Functional equation for $GL(3)times GL(2)times GL(1)$ L-functions












2












$begingroup$


For two Maass forms
$$f(z)=sum_{nneq 0}a(n)sqrt{2pi y}K_{v_1-frac{1}{2}}(2pi|n|y)e^{2pi inx}$$ and$$g(z)=sum_{gammain U_2(mathbb{Z})backslash SL(2,mathbb{Z})} ,,,,,sum_{m=1}^{infty},,sum_{nneq 0}frac{b(m,n)}{|mn|}W_{text{Jacquet}}left(begin{pmatrix} |mn| & & \
& m & \
& & 1 end{pmatrix}begin{pmatrix}gamma & \ & 1end{pmatrix}z,,, v_2,,psi_{1,frac{n}{|n|}} right)$$
for $SL(2,mathbb{Z}), SL(3,mathbb{Z})$, respectively (assume $f$ is to be even), we know the functional equation of the Rankin-Selberg $L$-function
$$L_{ftimes g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{a(n)b(m,n)}{(m^2n)^s} $$ where $a(n),b(m,n)$ are the coefficients in the Fourier-Whittaker expansions of $f$ and $g$ resp. This follows from the following integral representation
$$int_{SL(2,mathbb{Z})backslashmathbb{H}}f(z).gleft(begin{pmatrix}z&\&1 end{pmatrix}right)|det(z)|^{s-frac{1}{2}}d^{*}z=L_{ftimes g}(s)G_{(v_1,v_2)} $$ Do we know functional equation for the twisted series
$$L_{f_{chi}times g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{chi(n)a(n)b(m,n)}{(m^2n)^s} $$ where $chi$ is say primitive mod $p$(prime) ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Won't it work the same way with $int_{Gamma_1(p)setminus H} f_chi(z) (...) $ ?
    $endgroup$
    – reuns
    Dec 25 '18 at 21:52










  • $begingroup$
    after doing the usual unfolding you will end with integrands of type $sum_{gammainGamma_1(p)backslash Gamma}f_{chi}(gamma z)$. Do we know the Fourier coefficients of this sum is terms of the Fourier coefficients of $f$ ?
    $endgroup$
    – pks
    Dec 26 '18 at 4:11


















2












$begingroup$


For two Maass forms
$$f(z)=sum_{nneq 0}a(n)sqrt{2pi y}K_{v_1-frac{1}{2}}(2pi|n|y)e^{2pi inx}$$ and$$g(z)=sum_{gammain U_2(mathbb{Z})backslash SL(2,mathbb{Z})} ,,,,,sum_{m=1}^{infty},,sum_{nneq 0}frac{b(m,n)}{|mn|}W_{text{Jacquet}}left(begin{pmatrix} |mn| & & \
& m & \
& & 1 end{pmatrix}begin{pmatrix}gamma & \ & 1end{pmatrix}z,,, v_2,,psi_{1,frac{n}{|n|}} right)$$
for $SL(2,mathbb{Z}), SL(3,mathbb{Z})$, respectively (assume $f$ is to be even), we know the functional equation of the Rankin-Selberg $L$-function
$$L_{ftimes g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{a(n)b(m,n)}{(m^2n)^s} $$ where $a(n),b(m,n)$ are the coefficients in the Fourier-Whittaker expansions of $f$ and $g$ resp. This follows from the following integral representation
$$int_{SL(2,mathbb{Z})backslashmathbb{H}}f(z).gleft(begin{pmatrix}z&\&1 end{pmatrix}right)|det(z)|^{s-frac{1}{2}}d^{*}z=L_{ftimes g}(s)G_{(v_1,v_2)} $$ Do we know functional equation for the twisted series
$$L_{f_{chi}times g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{chi(n)a(n)b(m,n)}{(m^2n)^s} $$ where $chi$ is say primitive mod $p$(prime) ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Won't it work the same way with $int_{Gamma_1(p)setminus H} f_chi(z) (...) $ ?
    $endgroup$
    – reuns
    Dec 25 '18 at 21:52










  • $begingroup$
    after doing the usual unfolding you will end with integrands of type $sum_{gammainGamma_1(p)backslash Gamma}f_{chi}(gamma z)$. Do we know the Fourier coefficients of this sum is terms of the Fourier coefficients of $f$ ?
    $endgroup$
    – pks
    Dec 26 '18 at 4:11
















