1+a)Bigr)
end{aligned}
$$
Next, we use the (non-obvious) expansions around $a=0$
$$
begin{aligned}
B(a,1)&=frac{1}{a}+O(1)\
psi_0(a)&=-frac{1}{a}-gamma+O(a)\
psi_0(1+a)&=-gamma+frac{pi^2}{6}a+O(a^2)\
psi_1(1+a)&=frac{pi^2}{6}+psi_2(1)a+frac{pi^4}{30}a^2+O(a^3)\
psi_2(1+a)&=psi_2(1)+frac{pi^4}{15}a+O(a^2).
end{aligned}
$$
to find that, as $ato0^+$,
$$
begin{aligned}
f'(a)&approx -frac{1}{a^2}Bigl(bigl(frac{pi^2}{6}abigr)^2-psi_2(1)a-frac{pi^4}{30}a^2Bigr)+frac{1}{a}Bigl(2frac{pi^2}{6}afrac{pi^2}{6}-psi_2(1)-frac{pi^4}{15}aBigr)+O(a)\
&=-frac{pi^4}{180}+O(a)
end{aligned}
$$
as $ato 0^+$. We conclude that
$$
partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}=-frac{pi^4}{180}.
$$
Finally, dividing by $2$ (remember, we had a one-half in front of the beta function in the beginning), we get that
$$
int_0^1frac{1}{2y}ln y(ln(1-y))^2,dy=-frac{1}{360}pi^4.
$$
$endgroup$
$begingroup$
Nice (+1) i am asking myself if there may be a more elementary way to derive this...
$endgroup$
– tired
Jan 6 '16 at 21:35
$begingroup$
@tired Thank you. I also wondered if there was a slimmer way, and I think that Random Variable indeed has found one. Perhaps there is even more elementary ways...
$endgroup$
– mickep
Jan 7 '16 at 6:06
add a comment |
$begingroup$
There is a closed form antiderivative that can be found using repeated integration by parts:
$$begin{align}intfrac{ln ycdotln^2(1-y)}{2y}dy=frac{ln^4(1-y)}8+frac{ln ycdotln ^3(1-y)}6+left(frac{pi^2}{12}-frac{ln ^2y}2right)cdotln ^2(1-y)\
+left[left(frac{pi^2}6+operatorname{Li}_2left(tfrac y{y-1}right)right)cdotln y-operatorname{Li}_3(1-y)-operatorname{Li}_3left(tfrac y{y-1}right)right]cdotln(1-y)\
+left[vphantom{Large|}zeta(3)-operatorname{Li}_3(1-y)right]cdotln y+operatorname{Li}_4(1-y)-operatorname{Li}_4(y)-operatorname{Li}_4left(tfrac y{y-1}right)color{gray}{+C}end{align}$$
$endgroup$
add a comment |
$begingroup$
Another one:
Write $log^2(1-y)=sum_{n,m=1}^{infty}frac{y^{m+n}}{mn}$
we obtain (exchanging summation and integration)
$$
2I=sum_{n,m=1}^{infty}frac{1}{mn}int_0^1log(y)y^{m+n-1}=\
-underbrace{sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}}_{S}
$$
the double sum can be tackeled by writing (i shamelessly benefit from this awesome answer)
$$
S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}=frac{1}{2}sum_{n,m=1}^{infty}frac{1}{m^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2m^2}
$$
shifting arguments in the last two sums gives
$$
2S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}-sum_{m=1,n<m}^{infty}frac{1}{n^2m^2}-sum_{m=1,n>m}^{infty}frac{1}{n^2m^2}
$$
which yields
$$
2S=sum_{n=m=1}^{infty}frac{1}{m^2n^2}=zeta(4)=frac{pi^4}{90}
$$
and therefore
$$
I=-S/2=-frac{pi^4}{360}
$$
$endgroup$
$begingroup$
(+1) :-) Please don't call it a shameless benefit, I originally got the sum while replicating the process of the evaluation of $sumlimits_{n=1}^{infty} frac{H_n}{n^3}$, see where that puts me?! :P
$endgroup$
– r9m
Jan 7 '16 at 13:36
1
$begingroup$
@r9m Let me borrow something from Issac Newton: ''If I have seen further, it is by standing on the shoulders of giants'' ;-)
$endgroup$
– tired
Jan 7 '16 at 13:44
$begingroup$
Here's the link to Felix Marin's evaluation of the sum. :-)
$endgroup$
– r9m
Jan 7 '16 at 13:48
add a comment |
$begingroup$
This question, for some reason, popped up in the Top Questions tab, and I thought I'd share another way to solve this integral using Harmonic Numbers. I hope you guys don't mind!
First, we use integration by parts on $u=log^2(1-x)$ to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =frac 12log^2xlog^2(1-x),Biggrrvert_0^1+intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}\ & =intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}end{align*}$$Now use the fact that
$$H(x)=-frac {log(1-x)}{1-x}=sumlimits_{ngeq1}H_nx^n$$
And substitute to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =-sumlimits_{ngeq1}H_nintlimits_0^1dx,x^nlog^2x\ & =-limlimits_{muto0}sumlimits_{ngeq1}H_nfrac {partial^2}{partialmu^2}frac 1{n+mu+1}\ & =-2sumlimits_{ngeq1}frac {H_n}{(n+1)^3}end{align*}$$Split the sum up and use a well-known formula due to Euler
$$sumlimits_{ngeq1}frac {H_n}{n^m}=frac 12(m+2)zeta(m+1)-frac 12sumlimits_{n=1}^{m-2}zeta(m-n)zeta(n+1)$$
Therefore$$I=2zeta(4)-5zeta(4)+zeta^2(2)=-frac {pi^4}{180}$$Our desired integral is half of that, so take half and the answer is$$intlimits_0^1dx,frac {log xlog^2(1-x)}{2x}color{blue}{=-frac {pi^4}{360}}$$
$endgroup$
add a comment |
$begingroup$
I offer up yet another approach, this one relying on the Maclaurin series expansion for $ln^2 (1 - x)$. It is similar to that used by @Frank W.
As was shown here
$$ln^2 (1 - x) = 2 sum_{n = 2}^infty frac{H_{n - 1} x^n}{n}, qquad |x| < 1.$$
Here $H_n$ denotes the Harmonic number. So for the integral we may write
begin{align}
int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{H_{n - 1}}{n} int_0^1 x^{n - 1} ln x , dx = -sum_{n = 2}^infty frac{H_{n - 1}}{n^3},
end{align}
after integrating by parts. From properties for the Harmonic number, since
$$H_n = H_{n - 1} + frac{1}{n},$$
the infinite sum can be rewritten as
begin{align}
int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{1}{n^4} - sum_{n = 2}^infty frac{H_n}{n^4} = sum_{n = 1}^infty frac{1}{n^4} - sum_{n = 1}^infty frac{H_n}{n^4}.
end{align}
Values for each of these sums are well known. For the first
$$sum_{n = 1}^infty frac{1}{n^4} = zeta (4) = frac{pi^4}{90}.$$
For the second sum
$$sum_{n = 1}^infty frac{H_n}{n^4} = frac{pi^4}{72}.$$
(for various proofs of this result, see here) Thus
$$int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx = frac{pi^4}{90} - frac{pi^4}{72} = -frac{pi^4}{360}.$$
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y =
-,{pi^{4} over 360}:
{large ?}}$.
begin{align}
&bbox[10px,#ffd]{ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y}} =
left.{1 over 2},{partial^{3} over partialnu^{2}partialmu}int_{0}^{1}{y^{mu}bracks{pars{1 - y}^{nu} - 1} over y},dd y,rightvert_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{{Gammapars{mu}Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}quad
pars{~Gamma: Gamma Function~}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{{pi over Gammapars{1 - mu}sinpars{pimu}},{Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{{1 over mu},{Gammapars{nu + 1} over Gammapars{1 - mu}Gammapars{mu + nu + 1}} + {pi^{2} over 6},mu}
_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}}mu + {pi^{2} over 6},mu}_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{2} over partialnu^{2}}
bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}
Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}} + {pi^{2} over 6}}
_{ {largemu = 0^{+}} atop {largenu = 0}} =
{1 over 4},{partial^{4} over partialnu^{2}partialmu^{2}}
{nu choose mu + nu}_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 4},partiald[2]{}{nu}
bracks{-,{pi^{2} over 6} + H^{2}_{nu} - Psi, 'pars{1 + nu}}
_{ nu = 0}quad
pars{~H_{z}: Harmonic Number~}
\[5mm] = &
{1 over 4}bracks{2Psi, '^{2}pars{1} + 2H_{0},Psi,''pars{1}- Psi, '''pars{1}}
qquadqquadqquadqquad
left{begin{array}{lcr}
ds{Psi, 'pars{1}} & ds{=} & ds{pi^{2} over 6}
\
ds{Psi, '''pars{1}} & ds{=} & ds{pi^{4} over 15}
\
ds{H_{0}} & ds{=} & ds{0}
end{array}right.
\[5mm] = &
{1 over 4}bracks{2pars{pi^{2} over 6}^{2} + 0 - {pi^{4} over 15}} =
bbx{-,{pi^{4} over 360}}
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1601957%2fwhats-the-value-of-int-01-frac12y-lny-ln21-y-dy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We start by introducing the integral
$$
I(a,b)=frac{1}{2}int_0^1y^{a-1}(1-y)^b,dy=frac{1}{2}B(a,1+b),
$$
where $B$ denotes the beta function. Note that this integral is singular at $a=0$ and $b=-1$. Since $partial_a y^a=y^aln y$ we are
led to calculate
$$
partial_{a,b,b}I(a,b)=frac{1}{2}int_0^1 y^{a-1}(1-y)^bln ybigl(ln(1-y)bigr)^2,dy
$$
as $a$ and $b$ tend to $0$. We will below inser the "non-dangerous" point $b=0$. In other words, we want to calculate
$$
partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}.
$$
When differentiating the beta function, polygammas appear. Indeed,
$$
begin{aligned}
partial_bB(a,1+b)&=B(a,1+b)bigl(psi_0(1+b)-psi_0(1+a+b)bigr)\
partial_{b,b}B(a,1+b)&=B(a,1+b)Bigl(bigl(psi_0(1+b)-psi_0(1+a+b)bigr)^2
+psi_1(1+b)-psi_1(1+a+b)Bigr).
end{aligned}
$$
Next, we can actually insert $b=0$ before we differentiate with respect to
$a$ and take the limit $ato 0$. We should differentiate the function (here we have used the facts that $psi_0(1)=-gamma$ (Euler's constant) and that $psi_1(1)=pi^2/6$)
$$
f(a)=B(a,1)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)
$$
and calculate $lim_{ato 0^+}f'(a)$. We get that
$$
begin{aligned}
f'(a)&=B(a,1)bigl(psi_0(a)-psi_0(1+a)bigr)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)\
&quad+B(a,1)Bigl(2bigl(gamma+psi_0(1+a)bigr)psi_1(1+a)-psi_2(1+a)Bigr)
end{aligned}
$$
Next, we use the (non-obvious) expansions around $a=0$
$$
begin{aligned}
B(a,1)&=frac{1}{a}+O(1)\
psi_0(a)&=-frac{1}{a}-gamma+O(a)\
psi_0(1+a)&=-gamma+frac{pi^2}{6}a+O(a^2)\
psi_1(1+a)&=frac{pi^2}{6}+psi_2(1)a+frac{pi^4}{30}a^2+O(a^3)\
psi_2(1+a)&=psi_2(1)+frac{pi^4}{15}a+O(a^2).
end{aligned}
$$
to find that, as $ato0^+$,
$$
begin{aligned}
f'(a)&approx -frac{1}{a^2}Bigl(bigl(frac{pi^2}{6}abigr)^2-psi_2(1)a-frac{pi^4}{30}a^2Bigr)+frac{1}{a}Bigl(2frac{pi^2}{6}afrac{pi^2}{6}-psi_2(1)-frac{pi^4}{15}aBigr)+O(a)\
&=-frac{pi^4}{180}+O(a)
end{aligned}
$$
as $ato 0^+$. We conclude that
$$
partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}=-frac{pi^4}{180}.
$$
Finally, dividing by $2$ (remember, we had a one-half in front of the beta function in the beginning), we get that
$$
int_0^1frac{1}{2y}ln y(ln(1-y))^2,dy=-frac{1}{360}pi^4.
$$
$endgroup$
$begingroup$
Nice (+1) i am asking myself if there may be a more elementary way to derive this...
$endgroup$
– tired
Jan 6 '16 at 21:35
$begingroup$
@tired Thank you. I also wondered if there was a slimmer way, and I think that Random Variable indeed has found one. Perhaps there is even more elementary ways...
$endgroup$
– mickep
Jan 7 '16 at 6:06
add a comment |
$begingroup$
We start by introducing the integral
$$
I(a,b)=frac{1}{2}int_0^1y^{a-1}(1-y)^b,dy=frac{1}{2}B(a,1+b),
$$
where $B$ denotes the beta function. Note that this integral is singular at $a=0$ and $b=-1$. Since $partial_a y^a=y^aln y$ we are
led to calculate
$$
partial_{a,b,b}I(a,b)=frac{1}{2}int_0^1 y^{a-1}(1-y)^bln ybigl(ln(1-y)bigr)^2,dy
$$
as $a$ and $b$ tend to $0$. We will below inser the "non-dangerous" point $b=0$. In other words, we want to calculate
$$
partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}.
$$
When differentiating the beta function, polygammas appear. Indeed,
$$
begin{aligned}
partial_bB(a,1+b)&=B(a,1+b)bigl(psi_0(1+b)-psi_0(1+a+b)bigr)\
partial_{b,b}B(a,1+b)&=B(a,1+b)Bigl(bigl(psi_0(1+b)-psi_0(1+a+b)bigr)^2
+psi_1(1+b)-psi_1(1+a+b)Bigr).
