How to evaluate $int_{0}^{+infty}exp(-ax^2-frac b{x^2}),dx$ for $a,b>0$
$begingroup$
How can I evaluate
$$I=int_{0}^{+infty}!e^{-ax^2-frac b{x^2}},dx$$
for $a,b>0$?
My methods:
Let $a,b > 0$ and let
$$I(b)=int_{0}^{+infty}e^{-ax^2-frac b{x^2}},dx.$$
Then
$$I'(b)=int_{0}^{infty}-frac{1}{x^2}e^{-ax^2-frac b{x^2}},dx.$$
What the other methods that can I use to evaluate it? Thank you.
calculus integration definite-integrals improper-integrals
$endgroup$
|
show 1 more comment
$begingroup$
How can I evaluate
$$I=int_{0}^{+infty}!e^{-ax^2-frac b{x^2}},dx$$
for $a,b>0$?
My methods:
Let $a,b > 0$ and let
$$I(b)=int_{0}^{+infty}e^{-ax^2-frac b{x^2}},dx.$$
Then
$$I'(b)=int_{0}^{infty}-frac{1}{x^2}e^{-ax^2-frac b{x^2}},dx.$$
What the other methods that can I use to evaluate it? Thank you.
calculus integration definite-integrals improper-integrals
$endgroup$
$begingroup$
related: math.stackexchange.com/q/112372/73324
$endgroup$
– vadim123
Sep 17 '13 at 5:20
1
$begingroup$
The Maple command $$int(exp(-a*x^2-b/x^2), x = 0 .. infinity) assuming a>0,b>0 $$ outputs $$1/2,frac {sqrt {pi}}{ left( e^{sqrt{ab}} right) ^2sqrt{a}}. $$
$endgroup$
– user64494
Sep 17 '13 at 7:08
1
$begingroup$
It also works for $a,binmathbb{C}$.
$endgroup$
– Tunk-Fey
May 17 '14 at 6:24
$begingroup$
@Tunk-Fey Can you slow down a bit with the retagging? At the moment, over 70% of my front page is occupied by your retaggings, that's a bit much for my liking.
$endgroup$
– Daniel Fischer♦
Jun 17 '14 at 12:04
$begingroup$
@DanielFischer OK, sorry if that bothered you.
$endgroup$
– Tunk-Fey
Jun 17 '14 at 12:08
|
show 1 more comment
$begingroup$
How can I evaluate
$$I=int_{0}^{+infty}!e^{-ax^2-frac b{x^2}},dx$$
for $a,b>0$?
My methods:
Let $a,b > 0$ and let
$$I(b)=int_{0}^{+infty}e^{-ax^2-frac b{x^2}},dx.$$
Then
$$I'(b)=int_{0}^{infty}-frac{1}{x^2}e^{-ax^2-frac b{x^2}},dx.$$
What the other methods that can I use to evaluate it? Thank you.
calculus integration definite-integrals improper-integrals
$endgroup$
How can I evaluate
$$I=int_{0}^{+infty}!e^{-ax^2-frac b{x^2}},dx$$
for $a,b>0$?
My methods:
Let $a,b > 0$ and let
$$I(b)=int_{0}^{+infty}e^{-ax^2-frac b{x^2}},dx.$$
Then
$$I'(b)=int_{0}^{infty}-frac{1}{x^2}e^{-ax^2-frac b{x^2}},dx.$$
What the other methods that can I use to evaluate it? Thank you.
calculus integration definite-integrals improper-integrals
calculus integration definite-integrals improper-integrals
edited May 4 '15 at 11:19
mookid
25.6k52447
25.6k52447
asked Sep 17 '13 at 5:05
china mathchina math
10.2k631117
10.2k631117
$begingroup$
related: math.stackexchange.com/q/112372/73324
$endgroup$
– vadim123
Sep 17 '13 at 5:20
1
$begingroup$
The Maple command $$int(exp(-a*x^2-b/x^2), x = 0 .. infinity) assuming a>0,b>0 $$ outputs $$1/2,frac {sqrt {pi}}{ left( e^{sqrt{ab}} right) ^2sqrt{a}}. $$
$endgroup$
– user64494
Sep 17 '13 at 7:08
1
$begingroup$
It also works for $a,binmathbb{C}$.
$endgroup$
– Tunk-Fey
May 17 '14 at 6:24
$begingroup$
@Tunk-Fey Can you slow down a bit with the retagging? At the moment, over 70% of my front page is occupied by your retaggings, that's a bit much for my liking.
$endgroup$
– Daniel Fischer♦
Jun 17 '14 at 12:04
$begingroup$
@DanielFischer OK, sorry if that bothered you.
$endgroup$
– Tunk-Fey
Jun 17 '14 at 12:08
|
show 1 more comment
$begingroup$
related: math.stackexchange.com/q/112372/73324
$endgroup$
– vadim123
Sep 17 '13 at 5:20
1
$begingroup$
The Maple command $$int(exp(-a*x^2-b/x^2), x = 0 .. infinity) assuming a>0,b>0 $$ outputs $$1/2,frac {sqrt {pi}}{ left( e^{sqrt{ab}} right) ^2sqrt{a}}. $$
$endgroup$
– user64494
Sep 17 '13 at 7:08
1
$begingroup$
It also works for $a,binmathbb{C}$.
$endgroup$
– Tunk-Fey
May 17 '14 at 6:24
$begingroup$
@Tunk-Fey Can you slow down a bit with the retagging? At the moment, over 70% of my front page is occupied by your retaggings, that's a bit much for my liking.
$endgroup$
– Daniel Fischer♦
Jun 17 '14 at 12:04
$begingroup$
@DanielFischer OK, sorry if that bothered you.
$endgroup$
– Tunk-Fey
Jun 17 '14 at 12:08
$begingroup$
related: math.stackexchange.com/q/112372/73324
$endgroup$
– vadim123
Sep 17 '13 at 5:20
$begingroup$
related: math.stackexchange.com/q/112372/73324
$endgroup$
– vadim123
Sep 17 '13 at 5:20
1
1
$begingroup$
The Maple command $$int(exp(-a*x^2-b/x^2), x = 0 .. infinity) assuming a>0,b>0 $$ outputs $$1/2,frac {sqrt {pi}}{ left( e^{sqrt{ab}} right) ^2sqrt{a}}. $$
$endgroup$
– user64494
Sep 17 '13 at 7:08
$begingroup$
The Maple command $$int(exp(-a*x^2-b/x^2), x = 0 .. infinity) assuming a>0,b>0 $$ outputs $$1/2,frac {sqrt {pi}}{ left( e^{sqrt{ab}} right) ^2sqrt{a}}. $$
$endgroup$
– user64494
Sep 17 '13 at 7:08
1
1
$begingroup$
It also works for $a,binmathbb{C}$.
$endgroup$
– Tunk-Fey
May 17 '14 at 6:24
$begingroup$
It also works for $a,binmathbb{C}$.
$endgroup$
– Tunk-Fey
May 17 '14 at 6:24
$begingroup$
@Tunk-Fey Can you slow down a bit with the retagging? At the moment, over 70% of my front page is occupied by your retaggings, that's a bit much for my liking.
$endgroup$
– Daniel Fischer♦
Jun 17 '14 at 12:04
$begingroup$
@Tunk-Fey Can you slow down a bit with the retagging? At the moment, over 70% of my front page is occupied by your retaggings, that's a bit much for my liking.
$endgroup$
– Daniel Fischer♦
Jun 17 '14 at 12:04
$begingroup$
@DanielFischer OK, sorry if that bothered you.
$endgroup$
– Tunk-Fey
Jun 17 '14 at 12:08
$begingroup$
@DanielFischer OK, sorry if that bothered you.
$endgroup$
– Tunk-Fey
Jun 17 '14 at 12:08
|
show 1 more comment
7 Answers
7
active
oldest
votes
$begingroup$
$$begin{align}
I
= & int_0^{infty} e^{-ax^2 - bx^{-2}} dx\
stackrel{color{blue}{[1]}}{=} &
left(frac{b}{a}right)^{1/4}int_0^{infty} e^{-sqrt{ab}(y^2 + y^{-2})} dy\
= &
left(frac{b}{a}right)^{1/4}left[ int_0^{1} + int_1^{infty} right] e^{-sqrt{ab}(y^2 + y^{-2})} dy\
stackrel{color{blue}{[2]}}{=} &
left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}(y^2 + y^{-2})}
left(frac{1}{y^2} + 1right) dy\
= &
left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}((y-y^{-1})^2+2)}
dleft( y - frac{1}{y}right)\
stackrel{color{blue}{[3]}}{=} &
left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} int_0^{infty} e^{-sqrt{ab},z^2} dz\
= &
left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} frac{sqrt{pi}}{2(ab)^{1/4}}\
= &
sqrt{frac{pi}{4a}} e^{-2sqrt{ab}}
end{align}
$$
Notes
- $color{blue}{[1]}$ substitute $x$ by $y = sqrt{frac{a}{b}} x$.
- $color{blue}{[2]}$ substitute $y$ by $frac{1}{y}$ over the interval $[0,1]$.
- $color{blue}{[3]}$ substitute $y$ by $z = y - frac{1}{y}$.
$endgroup$
add a comment |
$begingroup$
Before you use a differentiation under the integral sign it is suitable to do the following variable exchange: $x=frac{t}{sqrt{a}}$
$$I=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{(-t^2-frac{s^2}{t^2})},dt;s^2=ab$$ Now, consider it as a function of $s$ and differentiate it with respect to $s$:
$$frac{dI}{ds}=frac{-2}{sqrt{a}}int_{0}^{+infty}frac{e^{(-t^2-frac{s^2}{t^2})}}{t^2}sdt=frac{-2}{sqrt{a}}int_{0}^{+infty}e^{(-t^2-frac{s^2}{t^2})}dt=-2I$$
So, to get an answer we need to solve the differential equation
$$frac{dI}{ds}=-2I$$ and use the fact that
$$I(0)=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{-t^2},dt=frac{1}{sqrt{a}}frac{sqrt{pi}}{2}$$
$endgroup$
1
$begingroup$
(+1) pretty clean approach. My only nitpick is the step of getting rid of the $frac{s}{t^2}$ factor in the integrand is not immediately obvious.
$endgroup$
– achille hui
Sep 18 '13 at 2:07
add a comment |
$begingroup$
The integral can be evaluated as follows
$$
begin{align}
int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=2int_{x=0}^infty expleft(-aleft(x^2-2sqrt{frac{b}{a}}+frac{b}{ax^2}+2sqrt{frac{b}{a}}right)right),dx\
&=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2-2sqrt{ab}right),dx\
&=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
end{align}
$$
The trick to solve the last integral is by setting
$$
I=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
$$
Let $t=-frac{1}{x}sqrt{frac{b}{a}};rightarrow;x=-frac{1}{t}sqrt{frac{b}{a}};rightarrow;dx=frac{1}{t^2}sqrt{frac{b}{a}},dt$, then
$$
I_t=sqrt{frac{b}{a}}int_{t=0}^infty frac{expleft(-aleft(-frac{1}{t}sqrt{frac{b}{a}}+tright)^2right)}{t^2},dt.
$$
Let $t=x;rightarrow;dt=dx$, then
$$
I_t=int_{t=0}^infty expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
$$
Adding the two $I_t$s yields
$$
2I=I_t+I_t=int_{t=0}^inftyleft(1+frac{1}{t^2}sqrt{frac{b}{a}}right)expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
$$
Let $s=t-frac{1}{t}sqrt{frac{b}{a}};rightarrow;ds=left(1+frac{1}{t^2}sqrt{frac{b}{a}}right)dt$ and for $0<t<infty$ is corresponding to $-infty<s<infty$, then
$$
I=frac{1}{2}int_{s=-infty}^infty e^{-as^2},ds=frac{1}{2}sqrt{frac{pi}{a}}.
$$
Thus
$$
begin{align}
int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx\
&=frac{1}{2}sqrt{frac{pi}{a}}e^{large-2sqrt{ab}}.
end{align}
$$
$endgroup$
add a comment |
$begingroup$
The integral is $$frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2(x-b/ax)^2}dx=frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2x^2}dx=frac{sqrt{pi}}{2a}e^{-2ab}.$$ (See M.L. Glasser, A Remarkable Property of Definite Integrals,
Math.Comp.Vol 40, p.561 (1983).
$endgroup$
add a comment |
$begingroup$
$newcommand{+}{^{dagger}}
newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
newcommand{dd}{{rm d}}
newcommand{down}{downarrow}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,{rm e}^{#1},}
newcommand{fermi}{,{rm f}}
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
newcommand{half}{{1 over 2}}
newcommand{ic}{{rm i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{isdiv}{,left.rightvert,}
newcommand{ket}[1]{leftvert #1rightrangle}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(, #1 ,right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}
newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
newcommand{sech}{,{rm sech}}
newcommand{sgn}{,{rm sgn}}
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}
newcommand{wt}[1]{widetilde{#1}}$
$ds{Iequivint_{0}^{infty}exppars{-ax^{2} - {b over x^{2}}},dd x:
{large ?}.qquad a, b > 0}$
Lets $ds{x equiv Aexpo{theta}}$ such that
$ds{-ax^{2} - {b over x^{2}} = -aA^{2}expo{2theta} - {b over A^{2}},
expo{-2theta}}$.
We choose
$$
A mbox{such that}quad
aA^{2} = {b over A^{2}}quadimpquad A = pars{b over a}^{1/4}. mbox{Then,}
-ax^{2} - {b over x^{2}} = -2root{ab}coshpars{2theta}
$$
begin{align}
I&=int_{-infty}^{infty}!!expo{-2root{ab}coshpars{2theta}}pars{b over a}^{1/4}
expo{theta},ddtheta
=2pars{b over a}^{1/4}int_{0}^{infty}expo{-2root{ab}coshpars{2theta}}
coshpars{theta},ddtheta
\[5mm]&=2pars{b over a}^{1/4}
overbrace{int_{0}^{infty}expo{-2root{ab}bracks{2sinh^{2}pars{theta} + 1}}
coshpars{theta},ddtheta}^{ds{mbox{Set}quad t equiv sinhpars{theta}}}
\[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
int_{0}^{infty}expo{-4root{ab}t^{2}},dd t
\[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
bracks{{1 over 2pars{ab}^{1/4}}}
overbrace{int_{0}^{infty}expo{-t^{2}},dd t}^{ds{= {root{pi} over 2}}}
= color{#00f}{large half,root{pi over a}expo{-2root{ab}}}
end{align}
$endgroup$
add a comment |
$begingroup$
A proof by Fourier transform
This won't be the shortest nor the most elementary proof here, but it has a nice background which I'll explain later. The main drawback is that it assumes that we know the Fourier transform of the Gaussian, which is about as hard to compute rigorously than the initial integral.
Fix $a > 0$. Then, for any $xi in mathbb{R}$,
$$begin{align}
int_{mathbb{R}} e^{i xi b} I(a,b^2) db
& = int_{mathbb{R}} e^{i xi b} int_0^{+ infty} e^{-ax^2-frac{b^2}{x^2}} dx db\
& = int_0^{+ infty} e^{-ax^2} int_{mathbb{R}} e^{i xi b} e^{-frac{b^2}{x^2}} db dx hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
& = sqrt{pi} int_0^{+ infty} x e^{-left( a+ frac{xi^2}{4}right) x^2} dx hspace{2em} color{#00f}{text{Fourier transform of the Gaussian}} \
& = frac{sqrt{pi}}{2} int_0^{+ infty} e^{-left( a+ frac{xi^2}{4}right) u} du hspace{2em} color{#00f}{text{Change of variables }u=x^2} \
& = frac{sqrt{pi}}{2 left( a+ frac{xi^2}{4}right)} hspace{2em} color{#00f}{text{Evaluation of the integral}} \
& = frac{sqrt{pi}}{2sqrt{a}} left( frac{1}{2sqrt{a}+ixi} + frac{1}{2sqrt{a}-ixi} right) hspace{2em} color{#00f}{text{Partial fraction decomposition}} \
& = frac{sqrt{pi}}{2sqrt{a}} left( int_0^{+ infty} e^{-(i xi + 2 sqrt{a})b} db + int_0^{+ infty} e^{-(-i xi + 2 sqrt{a})b} db right) \
& = frac{sqrt{pi}}{2sqrt{a}} int_{mathbb{R}} e^{i xi b} e^{-2 sqrt{a}|b|} db.
end{align}$$
Hence, $I(a, b^2)$ and $frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{a}|b|}$ have the same Fourier transform. Then you can check that both are continuous and decay exponentially fast at infinity, so they are pointwise the inverse Fourier transform of their Fourier transform, and thus coincide for all $b$. Finally, we get:
$$I(a, b) = frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{ab}}.$$
Motivation: a probabilistic proof
I stumbled upon this integral during my research (or rather, a family of such integrals). Let $X$ and $Y$ be two independent random variables, with $Y$ being exponential $mathcal{E} (lambda)$ and $Z$ being standard normal $mathcal{N} (0, 1)$. Let $X := Z sqrt{Y}$.
A first computation yields the density of the distribution of $X$. Let $f$ be continuous and bounded on $mathbb{R}$. Then:
$$begin{align}
mathbb{E} (f(X))
& = frac{lambda}{sigma sqrt{2 pi}} int_0^{+ infty} int_mathbb{R} f(z sqrt{y}) e^{-frac{z^2}{2}} e^{- lambda y} dz dy \
& = frac{lambda}{sqrt{2 pi}} int_0^{+ infty} e^{- lambda y} int_mathbb{R} frac{1}{sqrt{y}} f(b) e^{-frac{b^2}{2 y}} db dy hspace{2em} color{#00f}{text{Change of variables }b=zsqrt{y}} \
& = frac{lambda}{sqrt{2 pi}} int_mathbb{R} f(b) int_0^{+ infty} frac{e^{- lambda y}}{sqrt{y}} e^{-frac{b^2}{2 y}} dy db hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
& = frac{lambda sqrt{2}}{sqrt{pi}} int_mathbb{R} f(b) int_0^{+ infty} e^{- lambda x^2} e^{-frac{b^2}{2 x^2}} dx db hspace{2em} color{#00f}{text{Change of variables }x=sqrt{y}} \
end{align}$$
The density of $X$ is thus given by the function:
$$b mapsto frac{lambda sqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx.$$
And then, if we compute this integral, we can get a simpler expression for the density. However, it turns out that there is an easier way to compute the distribution of $X$, with the Fourier transform. Indeed, for all real $xi$,
$$begin{align}
mathbb{E} left( e^{i xi X} right)
& = mathbb{E} left( e^{i xi Z sqrt{Y}} right) \
& = mathbb{E} left( mathbb{E} left( e^{i (xi sqrt{Y}) Z} |Y right) right) \
& = mathbb{E} left( e^{- frac{xi^2 Y}{2}} right) \
& = frac{1}{1+frac{xi^2}{2lambda}}, \
end{align}$$
which is the Fourier transform of a Laplace distribution of parameter $1/ sqrt{2 lambda}$. With the argument of continuity given in the first paragraph, we get:
$$frac{lambdasqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{lambda}}{sqrt{2}} e^{-sqrt{2lambda}|b|},$$
so that:
$$int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{pi}}{2 sqrt{lambda}} e^{-sqrt{2lambda}|b|}.$$
The proof in the first paragraph is the streamlined version of this reasoning. All in all, an interpretation of this integral is that the product of a centered Gaussian and of the square root of an independent exponential random variable is a Laplace random variable.
$endgroup$
add a comment |
$begingroup$
Let’s do the general integral
$displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$
Differentiate with respect to a
$displaystyle frac{partial I}{partial a}=int_{0}^{infty}x^{-2}e^{-(ax^{-2}+bx^{2})}dx$
Now differentiate with respect to b
$displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}x^{-2}x^{2}e^{-(ax^{-2}+bx^{2})}dx$
$displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$
$displaystyle frac{partial^2 I}{partial a partial b}=I$
Thus our integral satisfies this PDE.This is a hyperbolic homogenous PDE. It is a second order PDE but it is first order with respect to each of the variables so we’ll need two boundary conditions to determine a unique solution.(In this case two asympotic BCs and one Drichlet boundary condition will be used).Keep this in mind we’ll need it later.
Let’s complete the square of expression in the exponential.
$displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2}-2sqrt{ab}+2sqrt{ab})}dx$
$displaystyle I(a,b)=int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}-2sqrt{ab}}dx$
$displaystyle I(a,b)=e^{-2sqrt{ab}}int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}}dx$
Now let’s explore more of it’s properties.One thing to note is that this integral diverges(blows up) at b=0 but at a=0 it has a well known value. It is the Gaussian integral so
$displaystyle I(0,b)=int_{0}^{infty}e^{-(bx^{2})}dx=frac{1}{2}sqrt{frac{pi}{b}}$
The negative exponential was extracted from the integral rather than the positive one beacause
$displaystyle lim_{atoinfty}int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx=0$
and
$displaystyle lim_{atoinfty}e^{-2sqrt{ab}}=0$
So let’s assume that we assume that the solution to our PDE is of the form
$displaystyle I(a,b)=e^{-2sqrt{ab}}K(b)$
where K is a function of b(and diverges at b=0)
Let’s put this in the PDE
$displaystyle frac{partial I}{partial a}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K(b)$
$displaystyle frac{partial^2 I}{partial a partial b}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K^{'}(b)-frac{1}{2sqrt{ab}}e^{-2sqrt{ab}}K(b)+sqrt{frac{b}{a}}sqrt{frac{a}{b}}e^{-2sqrt{ab}}K(b)$
$displaystyle frac{partial^2 I}{partial a partial b}=e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))$
As
$displaystyle frac{partial^2 I}{partial a partial b}=I$
So
$displaystyle e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))=e^{-2sqrt{ab}}K(b)$
$displaystyle -sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b)=K(b)$
$displaystyle -sqrt{frac{b}{a}}K^{'}(a)=frac{K(b)}{2sqrt{ab}}$
$displaystyle K^{'}(b)=-frac{K(b)}{2b}$
This is a separable ODE.Let’s solve it
$displaystyle frac{1}{K}dK=-frac{1}{2}frac{1}{b}db$
Let’s integrate
$displaystyle int frac{1}{K}dK=-frac{1}{2}int frac{1}{b}db$
$displaystyle ln(K)=-frac{1}{2}ln(b)+C$
$displaystyle ln(K)=ln(b^{-frac{1}{2}})+C$
$displaystyle K=e^{C}b^{-frac{1}{2}}$
Let
$displaystyle v=e^{C}$
So
$displaystyle K(b)=vb^{-frac{1}{2}}$
Thus the solution is
$displaystyle I(a,b)=ve^{-2sqrt{ab}}b^{-frac{1}{2}}$
This expression diverges at b=0 which is exactly what we wanted. Now let’s determine the constant v. As
$displaystyle I(0,b)=frac{1}{2}sqrt{frac{pi}{b}}$
So
$displaystyle frac{1}{2}sqrt{frac{pi}{b}}=vb^{-frac{1}{2}}e^{0}$
$v=frac{sqrt{pi}}{2}$
Thus the integral is
$displaystyle boxed{I(a,b)=frac{1}{2}sqrt{frac{pi}{b}}e^{-2sqrt{ab}}} (0leqslant a,b)$
The given integral is I(b,a) so
$displaystyle boxed{I(b,a)=frac{1}{2}sqrt{frac{pi}{a}}e^{-2sqrt{ab}}} (0leqslant a,b)$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f496088%2fhow-to-evaluate-int-0-infty-exp-ax2-frac-bx2-dx-for-a-b0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
7 Answers
7
active
oldest
votes
7 Answers
7
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$begin{align}
I
= & int_0^{infty} e^{-ax^2 - bx^{-2}} dx\
stackrel{color{blue}{[1]}}{=} &
left(frac{b}{a}right)^{1/4}int_0^{infty} e^{-sqrt{ab}(y^2 + y^{-2})} dy\
= &
left(frac{b}{a}right)^{1/4}left[ int_0^{1} + int_1^{infty} right] e^{-sqrt{ab}(y^2 + y^{-2})} dy\
stackrel{color{blue}{[2]}}{=} &
left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}(y^2 + y^{-2})}
left(frac{1}{y^2} + 1right) dy\
= &
left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}((y-y^{-1})^2+2)}
dleft( y - frac{1}{y}right)\
stackrel{color{blue}{[3]}}{=} &
left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} int_0^{infty} e^{-sqrt{ab},z^2} dz\
= &
left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} frac{sqrt{pi}}{2(ab)^{1/4}}\
= &
sqrt{frac{pi}{4a}} e^{-2sqrt{ab}}
end{align}
$$
Notes
- $color{blue}{[1]}$ substitute $x$ by $y = sqrt{frac{a}{b}} x$.
- $color{blue}{[2]}$ substitute $y$ by $frac{1}{y}$ over the interval $[0,1]$.
- $color{blue}{[3]}$ substitute $y$ by $z = y - frac{1}{y}$.
$endgroup$
add a comment |
$begingroup$
$$begin{align}
I
= & int_0^{infty} e^{-ax^2 - bx^{-2}} dx\
stackrel{color{blue}{[1]}}{=} &
left(frac{b}{a}right)^{1/4}int_0^{infty} e^{-sqrt{ab}(y^2 + y^{-2})} dy\
= &
left(frac{b}{a}right)^{1/4}left[ int_0^{1} + int_1^{infty} right] e^{-sqrt{ab}(y^2 + y^{-2})} dy\
stackrel{color{blue}{[2]}}{=} &
left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}(y^2 + y^{-2})}
left(frac{1}{y^2} + 1right) dy\
= &
left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}((y-y^{-1})^2+2)}
dleft( y - frac{1}{y}right)\
stackrel{color{blue}{[3]}}{=} &
left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} int_0^{infty} e^{-sqrt{ab},z^2} dz\
= &
left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} frac{sqrt{pi}}{2(ab)^{1/4}}\
= &
sqrt{frac{pi}{4a}} e^{-2sqrt{ab}}
end{align}
$$
Notes
- $color{blue}{[1]}$ substitute $x$ by $y = sqrt{frac{a}{b}} x$.
- $color{blue}{[2]}$ substitute $y$ by $frac{1}{y}$ over the interval $[0,1]$.
- $color{blue}{[3]}$ substitute $y$ by $z = y - frac{1}{y}$.
$endgroup$
add a comment |
$begingroup$
$$begin{align}
I
= & int_0^{infty} e^{-ax^2 - bx^{-2}} dx\
stackrel{color{blue}{[1]}}{=} &
left(frac{b}{a}right)^{1/4}int_0^{infty} e^{-sqrt{ab}(y^2 + y^{-2})} dy\
= &
left(frac{b}{a}right)^{1/4}left[ int_0^{1} + int_1^{infty} right] e^{-sqrt{ab}(y^2 + y^{-2})} dy\
stackrel{color{blue}{[2]}}{=} &
left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}(y^2 + y^{-2})}
left(frac{1}{y^2} + 1right) dy\
= &
left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}((y-y^{-1})^2+2)}
dleft( y - frac{1}{y}right)\
stackrel{color{blue}{[3]}}{=} &
left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} int_0^{infty} e^{-sqrt{ab},z^2} dz\
= &
left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} frac{sqrt{pi}}{2(ab)^{1/4}}\
= &
sqrt{frac{pi}{4a}} e^{-2sqrt{ab}}
end{align}
$$
Notes
- $color{blue}{[1]}$ substitute $x$ by $y = sqrt{frac{a}{b}} x$.
- $color{blue}{[2]}$ substitute $y$ by $frac{1}{y}$ over the interval $[0,1]$.
- $color{blue}{[3]}$ substitute $y$ by $z = y - frac{1}{y}$.
$endgroup$
$$begin{align}
I
= & int_0^{infty} e^{-ax^2 - bx^{-2}} dx\
stackrel{color{blue}{[1]}}{=} &
left(frac{b}{a}right)^{1/4}int_0^{infty} e^{-sqrt{ab}(y^2 + y^{-2})} dy\
= &
left(frac{b}{a}right)^{1/4}left[ int_0^{1} + int_1^{infty} right] e^{-sqrt{ab}(y^2 + y^{-2})} dy\
stackrel{color{blue}{[2]}}{=} &
left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}(y^2 + y^{-2})}
left(frac{1}{y^2} + 1right) dy\
= &
left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}((y-y^{-1})^2+2)}
dleft( y - frac{1}{y}right)\
stackrel{color{blue}{[3]}}{=} &
left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} int_0^{infty} e^{-sqrt{ab},z^2} dz\
= &
left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} frac{sqrt{pi}}{2(ab)^{1/4}}\
= &
sqrt{frac{pi}{4a}} e^{-2sqrt{ab}}
end{align}
$$
Notes
- $color{blue}{[1]}$ substitute $x$ by $y = sqrt{frac{a}{b}} x$.
- $color{blue}{[2]}$ substitute $y$ by $frac{1}{y}$ over the interval $[0,1]$.
- $color{blue}{[3]}$ substitute $y$ by $z = y - frac{1}{y}$.
answered Sep 17 '13 at 5:38
achille huiachille hui
95.9k5132258
95.9k5132258
add a comment |
add a comment |
$begingroup$
Before you use a differentiation under the integral sign it is suitable to do the following variable exchange: $x=frac{t}{sqrt{a}}$
$$I=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{(-t^2-frac{s^2}{t^2})},dt;s^2=ab$$ Now, consider it as a function of $s$ and differentiate it with respect to $s$:
$$frac{dI}{ds}=frac{-2}{sqrt{a}}int_{0}^{+infty}frac{e^{(-t^2-frac{s^2}{t^2})}}{t^2}sdt=frac{-2}{sqrt{a}}int_{0}^{+infty}e^{(-t^2-frac{s^2}{t^2})}dt=-2I$$
So, to get an answer we need to solve the differential equation
$$frac{dI}{ds}=-2I$$ and use the fact that
$$I(0)=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{-t^2},dt=frac{1}{sqrt{a}}frac{sqrt{pi}}{2}$$
$endgroup$
1
$begingroup$
(+1) pretty clean approach. My only nitpick is the step of getting rid of the $frac{s}{t^2}$ factor in the integrand is not immediately obvious.
$endgroup$
– achille hui
Sep 18 '13 at 2:07
add a comment |
$begingroup$
Before you use a differentiation under the integral sign it is suitable to do the following variable exchange: $x=frac{t}{sqrt{a}}$
$$I=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{(-t^2-frac{s^2}{t^2})},dt;s^2=ab$$ Now, consider it as a function of $s$ and differentiate it with respect to $s$:
$$frac{dI}{ds}=frac{-2}{sqrt{a}}int_{0}^{+infty}frac{e^{(-t^2-frac{s^2}{t^2})}}{t^2}sdt=frac{-2}{sqrt{a}}int_{0}^{+infty}e^{(-t^2-frac{s^2}{t^2})}dt=-2I$$
So, to get an answer we need to solve the differential equation
$$frac{dI}{ds}=-2I$$ and use the fact that
$$I(0)=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{-t^2},dt=frac{1}{sqrt{a}}frac{sqrt{pi}}{2}$$
$endgroup$
1
$begingroup$
(+1) pretty clean approach. My only nitpick is the step of getting rid of the $frac{s}{t^2}$ factor in the integrand is not immediately obvious.
$endgroup$
– achille hui
Sep 18 '13 at 2:07
add a comment |
$begingroup$
Before you use a differentiation under the integral sign it is suitable to do the following variable exchange: $x=frac{t}{sqrt{a}}$
$$I=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{(-t^2-frac{s^2}{t^2})},dt;s^2=ab$$ Now, consider it as a function of $s$ and differentiate it with respect to $s$:
$$frac{dI}{ds}=frac{-2}{sqrt{a}}int_{0}^{+infty}frac{e^{(-t^2-frac{s^2}{t^2})}}{t^2}sdt=frac{-2}{sqrt{a}}int_{0}^{+infty}e^{(-t^2-frac{s^2}{t^2})}dt=-2I$$
So, to get an answer we need to solve the differential equation
$$frac{dI}{ds}=-2I$$ and use the fact that
$$I(0)=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{-t^2},dt=frac{1}{sqrt{a}}frac{sqrt{pi}}{2}$$
$endgroup$
Before you use a differentiation under the integral sign it is suitable to do the following variable exchange: $x=frac{t}{sqrt{a}}$
$$I=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{(-t^2-frac{s^2}{t^2})},dt;s^2=ab$$ Now, consider it as a function of $s$ and differentiate it with respect to $s$:
$$frac{dI}{ds}=frac{-2}{sqrt{a}}int_{0}^{+infty}frac{e^{(-t^2-frac{s^2}{t^2})}}{t^2}sdt=frac{-2}{sqrt{a}}int_{0}^{+infty}e^{(-t^2-frac{s^2}{t^2})}dt=-2I$$
So, to get an answer we need to solve the differential equation
$$frac{dI}{ds}=-2I$$ and use the fact that
$$I(0)=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{-t^2},dt=frac{1}{sqrt{a}}frac{sqrt{pi}}{2}$$
answered Sep 17 '13 at 16:34
Martin GalesMartin Gales
3,53911935
3,53911935
1
$begingroup$
(+1) pretty clean approach. My only nitpick is the step of getting rid of the $frac{s}{t^2}$ factor in the integrand is not immediately obvious.
$endgroup$
– achille hui
Sep 18 '13 at 2:07
add a comment |
1
$begingroup$
(+1) pretty clean approach. My only nitpick is the step of getting rid of the $frac{s}{t^2}$ factor in the integrand is not immediately obvious.
$endgroup$
– achille hui
Sep 18 '13 at 2:07
1
1
$begingroup$
(+1) pretty clean approach. My only nitpick is the step of getting rid of the $frac{s}{t^2}$ factor in the integrand is not immediately obvious.
$endgroup$
– achille hui
Sep 18 '13 at 2:07
$begingroup$
(+1) pretty clean approach. My only nitpick is the step of getting rid of the $frac{s}{t^2}$ factor in the integrand is not immediately obvious.
$endgroup$
– achille hui
Sep 18 '13 at 2:07
add a comment |
$begingroup$
The integral can be evaluated as follows
$$
begin{align}
int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=2int_{x=0}^infty expleft(-aleft(x^2-2sqrt{frac{b}{a}}+frac{b}{ax^2}+2sqrt{frac{b}{a}}right)right),dx\
&=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2-2sqrt{ab}right),dx\
&=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
end{align}
$$
The trick to solve the last integral is by setting
$$
I=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
$$
Let $t=-frac{1}{x}sqrt{frac{b}{a}};rightarrow;x=-frac{1}{t}sqrt{frac{b}{a}};rightarrow;dx=frac{1}{t^2}sqrt{frac{b}{a}},dt$, then
$$
I_t=sqrt{frac{b}{a}}int_{t=0}^infty frac{expleft(-aleft(-frac{1}{t}sqrt{frac{b}{a}}+tright)^2right)}{t^2},dt.
$$
Let $t=x;rightarrow;dt=dx$, then
$$
I_t=int_{t=0}^infty expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
$$
Adding the two $I_t$s yields
$$
2I=I_t+I_t=int_{t=0}^inftyleft(1+frac{1}{t^2}sqrt{frac{b}{a}}right)expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
$$
Let $s=t-frac{1}{t}sqrt{frac{b}{a}};rightarrow;ds=left(1+frac{1}{t^2}sqrt{frac{b}{a}}right)dt$ and for $0<t<infty$ is corresponding to $-infty<s<infty$, then
$$
I=frac{1}{2}int_{s=-infty}^infty e^{-as^2},ds=frac{1}{2}sqrt{frac{pi}{a}}.
$$
Thus
$$
begin{align}
int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx\
&=frac{1}{2}sqrt{frac{pi}{a}}e^{large-2sqrt{ab}}.
end{align}
$$
$endgroup$
add a comment |
$begingroup$
The integral can be evaluated as follows
$$
begin{align}
int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=2int_{x=0}^infty expleft(-aleft(x^2-2sqrt{frac{b}{a}}+frac{b}{ax^2}+2sqrt{frac{b}{a}}right)right),dx\
&=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2-2sqrt{ab}right),dx\
&=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
end{align}
$$
The trick to solve the last integral is by setting
$$
I=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
$$
Let $t=-frac{1}{x}sqrt{frac{b}{a}};rightarrow;x=-frac{1}{t}sqrt{frac{b}{a}};rightarrow;dx=frac{1}{t^2}sqrt{frac{b}{a}},dt$, then
$$
I_t=sqrt{frac{b}{a}}int_{t=0}^infty frac{expleft(-aleft(-frac{1}{t}sqrt{frac{b}{a}}+tright)^2right)}{t^2},dt.
$$
Let $t=x;rightarrow;dt=dx$, then
$$
I_t=int_{t=0}^infty expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
$$
Adding the two $I_t$s yields
$$
2I=I_t+I_t=int_{t=0}^inftyleft(1+frac{1}{t^2}sqrt{frac{b}{a}}right)expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
$$
Let $s=t-frac{1}{t}sqrt{frac{b}{a}};rightarrow;ds=left(1+frac{1}{t^2}sqrt{frac{b}{a}}right)dt$ and for $0<t<infty$ is corresponding to $-infty<s<infty$, then
$$
I=frac{1}{2}int_{s=-infty}^infty e^{-as^2},ds=frac{1}{2}sqrt{frac{pi}{a}}.
$$
Thus
$$
begin{align}
int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx\
&=frac{1}{2}sqrt{frac{pi}{a}}e^{large-2sqrt{ab}}.
end{align}
$$
$endgroup$
add a comment |
$begingroup$
The integral can be evaluated as follows
$$
begin{align}
int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=2int_{x=0}^infty expleft(-aleft(x^2-2sqrt{frac{b}{a}}+frac{b}{ax^2}+2sqrt{frac{b}{a}}right)right),dx\
&=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2-2sqrt{ab}right),dx\
&=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
end{align}
$$
The trick to solve the last integral is by setting
$$
I=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
$$
Let $t=-frac{1}{x}sqrt{frac{b}{a}};rightarrow;x=-frac{1}{t}sqrt{frac{b}{a}};rightarrow;dx=frac{1}{t^2}sqrt{frac{b}{a}},dt$, then
$$
I_t=sqrt{frac{b}{a}}int_{t=0}^infty frac{expleft(-aleft(-frac{1}{t}sqrt{frac{b}{a}}+tright)^2right)}{t^2},dt.
$$
Let $t=x;rightarrow;dt=dx$, then
$$
I_t=int_{t=0}^infty expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
$$
Adding the two $I_t$s yields
$$
2I=I_t+I_t=int_{t=0}^inftyleft(1+frac{1}{t^2}sqrt{frac{b}{a}}right)expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
$$
Let $s=t-frac{1}{t}sqrt{frac{b}{a}};rightarrow;ds=left(1+frac{1}{t^2}sqrt{frac{b}{a}}right)dt$ and for $0<t<infty$ is corresponding to $-infty<s<infty$, then
$$
I=frac{1}{2}int_{s=-infty}^infty e^{-as^2},ds=frac{1}{2}sqrt{frac{pi}{a}}.
$$
Thus
$$
begin{align}
int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx\
&=frac{1}{2}sqrt{frac{pi}{a}}e^{large-2sqrt{ab}}.
end{align}
$$
$endgroup$
The integral can be evaluated as follows
$$
begin{align}
int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=2int_{x=0}^infty expleft(-aleft(x^2-2sqrt{frac{b}{a}}+frac{b}{ax^2}+2sqrt{frac{b}{a}}right)right),dx\
&=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2-2sqrt{ab}right),dx\
&=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
end{align}
$$
The trick to solve the last integral is by setting
$$
I=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
$$
Let $t=-frac{1}{x}sqrt{frac{b}{a}};rightarrow;x=-frac{1}{t}sqrt{frac{b}{a}};rightarrow;dx=frac{1}{t^2}sqrt{frac{b}{a}},dt$, then
$$
I_t=sqrt{frac{b}{a}}int_{t=0}^infty frac{expleft(-aleft(-frac{1}{t}sqrt{frac{b}{a}}+tright)^2right)}{t^2},dt.
$$
Let $t=x;rightarrow;dt=dx$, then
$$
I_t=int_{t=0}^infty expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
$$
Adding the two $I_t$s yields
$$
2I=I_t+I_t=int_{t=0}^inftyleft(1+frac{1}{t^2}sqrt{frac{b}{a}}right)expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
$$
Let $s=t-frac{1}{t}sqrt{frac{b}{a}};rightarrow;ds=left(1+frac{1}{t^2}sqrt{frac{b}{a}}right)dt$ and for $0<t<infty$ is corresponding to $-infty<s<infty$, then
$$
I=frac{1}{2}int_{s=-infty}^infty e^{-as^2},ds=frac{1}{2}sqrt{frac{pi}{a}}.
$$
Thus
$$
begin{align}
int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx\
&=frac{1}{2}sqrt{frac{pi}{a}}e^{large-2sqrt{ab}}.
end{align}
$$
answered May 11 '14 at 13:07
Tunk-FeyTunk-Fey
23.1k970100
23.1k970100
add a comment |
add a comment |
$begingroup$
The integral is $$frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2(x-b/ax)^2}dx=frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2x^2}dx=frac{sqrt{pi}}{2a}e^{-2ab}.$$ (See M.L. Glasser, A Remarkable Property of Definite Integrals,
Math.Comp.Vol 40, p.561 (1983).
$endgroup$
add a comment |
$begingroup$
The integral is $$frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2(x-b/ax)^2}dx=frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2x^2}dx=frac{sqrt{pi}}{2a}e^{-2ab}.$$ (See M.L. Glasser, A Remarkable Property of Definite Integrals,
Math.Comp.Vol 40, p.561 (1983).
$endgroup$
add a comment |
$begingroup$
The integral is $$frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2(x-b/ax)^2}dx=frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2x^2}dx=frac{sqrt{pi}}{2a}e^{-2ab}.$$ (See M.L. Glasser, A Remarkable Property of Definite Integrals,
Math.Comp.Vol 40, p.561 (1983).
$endgroup$
The integral is $$frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2(x-b/ax)^2}dx=frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2x^2}dx=frac{sqrt{pi}}{2a}e^{-2ab}.$$ (See M.L. Glasser, A Remarkable Property of Definite Integrals,
Math.Comp.Vol 40, p.561 (1983).
edited Sep 18 '13 at 1:56
achille hui
95.9k5132258
95.9k5132258
answered Sep 18 '13 at 1:47
larrylarry
52225
52225
add a comment |
add a comment |
$begingroup$
$newcommand{+}{^{dagger}}
newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
newcommand{dd}{{rm d}}
newcommand{down}{downarrow}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,{rm e}^{#1},}
newcommand{fermi}{,{rm f}}
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
newcommand{half}{{1 over 2}}
newcommand{ic}{{rm i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{isdiv}{,left.rightvert,}
newcommand{ket}[1]{leftvert #1rightrangle}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(, #1 ,right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}
newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
newcommand{sech}{,{rm sech}}
newcommand{sgn}{,{rm sgn}}
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}
newcommand{wt}[1]{widetilde{#1}}$
$ds{Iequivint_{0}^{infty}exppars{-ax^{2} - {b over x^{2}}},dd x:
{large ?}.qquad a, b > 0}$
Lets $ds{x equiv Aexpo{theta}}$ such that
$ds{-ax^{2} - {b over x^{2}} = -aA^{2}expo{2theta} - {b over A^{2}},
expo{-2theta}}$.
We choose
$$
A mbox{such that}quad
aA^{2} = {b over A^{2}}quadimpquad A = pars{b over a}^{1/4}. mbox{Then,}
-ax^{2} - {b over x^{2}} = -2root{ab}coshpars{2theta}
$$
begin{align}
I&=int_{-infty}^{infty}!!expo{-2root{ab}coshpars{2theta}}pars{b over a}^{1/4}
expo{theta},ddtheta
=2pars{b over a}^{1/4}int_{0}^{infty}expo{-2root{ab}coshpars{2theta}}
coshpars{theta},ddtheta
\[5mm]&=2pars{b over a}^{1/4}
overbrace{int_{0}^{infty}expo{-2root{ab}bracks{2sinh^{2}pars{theta} + 1}}
coshpars{theta},ddtheta}^{ds{mbox{Set}quad t equiv sinhpars{theta}}}
\[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
int_{0}^{infty}expo{-4root{ab}t^{2}},dd t
\[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
bracks{{1 over 2pars{ab}^{1/4}}}
overbrace{int_{0}^{infty}expo{-t^{2}},dd t}^{ds{= {root{pi} over 2}}}
= color{#00f}{large half,root{pi over a}expo{-2root{ab}}}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{+}{^{dagger}}
newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
newcommand{dd}{{rm d}}
newcommand{down}{downarrow}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,{rm e}^{#1},}
newcommand{fermi}{,{rm f}}
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
newcommand{half}{{1 over 2}}
newcommand{ic}{{rm i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{isdiv}{,left.rightvert,}
newcommand{ket}[1]{leftvert #1rightrangle}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(, #1 ,right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}
newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
newcommand{sech}{,{rm sech}}
newcommand{sgn}{,{rm sgn}}
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}
newcommand{wt}[1]{widetilde{#1}}$
$ds{Iequivint_{0}^{infty}exppars{-ax^{2} - {b over x^{2}}},dd x:
{large ?}.qquad a, b > 0}$
Lets $ds{x equiv Aexpo{theta}}$ such that
$ds{-ax^{2} - {b over x^{2}} = -aA^{2}expo{2theta} - {b over A^{2}},
expo{-2theta}}$.
We choose
$$
A mbox{such that}quad
aA^{2} = {b over A^{2}}quadimpquad A = pars{b over a}^{1/4}. mbox{Then,}
-ax^{2} - {b over x^{2}} = -2root{ab}coshpars{2theta}
$$
begin{align}
I&=int_{-infty}^{infty}!!expo{-2root{ab}coshpars{2theta}}pars{b over a}^{1/4}
expo{theta},ddtheta
=2pars{b over a}^{1/4}int_{0}^{infty}expo{-2root{ab}coshpars{2theta}}
coshpars{theta},ddtheta
\[5mm]&=2pars{b over a}^{1/4}
overbrace{int_{0}^{infty}expo{-2root{ab}bracks{2sinh^{2}pars{theta} + 1}}
coshpars{theta},ddtheta}^{ds{mbox{Set}quad t equiv sinhpars{theta}}}
\[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
int_{0}^{infty}expo{-4root{ab}t^{2}},dd t
\[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
bracks{{1 over 2pars{ab}^{1/4}}}
overbrace{int_{0}^{infty}expo{-t^{2}},dd t}^{ds{= {root{pi} over 2}}}
= color{#00f}{large half,root{pi over a}expo{-2root{ab}}}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{+}{^{dagger}}
newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
newcommand{dd}{{rm d}}
newcommand{down}{downarrow}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,{rm e}^{#1},}
newcommand{fermi}{,{rm f}}
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
newcommand{half}{{1 over 2}}
newcommand{ic}{{rm i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{isdiv}{,left.rightvert,}
newcommand{ket}[1]{leftvert #1rightrangle}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(, #1 ,right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}
newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
newcommand{sech}{,{rm sech}}
newcommand{sgn}{,{rm sgn}}
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}
newcommand{wt}[1]{widetilde{#1}}$
$ds{Iequivint_{0}^{infty}exppars{-ax^{2} - {b over x^{2}}},dd x:
{large ?}.qquad a, b > 0}$
Lets $ds{x equiv Aexpo{theta}}$ such that
$ds{-ax^{2} - {b over x^{2}} = -aA^{2}expo{2theta} - {b over A^{2}},
expo{-2theta}}$.
We choose
$$
A mbox{such that}quad
aA^{2} = {b over A^{2}}quadimpquad A = pars{b over a}^{1/4}. mbox{Then,}
-ax^{2} - {b over x^{2}} = -2root{ab}coshpars{2theta}
$$
begin{align}
I&=int_{-infty}^{infty}!!expo{-2root{ab}coshpars{2theta}}pars{b over a}^{1/4}
expo{theta},ddtheta
=2pars{b over a}^{1/4}int_{0}^{infty}expo{-2root{ab}coshpars{2theta}}
coshpars{theta},ddtheta
\[5mm]&=2pars{b over a}^{1/4}
overbrace{int_{0}^{infty}expo{-2root{ab}bracks{2sinh^{2}pars{theta} + 1}}
coshpars{theta},ddtheta}^{ds{mbox{Set}quad t equiv sinhpars{theta}}}
\[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
int_{0}^{infty}expo{-4root{ab}t^{2}},dd t
\[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
bracks{{1 over 2pars{ab}^{1/4}}}
overbrace{int_{0}^{infty}expo{-t^{2}},dd t}^{ds{= {root{pi} over 2}}}
= color{#00f}{large half,root{pi over a}expo{-2root{ab}}}
end{align}
$endgroup$
$newcommand{+}{^{dagger}}
newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
newcommand{dd}{{rm d}}
newcommand{down}{downarrow}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,{rm e}^{#1},}
newcommand{fermi}{,{rm f}}
newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
newcommand{half}{{1 over 2}}
newcommand{ic}{{rm i}}
newcommand{iff}{Longleftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{isdiv}{,left.rightvert,}
newcommand{ket}[1]{leftvert #1rightrangle}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(, #1 ,right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{pp}{{cal P}}
newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
newcommand{sech}{,{rm sech}}
newcommand{sgn}{,{rm sgn}}
newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
newcommand{ul}[1]{underline{#1}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}
newcommand{wt}[1]{widetilde{#1}}$
$ds{Iequivint_{0}^{infty}exppars{-ax^{2} - {b over x^{2}}},dd x:
{large ?}.qquad a, b > 0}$
Lets $ds{x equiv Aexpo{theta}}$ such that
$ds{-ax^{2} - {b over x^{2}} = -aA^{2}expo{2theta} - {b over A^{2}},
expo{-2theta}}$.
We choose
$$
A mbox{such that}quad
aA^{2} = {b over A^{2}}quadimpquad A = pars{b over a}^{1/4}. mbox{Then,}
-ax^{2} - {b over x^{2}} = -2root{ab}coshpars{2theta}
$$
begin{align}
I&=int_{-infty}^{infty}!!expo{-2root{ab}coshpars{2theta}}pars{b over a}^{1/4}
expo{theta},ddtheta
=2pars{b over a}^{1/4}int_{0}^{infty}expo{-2root{ab}coshpars{2theta}}
coshpars{theta},ddtheta
\[5mm]&=2pars{b over a}^{1/4}
overbrace{int_{0}^{infty}expo{-2root{ab}bracks{2sinh^{2}pars{theta} + 1}}
coshpars{theta},ddtheta}^{ds{mbox{Set}quad t equiv sinhpars{theta}}}
\[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
int_{0}^{infty}expo{-4root{ab}t^{2}},dd t
\[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
bracks{{1 over 2pars{ab}^{1/4}}}
overbrace{int_{0}^{infty}expo{-t^{2}},dd t}^{ds{= {root{pi} over 2}}}
= color{#00f}{large half,root{pi over a}expo{-2root{ab}}}
end{align}
edited Dec 23 '18 at 16:16
answered May 17 '14 at 8:14
Felix MarinFelix Marin
67.8k7107142
67.8k7107142
add a comment |
add a comment |
$begingroup$
A proof by Fourier transform
This won't be the shortest nor the most elementary proof here, but it has a nice background which I'll explain later. The main drawback is that it assumes that we know the Fourier transform of the Gaussian, which is about as hard to compute rigorously than the initial integral.
Fix $a > 0$. Then, for any $xi in mathbb{R}$,
$$begin{align}
int_{mathbb{R}} e^{i xi b} I(a,b^2) db
& = int_{mathbb{R}} e^{i xi b} int_0^{+ infty} e^{-ax^2-frac{b^2}{x^2}} dx db\
& = int_0^{+ infty} e^{-ax^2} int_{mathbb{R}} e^{i xi b} e^{-frac{b^2}{x^2}} db dx hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
& = sqrt{pi} int_0^{+ infty} x e^{-left( a+ frac{xi^2}{4}right) x^2} dx hspace{2em} color{#00f}{text{Fourier transform of the Gaussian}} \
& = frac{sqrt{pi}}{2} int_0^{+ infty} e^{-left( a+ frac{xi^2}{4}right) u} du hspace{2em} color{#00f}{text{Change of variables }u=x^2} \
& = frac{sqrt{pi}}{2 left( a+ frac{xi^2}{4}right)} hspace{2em} color{#00f}{text{Evaluation of the integral}} \
& = frac{sqrt{pi}}{2sqrt{a}} left( frac{1}{2sqrt{a}+ixi} + frac{1}{2sqrt{a}-ixi} right) hspace{2em} color{#00f}{text{Partial fraction decomposition}} \
& = frac{sqrt{pi}}{2sqrt{a}} left( int_0^{+ infty} e^{-(i xi + 2 sqrt{a})b} db + int_0^{+ infty} e^{-(-i xi + 2 sqrt{a})b} db right) \
& = frac{sqrt{pi}}{2sqrt{a}} int_{mathbb{R}} e^{i xi b} e^{-2 sqrt{a}|b|} db.
end{align}$$
Hence, $I(a, b^2)$ and $frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{a}|b|}$ have the same Fourier transform. Then you can check that both are continuous and decay exponentially fast at infinity, so they are pointwise the inverse Fourier transform of their Fourier transform, and thus coincide for all $b$. Finally, we get:
$$I(a, b) = frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{ab}}.$$
Motivation: a probabilistic proof
I stumbled upon this integral during my research (or rather, a family of such integrals). Let $X$ and $Y$ be two independent random variables, with $Y$ being exponential $mathcal{E} (lambda)$ and $Z$ being standard normal $mathcal{N} (0, 1)$. Let $X := Z sqrt{Y}$.