2












2








2


0



$begingroup$


For two Maass forms
$$f(z)=sum_{nneq 0}a(n)sqrt{2pi y}K_{v_1-frac{1}{2}}(2pi|n|y)e^{2pi inx}$$ and$$g(z)=sum_{gammain U_2(mathbb{Z})backslash SL(2,mathbb{Z})} ,,,,,sum_{m=1}^{infty},,sum_{nneq 0}frac{b(m,n)}{|mn|}W_{text{Jacquet}}left(begin{pmatrix} |mn| & & \
& m & \
& & 1 end{pmatrix}begin{pmatrix}gamma & \ & 1end{pmatrix}z,,, v_2,,psi_{1,frac{n}{|n|}} right)$$
for $SL(2,mathbb{Z}), SL(3,mathbb{Z})$, respectively (assume $f$ is to be even), we know the functional equation of the Rankin-Selberg $L$-function
$$L_{ftimes g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{a(n)b(m,n)}{(m^2n)^s} $$ where $a(n),b(m,n)$ are the coefficients in the Fourier-Whittaker expansions of $f$ and $g$ resp. This follows from the following integral representation
$$int_{SL(2,mathbb{Z})backslashmathbb{H}}f(z).gleft(begin{pmatrix}z&\&1 end{pmatrix}right)|det(z)|^{s-frac{1}{2}}d^{*}z=L_{ftimes g}(s)G_{(v_1,v_2)} $$ Do we know functional equation for the twisted series
$$L_{f_{chi}times g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{chi(n)a(n)b(m,n)}{(m^2n)^s} $$ where $chi$ is say primitive mod $p$(prime) ?










share|cite|improve this question











$endgroup$




For two Maass forms
$$f(z)=sum_{nneq 0}a(n)sqrt{2pi y}K_{v_1-frac{1}{2}}(2pi|n|y)e^{2pi inx}$$ and$$g(z)=sum_{gammain U_2(mathbb{Z})backslash SL(2,mathbb{Z})} ,,,,,sum_{m=1}^{infty},,sum_{nneq 0}frac{b(m,n)}{|mn|}W_{text{Jacquet}}left(begin{pmatrix} |mn| & & \
& m & \
& & 1 end{pmatrix}begin{pmatrix}gamma & \ & 1end{pmatrix}z,,, v_2,,psi_{1,frac{n}{|n|}} right)$$
for $SL(2,mathbb{Z}), SL(3,mathbb{Z})$, respectively (assume $f$ is to be even), we know the functional equation of the Rankin-Selberg $L$-function
$$L_{ftimes g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{a(n)b(m,n)}{(m^2n)^s} $$ where $a(n),b(m,n)$ are the coefficients in the Fourier-Whittaker expansions of $f$ and $g$ resp. This follows from the following integral representation
$$int_{SL(2,mathbb{Z})backslashmathbb{H}}f(z).gleft(begin{pmatrix}z&\&1 end{pmatrix}right)|det(z)|^{s-frac{1}{2}}d^{*}z=L_{ftimes g}(s)G_{(v_1,v_2)} $$ Do we know functional equation for the twisted series
$$L_{f_{chi}times g}(s)=sum_{m=1}^{infty}sum_{n=1}^{infty}frac{chi(n)a(n)b(m,n)}{(m^2n)^s} $$ where $chi$ is say primitive mod $p$(prime) ?







analytic-number-theory modular-forms automorphic-forms langlands-program






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 24 '18 at 17:07







pks

















asked Dec 23 '18 at 14:56









pkspks

18411




18411












  • $begingroup$
    Won't it work the same way with $int_{Gamma_1(p)setminus H} f_chi(z) (...) $ ?
    $endgroup$
    – reuns
    Dec 25 '18 at 21:52










  • $begingroup$
    after doing the usual unfolding you will end with integrands of type $sum_{gammainGamma_1(p)backslash Gamma}f_{chi}(gamma z)$. Do we know the Fourier coefficients of this sum is terms of the Fourier coefficients of $f$ ?
    $endgroup$
    – pks
    Dec 26 '18 at 4:11




















  • $begingroup$
    Won't it work the same way with $int_{Gamma_1(p)setminus H} f_chi(z) (...) $ ?
    $endgroup$
    – reuns
    Dec 25 '18 at 21:52










  • $begingroup$
    after doing the usual unfolding you will end with integrands of type $sum_{gammainGamma_1(p)backslash Gamma}f_{chi}(gamma z)$. Do we know the Fourier coefficients of this sum is terms of the Fourier coefficients of $f$ ?
    $endgroup$
    – pks
    Dec 26 '18 at 4:11


















$begingroup$
Won't it work the same way with $int_{Gamma_1(p)setminus H} f_chi(z) (...) $ ?
$endgroup$
– reuns
Dec 25 '18 at 21:52




$begingroup$
Won't it work the same way with $int_{Gamma_1(p)setminus H} f_chi(z) (...) $ ?
$endgroup$
– reuns
Dec 25 '18 at 21:52












$begingroup$
after doing the usual unfolding you will end with integrands of type $sum_{gammainGamma_1(p)backslash Gamma}f_{chi}(gamma z)$. Do we know the Fourier coefficients of this sum is terms of the Fourier coefficients of $f$ ?
$endgroup$
– pks
Dec 26 '18 at 4:11






$begingroup$
after doing the usual unfolding you will end with integrands of type $sum_{gammainGamma_1(p)backslash Gamma}f_{chi}(gamma z)$. Do we know the Fourier coefficients of this sum is terms of the Fourier coefficients of $f$ ?
$endgroup$
– pks
Dec 26 '18 at 4:11












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050403%2ffunctional-equation-for-gl3-times-gl2-times-gl1-l-functions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050403%2ffunctional-equation-for-gl3-times-gl2-times-gl1-l-functions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna