Functional equation for $GL(3)times GL(2)times GL(1)$ L-functions
$begingroup$
For two Maass forms
$$f(z)=sum_{nneq 0}a(n)sqrt{2pi y}K_{v_1-frac{1}{2}}(2pi|n|y)e^{2pi inx}$$ and$$g(z)=sum_{gammain U_2(mathbb{Z})backslash SL(2,mathbb{Z})} ,,,,,sum_{m=1}^{infty},,sum_{nneq 0}frac{b(m,n)}{|mn|}W_{text{Jacquet}}left(begin{pmatrix} |mn| & & \
& m & \
& & 1 end{pmatrix}begin{pmatrix}gamma & \ & 1end{pmatrix}z,,, v_2,,psi_{1,frac{n}{|n|}} right)$$ for $SL(2,mathbb{Z}), SL(3,mathbb{Z})$, respectively (assume $f$ is to be even), we know the functional equation of the Rankin-Selberg $L$-function
$$L_{ftimes g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{a(n)b(m,n)}{(m^2n)^s} $$ where $a(n),b(m,n)$ are the coefficients in the Fourier-Whittaker expansions of $f$ and $g$ resp. This follows from the following integral representation
$$int_{SL(2,mathbb{Z})backslashmathbb{H}}f(z).gleft(begin{pmatrix}z&\&1 end{pmatrix}right)|det(z)|^{s-frac{1}{2}}d^{*}z=L_{ftimes g}(s)G_{(v_1,v_2)} $$ Do we know functional equation for the twisted series
$$L_{f_{chi}times g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{chi(n)a(n)b(m,n)}{(m^2n)^s} $$ where $chi$ is say primitive mod $p$(prime) ?
analytic-number-theory modular-forms automorphic-forms langlands-program
$endgroup$
add a comment |
$begingroup$
For two Maass forms
$$f(z)=sum_{nneq 0}a(n)sqrt{2pi y}K_{v_1-frac{1}{2}}(2pi|n|y)e^{2pi inx}$$ and$$g(z)=sum_{gammain U_2(mathbb{Z})backslash SL(2,mathbb{Z})} ,,,,,sum_{m=1}^{infty},,sum_{nneq 0}frac{b(m,n)}{|mn|}W_{text{Jacquet}}left(begin{pmatrix} |mn| & & \
& m & \
& & 1 end{pmatrix}begin{pmatrix}gamma & \ & 1end{pmatrix}z,,, v_2,,psi_{1,frac{n}{|n|}} right)$$ for $SL(2,mathbb{Z}), SL(3,mathbb{Z})$, respectively (assume $f$ is to be even), we know the functional equation of the Rankin-Selberg $L$-function
$$L_{ftimes g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{a(n)b(m,n)}{(m^2n)^s} $$ where $a(n),b(m,n)$ are the coefficients in the Fourier-Whittaker expansions of $f$ and $g$ resp. This follows from the following integral representation
$$int_{SL(2,mathbb{Z})backslashmathbb{H}}f(z).gleft(begin{pmatrix}z&\&1 end{pmatrix}right)|det(z)|^{s-frac{1}{2}}d^{*}z=L_{ftimes g}(s)G_{(v_1,v_2)} $$ Do we know functional equation for the twisted series
$$L_{f_{chi}times g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{chi(n)a(n)b(m,n)}{(m^2n)^s} $$ where $chi$ is say primitive mod $p$(prime) ?
analytic-number-theory modular-forms automorphic-forms langlands-program
$endgroup$
$begingroup$
Won't it work the same way with $int_{Gamma_1(p)setminus H} f_chi(z) (...) $ ?
$endgroup$
– reuns
Dec 25 '18 at 21:52
$begingroup$
after doing the usual unfolding you will end with integrands of type $sum_{gammainGamma_1(p)backslash Gamma}f_{chi}(gamma z)$. Do we know the Fourier coefficients of this sum is terms of the Fourier coefficients of $f$ ?
$endgroup$
– pks
Dec 26 '18 at 4:11
add a comment |
$begingroup$
For two Maass forms
$$f(z)=sum_{nneq 0}a(n)sqrt{2pi y}K_{v_1-frac{1}{2}}(2pi|n|y)e^{2pi inx}$$ and$$g(z)=sum_{gammain U_2(mathbb{Z})backslash SL(2,mathbb{Z})} ,,,,,sum_{m=1}^{infty},,sum_{nneq 0}frac{b(m,n)}{|mn|}W_{text{Jacquet}}left(begin{pmatrix} |mn| & & \
& m & \
& & 1 end{pmatrix}begin{pmatrix}gamma & \ & 1end{pmatrix}z,,, v_2,,psi_{1,frac{n}{|n|}} right)$$ for $SL(2,mathbb{Z}), SL(3,mathbb{Z})$, respectively (assume $f$ is to be even), we know the functional equation of the Rankin-Selberg $L$-function
$$L_{ftimes g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{a(n)b(m,n)}{(m^2n)^s} $$ where $a(n),b(m,n)$ are the coefficients in the Fourier-Whittaker expansions of $f$ and $g$ resp. This follows from the following integral representation
$$int_{SL(2,mathbb{Z})backslashmathbb{H}}f(z).gleft(begin{pmatrix}z&\&1 end{pmatrix}right)|det(z)|^{s-frac{1}{2}}d^{*}z=L_{ftimes g}(s)G_{(v_1,v_2)} $$ Do we know functional equation for the twisted series
$$L_{f_{chi}times g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{chi(n)a(n)b(m,n)}{(m^2n)^s} $$ where $chi$ is say primitive mod $p$(prime) ?
analytic-number-theory modular-forms automorphic-forms langlands-program
$endgroup$
For two Maass forms
$$f(z)=sum_{nneq 0}a(n)sqrt{2pi y}K_{v_1-frac{1}{2}}(2pi|n|y)e^{2pi inx}$$ and$$g(z)=sum_{gammain U_2(mathbb{Z})backslash SL(2,mathbb{Z})} ,,,,,sum_{m=1}^{infty},,sum_{nneq 0}frac{b(m,n)}{|mn|}W_{text{Jacquet}}left(begin{pmatrix} |mn| & & \
& m & \
& & 1 end{pmatrix}begin{pmatrix}gamma & \ & 1end{pmatrix}z,,, v_2,,psi_{1,frac{n}{|n|}} right)$$ for $SL(2,mathbb{Z}), SL(3,mathbb{Z})$, respectively (assume $f$ is to be even), we know the functional equation of the Rankin-Selberg $L$-function
$$L_{ftimes g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{a(n)b(m,n)}{(m^2n)^s} $$ where $a(n),b(m,n)$ are the coefficients in the Fourier-Whittaker expansions of $f$ and $g$ resp. This follows from the following integral representation
$$int_{SL(2,mathbb{Z})backslashmathbb{H}}f(z).gleft(begin{pmatrix}z&\&1 end{pmatrix}right)|det(z)|^{s-frac{1}{2}}d^{*}z=L_{ftimes g}(s)G_{(v_1,v_2)} $$ Do we know functional equation for the twisted series
$$L_{f_{chi}times g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{chi(n)a(n)b(m,n)}{(m^2n)^s} $$ where $chi$ is say primitive mod $p$(prime) ?
analytic-number-theory modular-forms automorphic-forms langlands-program
analytic-number-theory modular-forms automorphic-forms langlands-program
edited Dec 24 '18 at 17:07
pks
asked Dec 23 '18 at 14:56
pkspks
18411
18411
$begingroup$
Won't it work the same way with $int_{Gamma_1(p)setminus H} f_chi(z) (...) $ ?
$endgroup$
– reuns
Dec 25 '18 at 21:52
$begingroup$
after doing the usual unfolding you will end with integrands of type $sum_{gammainGamma_1(p)backslash Gamma}f_{chi}(gamma z)$. Do we know the Fourier coefficients of this sum is terms of the Fourier coefficients of $f$ ?
$endgroup$
– pks
Dec 26 '18 at 4:11
add a comment |
$begingroup$
Won't it work the same way with $int_{Gamma_1(p)setminus H} f_chi(z) (...) $ ?
$endgroup$
– reuns
Dec 25 '18 at 21:52
$begingroup$
after doing the usual unfolding you will end with integrands of type $sum_{gammainGamma_1(p)backslash Gamma}f_{chi}(gamma z)$. Do we know the Fourier coefficients of this sum is terms of the Fourier coefficients of $f$ ?
$endgroup$
– pks
Dec 26 '18 at 4:11
$begingroup$
Won't it work the same way with $int_{Gamma_1(p)setminus H} f_chi(z) (...) $ ?
$endgroup$
– reuns
Dec 25 '18 at 21:52
$begingroup$
Won't it work the same way with $int_{Gamma_1(p)setminus H} f_chi(z) (...) $ ?
$endgroup$
– reuns
Dec 25 '18 at 21:52
$begingroup$
after doing the usual unfolding you will end with integrands of type $sum_{gammainGamma_1(p)backslash Gamma}f_{chi}(gamma z)$. Do we know the Fourier coefficients of this sum is terms of the Fourier coefficients of $f$ ?
$endgroup$
– pks
Dec 26 '18 at 4:11
$begingroup$
after doing the usual unfolding you will end with integrands of type $sum_{gammainGamma_1(p)backslash Gamma}f_{chi}(gamma z)$. Do we know the Fourier coefficients of this sum is terms of the Fourier coefficients of $f$ ?
$endgroup$
– pks
Dec 26 '18 at 4:11
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050403%2ffunctional-equation-for-gl3-times-gl2-times-gl1-l-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050403%2ffunctional-equation-for-gl3-times-gl2-times-gl1-l-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Won't it work the same way with $int_{Gamma_1(p)setminus H} f_chi(z) (...) $ ?
$endgroup$
– reuns
Dec 25 '18 at 21:52
$begingroup$
after doing the usual unfolding you will end with integrands of type $sum_{gammainGamma_1(p)backslash Gamma}f_{chi}(gamma z)$. Do we know the Fourier coefficients of this sum is terms of the Fourier coefficients of $f$ ?
$endgroup$
– pks
Dec 26 '18 at 4:11