end{aligned}
$$
Next, we can actually insert $b=0$ before we differentiate with respect to
$a$ and take the limit $ato 0$. We should differentiate the function (here we have used the facts that $psi_0(1)=-gamma$ (Euler's constant) and that $psi_1(1)=pi^2/6$)
$$
f(a)=B(a,1)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)
$$
and calculate $lim_{ato 0^+}f'(a)$. We get that
$$
begin{aligned}
f'(a)&=B(a,1)bigl(psi_0(a)-psi_0(1+a)bigr)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)\
&quad+B(a,1)Bigl(2bigl(gamma+psi_0(1+a)bigr)psi_1(1+a)-psi_2(1+a)Bigr)
end{aligned}
$$
Next, we use the (non-obvious) expansions around $a=0$
$$
begin{aligned}
B(a,1)&=frac{1}{a}+O(1)\
psi_0(a)&=-frac{1}{a}-gamma+O(a)\
psi_0(1+a)&=-gamma+frac{pi^2}{6}a+O(a^2)\
psi_1(1+a)&=frac{pi^2}{6}+psi_2(1)a+frac{pi^4}{30}a^2+O(a^3)\
psi_2(1+a)&=psi_2(1)+frac{pi^4}{15}a+O(a^2).
end{aligned}
$$
to find that, as $ato0^+$,
$$
begin{aligned}
f'(a)&approx -frac{1}{a^2}Bigl(bigl(frac{pi^2}{6}abigr)^2-psi_2(1)a-frac{pi^4}{30}a^2Bigr)+frac{1}{a}Bigl(2frac{pi^2}{6}afrac{pi^2}{6}-psi_2(1)-frac{pi^4}{15}aBigr)+O(a)\
&=-frac{pi^4}{180}+O(a)
end{aligned}
$$
as $ato 0^+$. We conclude that
$$
partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}=-frac{pi^4}{180}.
$$
Finally, dividing by $2$ (remember, we had a one-half in front of the beta function in the beginning), we get that
$$
int_0^1frac{1}{2y}ln y(ln(1-y))^2,dy=-frac{1}{360}pi^4.
$$
$endgroup$
$begingroup$
Nice (+1) i am asking myself if there may be a more elementary way to derive this...
$endgroup$
– tired
Jan 6 '16 at 21:35
$begingroup$
@tired Thank you. I also wondered if there was a slimmer way, and I think that Random Variable indeed has found one. Perhaps there is even more elementary ways...
$endgroup$
– mickep
Jan 7 '16 at 6:06
add a comment |
$begingroup$
We start by introducing the integral
$$
I(a,b)=frac{1}{2}int_0^1y^{a-1}(1-y)^b,dy=frac{1}{2}B(a,1+b),
$$
where $B$ denotes the beta function. Note that this integral is singular at $a=0$ and $b=-1$. Since $partial_a y^a=y^aln y$ we are
led to calculate
$$
partial_{a,b,b}I(a,b)=frac{1}{2}int_0^1 y^{a-1}(1-y)^bln ybigl(ln(1-y)bigr)^2,dy
$$
as $a$ and $b$ tend to $0$. We will below inser the "non-dangerous" point $b=0$. In other words, we want to calculate
$$
partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}.
$$
When differentiating the beta function, polygammas appear. Indeed,
$$
begin{aligned}
partial_bB(a,1+b)&=B(a,1+b)bigl(psi_0(1+b)-psi_0(1+a+b)bigr)\
partial_{b,b}B(a,1+b)&=B(a,1+b)Bigl(bigl(psi_0(1+b)-psi_0(1+a+b)bigr)^2
+psi_1(1+b)-psi_1(1+a+b)Bigr).
end{aligned}
$$
Next, we can actually insert $b=0$ before we differentiate with respect to
$a$ and take the limit $ato 0$. We should differentiate the function (here we have used the facts that $psi_0(1)=-gamma$ (Euler's constant) and that $psi_1(1)=pi^2/6$)
$$
f(a)=B(a,1)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)
$$
and calculate $lim_{ato 0^+}f'(a)$. We get that
$$
begin{aligned}
f'(a)&=B(a,1)bigl(psi_0(a)-psi_0(1+a)bigr)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)\
&quad+B(a,1)Bigl(2bigl(gamma+psi_0(1+a)bigr)psi_1(1+a)-psi_2(1+a)Bigr)
end{aligned}
$$
Next, we use the (non-obvious) expansions around $a=0$
$$
begin{aligned}
B(a,1)&=frac{1}{a}+O(1)\
psi_0(a)&=-frac{1}{a}-gamma+O(a)\
psi_0(1+a)&=-gamma+frac{pi^2}{6}a+O(a^2)\
psi_1(1+a)&=frac{pi^2}{6}+psi_2(1)a+frac{pi^4}{30}a^2+O(a^3)\
psi_2(1+a)&=psi_2(1)+frac{pi^4}{15}a+O(a^2).
end{aligned}
$$
to find that, as $ato0^+$,
$$
begin{aligned}
f'(a)&approx -frac{1}{a^2}Bigl(bigl(frac{pi^2}{6}abigr)^2-psi_2(1)a-frac{pi^4}{30}a^2Bigr)+frac{1}{a}Bigl(2frac{pi^2}{6}afrac{pi^2}{6}-psi_2(1)-frac{pi^4}{15}aBigr)+O(a)\
&=-frac{pi^4}{180}+O(a)
end{aligned}
$$
as $ato 0^+$. We conclude that
$$
partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}=-frac{pi^4}{180}.
$$
Finally, dividing by $2$ (remember, we had a one-half in front of the beta function in the beginning), we get that
$$
int_0^1frac{1}{2y}ln y(ln(1-y))^2,dy=-frac{1}{360}pi^4.
$$
$endgroup$
We start by introducing the integral
$$
I(a,b)=frac{1}{2}int_0^1y^{a-1}(1-y)^b,dy=frac{1}{2}B(a,1+b),
$$
where $B$ denotes the beta function. Note that this integral is singular at $a=0$ and $b=-1$. Since $partial_a y^a=y^aln y$ we are
led to calculate
$$
partial_{a,b,b}I(a,b)=frac{1}{2}int_0^1 y^{a-1}(1-y)^bln ybigl(ln(1-y)bigr)^2,dy
$$
as $a$ and $b$ tend to $0$. We will below inser the "non-dangerous" point $b=0$. In other words, we want to calculate
$$
partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}.
$$
When differentiating the beta function, polygammas appear. Indeed,
$$
begin{aligned}
partial_bB(a,1+b)&=B(a,1+b)bigl(psi_0(1+b)-psi_0(1+a+b)bigr)\
partial_{b,b}B(a,1+b)&=B(a,1+b)Bigl(bigl(psi_0(1+b)-psi_0(1+a+b)bigr)^2
+psi_1(1+b)-psi_1(1+a+b)Bigr).
end{aligned}
$$
Next, we can actually insert $b=0$ before we differentiate with respect to
$a$ and take the limit $ato 0$. We should differentiate the function (here we have used the facts that $psi_0(1)=-gamma$ (Euler's constant) and that $psi_1(1)=pi^2/6$)
$$
f(a)=B(a,1)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)
$$
and calculate $lim_{ato 0^+}f'(a)$. We get that
$$
begin{aligned}
f'(a)&=B(a,1)bigl(psi_0(a)-psi_0(1+a)bigr)Bigl(bigl(gamma+psi_0(1+a)bigr)^2+frac{pi^2}{6}-psi_1(1+a)Bigr)\
&quad+B(a,1)Bigl(2bigl(gamma+psi_0(1+a)bigr)psi_1(1+a)-psi_2(1+a)Bigr)
end{aligned}
$$
Next, we use the (non-obvious) expansions around $a=0$
$$
begin{aligned}
B(a,1)&=frac{1}{a}+O(1)\
psi_0(a)&=-frac{1}{a}-gamma+O(a)\
psi_0(1+a)&=-gamma+frac{pi^2}{6}a+O(a^2)\
psi_1(1+a)&=frac{pi^2}{6}+psi_2(1)a+frac{pi^4}{30}a^2+O(a^3)\
psi_2(1+a)&=psi_2(1)+frac{pi^4}{15}a+O(a^2).
end{aligned}
$$
to find that, as $ato0^+$,
$$
begin{aligned}
f'(a)&approx -frac{1}{a^2}Bigl(bigl(frac{pi^2}{6}abigr)^2-psi_2(1)a-frac{pi^4}{30}a^2Bigr)+frac{1}{a}Bigl(2frac{pi^2}{6}afrac{pi^2}{6}-psi_2(1)-frac{pi^4}{15}aBigr)+O(a)\
&=-frac{pi^4}{180}+O(a)
end{aligned}
$$
as $ato 0^+$. We conclude that
$$
partial_{a,b,b}B(a,1+b)mid_{ato 0^+,bto 0}=-frac{pi^4}{180}.
$$
Finally, dividing by $2$ (remember, we had a one-half in front of the beta function in the beginning), we get that
$$
int_0^1frac{1}{2y}ln y(ln(1-y))^2,dy=-frac{1}{360}pi^4.
$$
answered Jan 6 '16 at 15:38
mickepmickep
18.7k12351
18.7k12351
$begingroup$
Nice (+1) i am asking myself if there may be a more elementary way to derive this...
$endgroup$
– tired
Jan 6 '16 at 21:35
$begingroup$
@tired Thank you. I also wondered if there was a slimmer way, and I think that Random Variable indeed has found one. Perhaps there is even more elementary ways...
$endgroup$
– mickep
Jan 7 '16 at 6:06
add a comment |
$begingroup$
Nice (+1) i am asking myself if there may be a more elementary way to derive this...
$endgroup$
– tired
Jan 6 '16 at 21:35
$begingroup$
@tired Thank you. I also wondered if there was a slimmer way, and I think that Random Variable indeed has found one. Perhaps there is even more elementary ways...
$endgroup$
– mickep
Jan 7 '16 at 6:06
$begingroup$
Nice (+1) i am asking myself if there may be a more elementary way to derive this...
$endgroup$
– tired
Jan 6 '16 at 21:35
$begingroup$
Nice (+1) i am asking myself if there may be a more elementary way to derive this...
$endgroup$
– tired
Jan 6 '16 at 21:35
$begingroup$
@tired Thank you. I also wondered if there was a slimmer way, and I think that Random Variable indeed has found one. Perhaps there is even more elementary ways...
$endgroup$
– mickep
Jan 7 '16 at 6:06
$begingroup$
@tired Thank you. I also wondered if there was a slimmer way, and I think that Random Variable indeed has found one. Perhaps there is even more elementary ways...
$endgroup$
– mickep
Jan 7 '16 at 6:06
add a comment |
$begingroup$
There is a closed form antiderivative that can be found using repeated integration by parts:
$$begin{align}intfrac{ln ycdotln^2(1-y)}{2y}dy=frac{ln^4(1-y)}8+frac{ln ycdotln ^3(1-y)}6+left(frac{pi^2}{12}-frac{ln ^2y}2right)cdotln ^2(1-y)\
+left[left(frac{pi^2}6+operatorname{Li}_2left(tfrac y{y-1}right)right)cdotln y-operatorname{Li}_3(1-y)-operatorname{Li}_3left(tfrac y{y-1}right)right]cdotln(1-y)\
+left[vphantom{Large|}zeta(3)-operatorname{Li}_3(1-y)right]cdotln y+operatorname{Li}_4(1-y)-operatorname{Li}_4(y)-operatorname{Li}_4left(tfrac y{y-1}right)color{gray}{+C}end{align}$$
$endgroup$
add a comment |
$begingroup$
There is a closed form antiderivative that can be found using repeated integration by parts:
$$begin{align}intfrac{ln ycdotln^2(1-y)}{2y}dy=frac{ln^4(1-y)}8+frac{ln ycdotln ^3(1-y)}6+left(frac{pi^2}{12}-frac{ln ^2y}2right)cdotln ^2(1-y)\
+left[left(frac{pi^2}6+operatorname{Li}_2left(tfrac y{y-1}right)right)cdotln y-operatorname{Li}_3(1-y)-operatorname{Li}_3left(tfrac y{y-1}right)right]cdotln(1-y)\
+left[vphantom{Large|}zeta(3)-operatorname{Li}_3(1-y)right]cdotln y+operatorname{Li}_4(1-y)-operatorname{Li}_4(y)-operatorname{Li}_4left(tfrac y{y-1}right)color{gray}{+C}end{align}$$
$endgroup$
add a comment |
$begingroup$
There is a closed form antiderivative that can be found using repeated integration by parts:
$$begin{align}intfrac{ln ycdotln^2(1-y)}{2y}dy=frac{ln^4(1-y)}8+frac{ln ycdotln ^3(1-y)}6+left(frac{pi^2}{12}-frac{ln ^2y}2right)cdotln ^2(1-y)\
+left[left(frac{pi^2}6+operatorname{Li}_2left(tfrac y{y-1}right)right)cdotln y-operatorname{Li}_3(1-y)-operatorname{Li}_3left(tfrac y{y-1}right)right]cdotln(1-y)\
+left[vphantom{Large|}zeta(3)-operatorname{Li}_3(1-y)right]cdotln y+operatorname{Li}_4(1-y)-operatorname{Li}_4(y)-operatorname{Li}_4left(tfrac y{y-1}right)color{gray}{+C}end{align}$$
$endgroup$
There is a closed form antiderivative that can be found using repeated integration by parts:
$$begin{align}intfrac{ln ycdotln^2(1-y)}{2y}dy=frac{ln^4(1-y)}8+frac{ln ycdotln ^3(1-y)}6+left(frac{pi^2}{12}-frac{ln ^2y}2right)cdotln ^2(1-y)\
+left[left(frac{pi^2}6+operatorname{Li}_2left(tfrac y{y-1}right)right)cdotln y-operatorname{Li}_3(1-y)-operatorname{Li}_3left(tfrac y{y-1}right)right]cdotln(1-y)\
+left[vphantom{Large|}zeta(3)-operatorname{Li}_3(1-y)right]cdotln y+operatorname{Li}_4(1-y)-operatorname{Li}_4(y)-operatorname{Li}_4left(tfrac y{y-1}right)color{gray}{+C}end{align}$$
answered Jan 6 '16 at 21:34
Vladimir ReshetnikovVladimir Reshetnikov
24.6k5121235
24.6k5121235
add a comment |
add a comment |
$begingroup$
Another one:
Write $log^2(1-y)=sum_{n,m=1}^{infty}frac{y^{m+n}}{mn}$
we obtain (exchanging summation and integration)
$$
2I=sum_{n,m=1}^{infty}frac{1}{mn}int_0^1log(y)y^{m+n-1}=\
-underbrace{sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}}_{S}
$$
the double sum can be tackeled by writing (i shamelessly benefit from this awesome answer)
$$
S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}=frac{1}{2}sum_{n,m=1}^{infty}frac{1}{m^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2m^2}
$$
shifting arguments in the last two sums gives
$$
2S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}-sum_{m=1,n<m}^{infty}frac{1}{n^2m^2}-sum_{m=1,n>m}^{infty}frac{1}{n^2m^2}
$$
which yields
$$
2S=sum_{n=m=1}^{infty}frac{1}{m^2n^2}=zeta(4)=frac{pi^4}{90}
$$
and therefore
$$
I=-S/2=-frac{pi^4}{360}
$$
$endgroup$
$begingroup$
(+1) :-) Please don't call it a shameless benefit, I originally got the sum while replicating the process of the evaluation of $sumlimits_{n=1}^{infty} frac{H_n}{n^3}$, see where that puts me?! :P
$endgroup$
– r9m
Jan 7 '16 at 13:36
1
$begingroup$
@r9m Let me borrow something from Issac Newton: ''If I have seen further, it is by standing on the shoulders of giants'' ;-)
$endgroup$
– tired
Jan 7 '16 at 13:44
$begingroup$
Here's the link to Felix Marin's evaluation of the sum. :-)
$endgroup$
– r9m
Jan 7 '16 at 13:48
add a comment |
$begingroup$
Another one:
Write $log^2(1-y)=sum_{n,m=1}^{infty}frac{y^{m+n}}{mn}$
we obtain (exchanging summation and integration)
$$
2I=sum_{n,m=1}^{infty}frac{1}{mn}int_0^1log(y)y^{m+n-1}=\
-underbrace{sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}}_{S}
$$
the double sum can be tackeled by writing (i shamelessly benefit from this awesome answer)
$$
S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}=frac{1}{2}sum_{n,m=1}^{infty}frac{1}{m^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2m^2}
$$
shifting arguments in the last two sums gives
$$
2S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}-sum_{m=1,n<m}^{infty}frac{1}{n^2m^2}-sum_{m=1,n>m}^{infty}frac{1}{n^2m^2}
$$
which yields
$$
2S=sum_{n=m=1}^{infty}frac{1}{m^2n^2}=zeta(4)=frac{pi^4}{90}
$$
and therefore
$$
I=-S/2=-frac{pi^4}{360}
$$
$endgroup$
$begingroup$
(+1) :-) Please don't call it a shameless benefit, I originally got the sum while replicating the process of the evaluation of $sumlimits_{n=1}^{infty} frac{H_n}{n^3}$, see where that puts me?! :P
$endgroup$
– r9m
Jan 7 '16 at 13:36
1
$begingroup$
@r9m Let me borrow something from Issac Newton: ''If I have seen further, it is by standing on the shoulders of giants'' ;-)
$endgroup$
– tired
Jan 7 '16 at 13:44
$begingroup$
Here's the link to Felix Marin's evaluation of the sum. :-)
$endgroup$
– r9m
Jan 7 '16 at 13:48
add a comment |
$begingroup$
Another one:
Write $log^2(1-y)=sum_{n,m=1}^{infty}frac{y^{m+n}}{mn}$
we obtain (exchanging summation and integration)
$$
2I=sum_{n,m=1}^{infty}frac{1}{mn}int_0^1log(y)y^{m+n-1}=\
-underbrace{sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}}_{S}
$$
the double sum can be tackeled by writing (i shamelessly benefit from this awesome answer)
$$
S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}=frac{1}{2}sum_{n,m=1}^{infty}frac{1}{m^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2m^2}
$$
shifting arguments in the last two sums gives
$$
2S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}-sum_{m=1,n<m}^{infty}frac{1}{n^2m^2}-sum_{m=1,n>m}^{infty}frac{1}{n^2m^2}
$$
which yields
$$
2S=sum_{n=m=1}^{infty}frac{1}{m^2n^2}=zeta(4)=frac{pi^4}{90}
$$
and therefore
$$
I=-S/2=-frac{pi^4}{360}
$$
$endgroup$
Another one:
Write $log^2(1-y)=sum_{n,m=1}^{infty}frac{y^{m+n}}{mn}$
we obtain (exchanging summation and integration)
$$
2I=sum_{n,m=1}^{infty}frac{1}{mn}int_0^1log(y)y^{m+n-1}=\
-underbrace{sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}}_{S}
$$
the double sum can be tackeled by writing (i shamelessly benefit from this awesome answer)
$$
S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}=frac{1}{2}sum_{n,m=1}^{infty}frac{1}{m^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2n^2}-frac{1}{2}sum_{n,m=1}^{infty}frac{1}{(m+n)^2m^2}
$$
shifting arguments in the last two sums gives
$$
2S=sum_{n,m=1}^{infty}frac{1}{mn}frac{1}{(m+n)^2}-sum_{m=1,n<m}^{infty}frac{1}{n^2m^2}-sum_{m=1,n>m}^{infty}frac{1}{n^2m^2}
$$
which yields
$$
2S=sum_{n=m=1}^{infty}frac{1}{m^2n^2}=zeta(4)=frac{pi^4}{90}
$$
and therefore
$$
I=-S/2=-frac{pi^4}{360}
$$
edited Apr 13 '17 at 12:21
Community♦
1
1
answered Jan 7 '16 at 11:20
tiredtired
10.6k12045
10.6k12045
$begingroup$
(+1) :-) Please don't call it a shameless benefit, I originally got the sum while replicating the process of the evaluation of $sumlimits_{n=1}^{infty} frac{H_n}{n^3}$, see where that puts me?! :P
$endgroup$
– r9m
Jan 7 '16 at 13:36
1
$begingroup$
@r9m Let me borrow something from Issac Newton: ''If I have seen further, it is by standing on the shoulders of giants'' ;-)
$endgroup$
– tired
Jan 7 '16 at 13:44
$begingroup$
Here's the link to Felix Marin's evaluation of the sum. :-)
$endgroup$
– r9m
Jan 7 '16 at 13:48
add a comment |
$begingroup$
(+1) :-) Please don't call it a shameless benefit, I originally got the sum while replicating the process of the evaluation of $sumlimits_{n=1}^{infty} frac{H_n}{n^3}$, see where that puts me?! :P
$endgroup$
– r9m
Jan 7 '16 at 13:36
1
$begingroup$
@r9m Let me borrow something from Issac Newton: ''If I have seen further, it is by standing on the shoulders of giants'' ;-)
$endgroup$
– tired
Jan 7 '16 at 13:44
$begingroup$
Here's the link to Felix Marin's evaluation of the sum. :-)
$endgroup$
– r9m
Jan 7 '16 at 13:48
$begingroup$
(+1) :-) Please don't call it a shameless benefit, I originally got the sum while replicating the process of the evaluation of $sumlimits_{n=1}^{infty} frac{H_n}{n^3}$, see where that puts me?! :P
$endgroup$
– r9m
Jan 7 '16 at 13:36
$begingroup$
(+1) :-) Please don't call it a shameless benefit, I originally got the sum while replicating the process of the evaluation of $sumlimits_{n=1}^{infty} frac{H_n}{n^3}$, see where that puts me?! :P
$endgroup$
– r9m
Jan 7 '16 at 13:36
1
1
$begingroup$
@r9m Let me borrow something from Issac Newton: ''If I have seen further, it is by standing on the shoulders of giants'' ;-)
$endgroup$
– tired
Jan 7 '16 at 13:44
$begingroup$
@r9m Let me borrow something from Issac Newton: ''If I have seen further, it is by standing on the shoulders of giants'' ;-)
$endgroup$
– tired
Jan 7 '16 at 13:44
$begingroup$
Here's the link to Felix Marin's evaluation of the sum. :-)
$endgroup$
– r9m
Jan 7 '16 at 13:48
$begingroup$
Here's the link to Felix Marin's evaluation of the sum. :-)
$endgroup$
– r9m
Jan 7 '16 at 13:48
add a comment |
$begingroup$
This question, for some reason, popped up in the Top Questions tab, and I thought I'd share another way to solve this integral using Harmonic Numbers. I hope you guys don't mind!
First, we use integration by parts on $u=log^2(1-x)$ to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =frac 12log^2xlog^2(1-x),Biggrrvert_0^1+intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}\ & =intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}end{align*}$$Now use the fact that
$$H(x)=-frac {log(1-x)}{1-x}=sumlimits_{ngeq1}H_nx^n$$
And substitute to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =-sumlimits_{ngeq1}H_nintlimits_0^1dx,x^nlog^2x\ & =-limlimits_{muto0}sumlimits_{ngeq1}H_nfrac {partial^2}{partialmu^2}frac 1{n+mu+1}\ & =-2sumlimits_{ngeq1}frac {H_n}{(n+1)^3}end{align*}$$Split the sum up and use a well-known formula due to Euler
$$sumlimits_{ngeq1}frac {H_n}{n^m}=frac 12(m+2)zeta(m+1)-frac 12sumlimits_{n=1}^{m-2}zeta(m-n)zeta(n+1)$$
Therefore$$I=2zeta(4)-5zeta(4)+zeta^2(2)=-frac {pi^4}{180}$$Our desired integral is half of that, so take half and the answer is$$intlimits_0^1dx,frac {log xlog^2(1-x)}{2x}color{blue}{=-frac {pi^4}{360}}$$
$endgroup$
add a comment |
$begingroup$
This question, for some reason, popped up in the Top Questions tab, and I thought I'd share another way to solve this integral using Harmonic Numbers. I hope you guys don't mind!
First, we use integration by parts on $u=log^2(1-x)$ to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =frac 12log^2xlog^2(1-x),Biggrrvert_0^1+intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}\ & =intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}end{align*}$$Now use the fact that
$$H(x)=-frac {log(1-x)}{1-x}=sumlimits_{ngeq1}H_nx^n$$
And substitute to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =-sumlimits_{ngeq1}H_nintlimits_0^1dx,x^nlog^2x\ & =-limlimits_{muto0}sumlimits_{ngeq1}H_nfrac {partial^2}{partialmu^2}frac 1{n+mu+1}\ & =-2sumlimits_{ngeq1}frac {H_n}{(n+1)^3}end{align*}$$Split the sum up and use a well-known formula due to Euler
$$sumlimits_{ngeq1}frac {H_n}{n^m}=frac 12(m+2)zeta(m+1)-frac 12sumlimits_{n=1}^{m-2}zeta(m-n)zeta(n+1)$$
Therefore$$I=2zeta(4)-5zeta(4)+zeta^2(2)=-frac {pi^4}{180}$$Our desired integral is half of that, so take half and the answer is$$intlimits_0^1dx,frac {log xlog^2(1-x)}{2x}color{blue}{=-frac {pi^4}{360}}$$
$endgroup$
add a comment |
$begingroup$
This question, for some reason, popped up in the Top Questions tab, and I thought I'd share another way to solve this integral using Harmonic Numbers. I hope you guys don't mind!
First, we use integration by parts on $u=log^2(1-x)$ to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =frac 12log^2xlog^2(1-x),Biggrrvert_0^1+intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}\ & =intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}end{align*}$$Now use the fact that
$$H(x)=-frac {log(1-x)}{1-x}=sumlimits_{ngeq1}H_nx^n$$
And substitute to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =-sumlimits_{ngeq1}H_nintlimits_0^1dx,x^nlog^2x\ & =-limlimits_{muto0}sumlimits_{ngeq1}H_nfrac {partial^2}{partialmu^2}frac 1{n+mu+1}\ & =-2sumlimits_{ngeq1}frac {H_n}{(n+1)^3}end{align*}$$Split the sum up and use a well-known formula due to Euler
$$sumlimits_{ngeq1}frac {H_n}{n^m}=frac 12(m+2)zeta(m+1)-frac 12sumlimits_{n=1}^{m-2}zeta(m-n)zeta(n+1)$$
Therefore$$I=2zeta(4)-5zeta(4)+zeta^2(2)=-frac {pi^4}{180}$$Our desired integral is half of that, so take half and the answer is$$intlimits_0^1dx,frac {log xlog^2(1-x)}{2x}color{blue}{=-frac {pi^4}{360}}$$
$endgroup$
This question, for some reason, popped up in the Top Questions tab, and I thought I'd share another way to solve this integral using Harmonic Numbers. I hope you guys don't mind!
First, we use integration by parts on $u=log^2(1-x)$ to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =frac 12log^2xlog^2(1-x),Biggrrvert_0^1+intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}\ & =intlimits_0^1dx,frac {log^2xlog(1-x)}{1-x}end{align*}$$Now use the fact that
$$H(x)=-frac {log(1-x)}{1-x}=sumlimits_{ngeq1}H_nx^n$$
And substitute to get$$begin{align*}intlimits_0^1dx,frac {log xlog^2(1-x)}{x} & =-sumlimits_{ngeq1}H_nintlimits_0^1dx,x^nlog^2x\ & =-limlimits_{muto0}sumlimits_{ngeq1}H_nfrac {partial^2}{partialmu^2}frac 1{n+mu+1}\ & =-2sumlimits_{ngeq1}frac {H_n}{(n+1)^3}end{align*}$$Split the sum up and use a well-known formula due to Euler
$$sumlimits_{ngeq1}frac {H_n}{n^m}=frac 12(m+2)zeta(m+1)-frac 12sumlimits_{n=1}^{m-2}zeta(m-n)zeta(n+1)$$
Therefore$$I=2zeta(4)-5zeta(4)+zeta^2(2)=-frac {pi^4}{180}$$Our desired integral is half of that, so take half and the answer is$$intlimits_0^1dx,frac {log xlog^2(1-x)}{2x}color{blue}{=-frac {pi^4}{360}}$$
answered May 19 '18 at 4:17
Frank W.Frank W.
3,7371321
3,7371321
add a comment |
add a comment |
$begingroup$
I offer up yet another approach, this one relying on the Maclaurin series expansion for $ln^2 (1 - x)$. It is similar to that used by @Frank W.
As was shown here
$$ln^2 (1 - x) = 2 sum_{n = 2}^infty frac{H_{n - 1} x^n}{n}, qquad |x| < 1.$$
Here $H_n$ denotes the Harmonic number. So for the integral we may write
begin{align}
int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{H_{n - 1}}{n} int_0^1 x^{n - 1} ln x , dx = -sum_{n = 2}^infty frac{H_{n - 1}}{n^3},
end{align}
after integrating by parts. From properties for the Harmonic number, since
$$H_n = H_{n - 1} + frac{1}{n},$$
the infinite sum can be rewritten as
begin{align}
int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{1}{n^4} - sum_{n = 2}^infty frac{H_n}{n^4} = sum_{n = 1}^infty frac{1}{n^4} - sum_{n = 1}^infty frac{H_n}{n^4}.
end{align}
Values for each of these sums are well known. For the first
$$sum_{n = 1}^infty frac{1}{n^4} = zeta (4) = frac{pi^4}{90}.$$
For the second sum
$$sum_{n = 1}^infty frac{H_n}{n^4} = frac{pi^4}{72}.$$
(for various proofs of this result, see here) Thus
$$int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx = frac{pi^4}{90} - frac{pi^4}{72} = -frac{pi^4}{360}.$$
$endgroup$
add a comment |
$begingroup$
I offer up yet another approach, this one relying on the Maclaurin series expansion for $ln^2 (1 - x)$. It is similar to that used by @Frank W.
As was shown here
$$ln^2 (1 - x) = 2 sum_{n = 2}^infty frac{H_{n - 1} x^n}{n}, qquad |x| < 1.$$
Here $H_n$ denotes the Harmonic number. So for the integral we may write
begin{align}
int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{H_{n - 1}}{n} int_0^1 x^{n - 1} ln x , dx = -sum_{n = 2}^infty frac{H_{n - 1}}{n^3},
end{align}
after integrating by parts. From properties for the Harmonic number, since
$$H_n = H_{n - 1} + frac{1}{n},$$
the infinite sum can be rewritten as
begin{align}
int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{1}{n^4} - sum_{n = 2}^infty frac{H_n}{n^4} = sum_{n = 1}^infty frac{1}{n^4} - sum_{n = 1}^infty frac{H_n}{n^4}.
end{align}
Values for each of these sums are well known. For the first
$$sum_{n = 1}^infty frac{1}{n^4} = zeta (4) = frac{pi^4}{90}.$$
For the second sum
$$sum_{n = 1}^infty frac{H_n}{n^4} = frac{pi^4}{72}.$$
(for various proofs of this result, see here) Thus
$$int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx = frac{pi^4}{90} - frac{pi^4}{72} = -frac{pi^4}{360}.$$
$endgroup$
add a comment |
$begingroup$
I offer up yet another approach, this one relying on the Maclaurin series expansion for $ln^2 (1 - x)$. It is similar to that used by @Frank W.
As was shown here
$$ln^2 (1 - x) = 2 sum_{n = 2}^infty frac{H_{n - 1} x^n}{n}, qquad |x| < 1.$$
Here $H_n$ denotes the Harmonic number. So for the integral we may write
begin{align}
int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{H_{n - 1}}{n} int_0^1 x^{n - 1} ln x , dx = -sum_{n = 2}^infty frac{H_{n - 1}}{n^3},
end{align}
after integrating by parts. From properties for the Harmonic number, since
$$H_n = H_{n - 1} + frac{1}{n},$$
the infinite sum can be rewritten as
begin{align}
int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{1}{n^4} - sum_{n = 2}^infty frac{H_n}{n^4} = sum_{n = 1}^infty frac{1}{n^4} - sum_{n = 1}^infty frac{H_n}{n^4}.
end{align}
Values for each of these sums are well known. For the first
$$sum_{n = 1}^infty frac{1}{n^4} = zeta (4) = frac{pi^4}{90}.$$
For the second sum
$$sum_{n = 1}^infty frac{H_n}{n^4} = frac{pi^4}{72}.$$
(for various proofs of this result, see here) Thus
$$int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx = frac{pi^4}{90} - frac{pi^4}{72} = -frac{pi^4}{360}.$$
$endgroup$
I offer up yet another approach, this one relying on the Maclaurin series expansion for $ln^2 (1 - x)$. It is similar to that used by @Frank W.
As was shown here
$$ln^2 (1 - x) = 2 sum_{n = 2}^infty frac{H_{n - 1} x^n}{n}, qquad |x| < 1.$$
Here $H_n$ denotes the Harmonic number. So for the integral we may write
begin{align}
int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{H_{n - 1}}{n} int_0^1 x^{n - 1} ln x , dx = -sum_{n = 2}^infty frac{H_{n - 1}}{n^3},
end{align}
after integrating by parts. From properties for the Harmonic number, since
$$H_n = H_{n - 1} + frac{1}{n},$$
the infinite sum can be rewritten as
begin{align}
int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx &= sum_{n = 2}^infty frac{1}{n^4} - sum_{n = 2}^infty frac{H_n}{n^4} = sum_{n = 1}^infty frac{1}{n^4} - sum_{n = 1}^infty frac{H_n}{n^4}.
end{align}
Values for each of these sums are well known. For the first
$$sum_{n = 1}^infty frac{1}{n^4} = zeta (4) = frac{pi^4}{90}.$$
For the second sum
$$sum_{n = 1}^infty frac{H_n}{n^4} = frac{pi^4}{72}.$$
(for various proofs of this result, see here) Thus
$$int_0^1 frac{1}{2x} ln x ln^2 (1 - x) , dx = frac{pi^4}{90} - frac{pi^4}{72} = -frac{pi^4}{360}.$$
answered Jan 11 at 1:59
omegadotomegadot
6,2692829
6,2692829
add a comment |
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y =
-,{pi^{4} over 360}:
{large ?}}$.
begin{align}
&bbox[10px,#ffd]{ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y}} =
left.{1 over 2},{partial^{3} over partialnu^{2}partialmu}int_{0}^{1}{y^{mu}bracks{pars{1 - y}^{nu} - 1} over y},dd y,rightvert_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{{Gammapars{mu}Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}quad
pars{~Gamma: Gamma Function~}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{{pi over Gammapars{1 - mu}sinpars{pimu}},{Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{{1 over mu},{Gammapars{nu + 1} over Gammapars{1 - mu}Gammapars{mu + nu + 1}} + {pi^{2} over 6},mu}
_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}}mu + {pi^{2} over 6},mu}_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{2} over partialnu^{2}}
bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}
Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}} + {pi^{2} over 6}}
_{ {largemu = 0^{+}} atop {largenu = 0}} =
{1 over 4},{partial^{4} over partialnu^{2}partialmu^{2}}
{nu choose mu + nu}_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 4},partiald[2]{}{nu}
bracks{-,{pi^{2} over 6} + H^{2}_{nu} - Psi, 'pars{1 + nu}}
_{ nu = 0}quad
pars{~H_{z}: Harmonic Number~}
\[5mm] = &
{1 over 4}bracks{2Psi, '^{2}pars{1} + 2H_{0},Psi,''pars{1}- Psi, '''pars{1}}
qquadqquadqquadqquad
left{begin{array}{lcr}
ds{Psi, 'pars{1}} & ds{=} & ds{pi^{2} over 6}
\
ds{Psi, '''pars{1}} & ds{=} & ds{pi^{4} over 15}
\
ds{H_{0}} & ds{=} & ds{0}
end{array}right.
\[5mm] = &
{1 over 4}bracks{2pars{pi^{2} over 6}^{2} + 0 - {pi^{4} over 15}} =
bbx{-,{pi^{4} over 360}}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y =
-,{pi^{4} over 360}:
{large ?}}$.
begin{align}
&bbox[10px,#ffd]{ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y}} =
left.{1 over 2},{partial^{3} over partialnu^{2}partialmu}int_{0}^{1}{y^{mu}bracks{pars{1 - y}^{nu} - 1} over y},dd y,rightvert_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{{Gammapars{mu}Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}quad
pars{~Gamma: Gamma Function~}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{{pi over Gammapars{1 - mu}sinpars{pimu}},{Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{{1 over mu},{Gammapars{nu + 1} over Gammapars{1 - mu}Gammapars{mu + nu + 1}} + {pi^{2} over 6},mu}
_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}}mu + {pi^{2} over 6},mu}_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{2} over partialnu^{2}}
bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}
Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}} + {pi^{2} over 6}}
_{ {largemu = 0^{+}} atop {largenu = 0}} =
{1 over 4},{partial^{4} over partialnu^{2}partialmu^{2}}
{nu choose mu + nu}_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 4},partiald[2]{}{nu}
bracks{-,{pi^{2} over 6} + H^{2}_{nu} - Psi, 'pars{1 + nu}}
_{ nu = 0}quad
pars{~H_{z}: Harmonic Number~}
\[5mm] = &
{1 over 4}bracks{2Psi, '^{2}pars{1} + 2H_{0},Psi,''pars{1}- Psi, '''pars{1}}
qquadqquadqquadqquad
left{begin{array}{lcr}
ds{Psi, 'pars{1}} & ds{=} & ds{pi^{2} over 6}
\
ds{Psi, '''pars{1}} & ds{=} & ds{pi^{4} over 15}
\
ds{H_{0}} & ds{=} & ds{0}
end{array}right.
\[5mm] = &
{1 over 4}bracks{2pars{pi^{2} over 6}^{2} + 0 - {pi^{4} over 15}} =
bbx{-,{pi^{4} over 360}}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y =
-,{pi^{4} over 360}:
{large ?}}$.
begin{align}
&bbox[10px,#ffd]{ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y}} =
left.{1 over 2},{partial^{3} over partialnu^{2}partialmu}int_{0}^{1}{y^{mu}bracks{pars{1 - y}^{nu} - 1} over y},dd y,rightvert_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{{Gammapars{mu}Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}quad
pars{~Gamma: Gamma Function~}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{{pi over Gammapars{1 - mu}sinpars{pimu}},{Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{{1 over mu},{Gammapars{nu + 1} over Gammapars{1 - mu}Gammapars{mu + nu + 1}} + {pi^{2} over 6},mu}
_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}}mu + {pi^{2} over 6},mu}_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{2} over partialnu^{2}}
bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}
Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}} + {pi^{2} over 6}}
_{ {largemu = 0^{+}} atop {largenu = 0}} =
{1 over 4},{partial^{4} over partialnu^{2}partialmu^{2}}
{nu choose mu + nu}_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 4},partiald[2]{}{nu}
bracks{-,{pi^{2} over 6} + H^{2}_{nu} - Psi, 'pars{1 + nu}}
_{ nu = 0}quad
pars{~H_{z}: Harmonic Number~}
\[5mm] = &
{1 over 4}bracks{2Psi, '^{2}pars{1} + 2H_{0},Psi,''pars{1}- Psi, '''pars{1}}
qquadqquadqquadqquad
left{begin{array}{lcr}
ds{Psi, 'pars{1}} & ds{=} & ds{pi^{2} over 6}
\
ds{Psi, '''pars{1}} & ds{=} & ds{pi^{4} over 15}
\
ds{H_{0}} & ds{=} & ds{0}
end{array}right.
\[5mm] = &
{1 over 4}bracks{2pars{pi^{2} over 6}^{2} + 0 - {pi^{4} over 15}} =
bbx{-,{pi^{4} over 360}}
end{align}
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y =
-,{pi^{4} over 360}:
{large ?}}$.
begin{align}
&bbox[10px,#ffd]{ds{{1 over 2}int_{0}^{1}{lnpars{y}ln^{2}pars{1 - y} over y},dd y}} =
left.{1 over 2},{partial^{3} over partialnu^{2}partialmu}int_{0}^{1}{y^{mu}bracks{pars{1 - y}^{nu} - 1} over y},dd y,rightvert_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{{Gammapars{mu}Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}quad
pars{~Gamma: Gamma Function~}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{{pi over Gammapars{1 - mu}sinpars{pimu}},{Gammapars{nu + 1} over Gammapars{mu + nu + 1}} - {1 over mu}}_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{{1 over mu},{Gammapars{nu + 1} over Gammapars{1 - mu}Gammapars{mu + nu + 1}} + {pi^{2} over 6},mu}
_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{3} over partialnu^{2}partialmu}
bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}}mu + {pi^{2} over 6},mu}_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 2},{partial^{2} over partialnu^{2}}
bracks{left.{1 over 2},partiald[2]{}{x}{Gammapars{nu + 1} over Gammapars{1 - x}
Gammapars{x + nu + 1}},rightvert_{ x = 0^{+}} + {pi^{2} over 6}}
_{ {largemu = 0^{+}} atop {largenu = 0}} =
{1 over 4},{partial^{4} over partialnu^{2}partialmu^{2}}
{nu choose mu + nu}_{ {largemu = 0^{+}} atop {largenu = 0}}
\[5mm] = &
{1 over 4},partiald[2]{}{nu}
bracks{-,{pi^{2} over 6} + H^{2}_{nu} - Psi, 'pars{1 + nu}}
_{ nu = 0}quad
pars{~H_{z}: Harmonic Number~}
\[5mm] = &
{1 over 4}bracks{2Psi, '^{2}pars{1} + 2H_{0},Psi,''pars{1}- Psi, '''pars{1}}
qquadqquadqquadqquad
left{begin{array}{lcr}
ds{Psi, 'pars{1}} & ds{=} & ds{pi^{2} over 6}
\
ds{Psi, '''pars{1}} & ds{=} & ds{pi^{4} over 15}
\
ds{H_{0}} & ds{=} & ds{0}
end{array}right.
\[5mm] = &
{1 over 4}bracks{2pars{pi^{2} over 6}^{2} + 0 - {pi^{4} over 15}} =
bbx{-,{pi^{4} over 360}}
end{align}
edited May 18 '18 at 23:38
answered May 2 '18 at 2:34
Felix MarinFelix Marin
68.9k7110147
68.9k7110147
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1601957%2fwhats-the-value-of-int-01-frac12y-lny-ln21-y-dy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
Hint: Introduce $I(a,b)=int_0^1frac{1}{2y}y^a(1-y)^b,dy$. Calculate $$partial_{a,b,b}I(a,b)$$ and study the limit of it as $ato0^+$ and $bto0^+$. You will get a rational constant times $pi^4$ if I'm not completely mistaken.
$endgroup$
– mickep
Jan 6 '16 at 12:47
$begingroup$
$-pi^4/360$ to be precise [thx to Mathematica]
$endgroup$
– Pierpaolo Vivo
Jan 6 '16 at 13:51
1
$begingroup$
@mickep Mind giving a complete answer? I'm slightly confused as to how taking the limits does anything except revert back to our original integral (I'm not particularly good at analysis).
$endgroup$
– Mattos
Jan 6 '16 at 14:10
$begingroup$
I deleted my answer because the same approach was used HERE to evaluate $int_{0}^{1}frac{ln(1-x)ln^{2} (x)}{x-1} , dx $.
$endgroup$
– Random Variable
Oct 4 '16 at 15:28