A first computation yields the density of the distribution of $X$. Let $f$ be continuous and bounded on $mathbb{R}$. Then:
$$begin{align}
mathbb{E} (f(X))
& = frac{lambda}{sigma sqrt{2 pi}} int_0^{+ infty} int_mathbb{R} f(z sqrt{y}) e^{-frac{z^2}{2}} e^{- lambda y} dz dy \
& = frac{lambda}{sqrt{2 pi}} int_0^{+ infty} e^{- lambda y} int_mathbb{R} frac{1}{sqrt{y}} f(b) e^{-frac{b^2}{2 y}} db dy hspace{2em} color{#00f}{text{Change of variables }b=zsqrt{y}} \
& = frac{lambda}{sqrt{2 pi}} int_mathbb{R} f(b) int_0^{+ infty} frac{e^{- lambda y}}{sqrt{y}} e^{-frac{b^2}{2 y}} dy db hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
& = frac{lambda sqrt{2}}{sqrt{pi}} int_mathbb{R} f(b) int_0^{+ infty} e^{- lambda x^2} e^{-frac{b^2}{2 x^2}} dx db hspace{2em} color{#00f}{text{Change of variables }x=sqrt{y}} \
end{align}$$
The density of $X$ is thus given by the function:
$$b mapsto frac{lambda sqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx.$$
And then, if we compute this integral, we can get a simpler expression for the density. However, it turns out that there is an easier way to compute the distribution of $X$, with the Fourier transform. Indeed, for all real $xi$,
$$begin{align}
mathbb{E} left( e^{i xi X} right)
& = mathbb{E} left( e^{i xi Z sqrt{Y}} right) \
& = mathbb{E} left( mathbb{E} left( e^{i (xi sqrt{Y}) Z} |Y right) right) \
& = mathbb{E} left( e^{- frac{xi^2 Y}{2}} right) \
& = frac{1}{1+frac{xi^2}{2lambda}}, \
end{align}$$
which is the Fourier transform of a Laplace distribution of parameter $1/ sqrt{2 lambda}$. With the argument of continuity given in the first paragraph, we get:
$$frac{lambdasqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{lambda}}{sqrt{2}} e^{-sqrt{2lambda}|b|},$$
so that:
$$int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{pi}}{2 sqrt{lambda}} e^{-sqrt{2lambda}|b|}.$$
The proof in the first paragraph is the streamlined version of this reasoning. All in all, an interpretation of this integral is that the product of a centered Gaussian and of the square root of an independent exponential random variable is a Laplace random variable.
$endgroup$
add a comment |
$begingroup$
A proof by Fourier transform
This won't be the shortest nor the most elementary proof here, but it has a nice background which I'll explain later. The main drawback is that it assumes that we know the Fourier transform of the Gaussian, which is about as hard to compute rigorously than the initial integral.
Fix $a > 0$. Then, for any $xi in mathbb{R}$,
$$begin{align}
int_{mathbb{R}} e^{i xi b} I(a,b^2) db
& = int_{mathbb{R}} e^{i xi b} int_0^{+ infty} e^{-ax^2-frac{b^2}{x^2}} dx db\
& = int_0^{+ infty} e^{-ax^2} int_{mathbb{R}} e^{i xi b} e^{-frac{b^2}{x^2}} db dx hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
& = sqrt{pi} int_0^{+ infty} x e^{-left( a+ frac{xi^2}{4}right) x^2} dx hspace{2em} color{#00f}{text{Fourier transform of the Gaussian}} \
& = frac{sqrt{pi}}{2} int_0^{+ infty} e^{-left( a+ frac{xi^2}{4}right) u} du hspace{2em} color{#00f}{text{Change of variables }u=x^2} \
& = frac{sqrt{pi}}{2 left( a+ frac{xi^2}{4}right)} hspace{2em} color{#00f}{text{Evaluation of the integral}} \
& = frac{sqrt{pi}}{2sqrt{a}} left( frac{1}{2sqrt{a}+ixi} + frac{1}{2sqrt{a}-ixi} right) hspace{2em} color{#00f}{text{Partial fraction decomposition}} \
& = frac{sqrt{pi}}{2sqrt{a}} left( int_0^{+ infty} e^{-(i xi + 2 sqrt{a})b} db + int_0^{+ infty} e^{-(-i xi + 2 sqrt{a})b} db right) \
& = frac{sqrt{pi}}{2sqrt{a}} int_{mathbb{R}} e^{i xi b} e^{-2 sqrt{a}|b|} db.
end{align}$$
Hence, $I(a, b^2)$ and $frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{a}|b|}$ have the same Fourier transform. Then you can check that both are continuous and decay exponentially fast at infinity, so they are pointwise the inverse Fourier transform of their Fourier transform, and thus coincide for all $b$. Finally, we get:
$$I(a, b) = frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{ab}}.$$
Motivation: a probabilistic proof
I stumbled upon this integral during my research (or rather, a family of such integrals). Let $X$ and $Y$ be two independent random variables, with $Y$ being exponential $mathcal{E} (lambda)$ and $Z$ being standard normal $mathcal{N} (0, 1)$. Let $X := Z sqrt{Y}$.
A first computation yields the density of the distribution of $X$. Let $f$ be continuous and bounded on $mathbb{R}$. Then:
$$begin{align}
mathbb{E} (f(X))
& = frac{lambda}{sigma sqrt{2 pi}} int_0^{+ infty} int_mathbb{R} f(z sqrt{y}) e^{-frac{z^2}{2}} e^{- lambda y} dz dy \
& = frac{lambda}{sqrt{2 pi}} int_0^{+ infty} e^{- lambda y} int_mathbb{R} frac{1}{sqrt{y}} f(b) e^{-frac{b^2}{2 y}} db dy hspace{2em} color{#00f}{text{Change of variables }b=zsqrt{y}} \
& = frac{lambda}{sqrt{2 pi}} int_mathbb{R} f(b) int_0^{+ infty} frac{e^{- lambda y}}{sqrt{y}} e^{-frac{b^2}{2 y}} dy db hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
& = frac{lambda sqrt{2}}{sqrt{pi}} int_mathbb{R} f(b) int_0^{+ infty} e^{- lambda x^2} e^{-frac{b^2}{2 x^2}} dx db hspace{2em} color{#00f}{text{Change of variables }x=sqrt{y}} \
end{align}$$
The density of $X$ is thus given by the function:
$$b mapsto frac{lambda sqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx.$$
And then, if we compute this integral, we can get a simpler expression for the density. However, it turns out that there is an easier way to compute the distribution of $X$, with the Fourier transform. Indeed, for all real $xi$,
$$begin{align}
mathbb{E} left( e^{i xi X} right)
& = mathbb{E} left( e^{i xi Z sqrt{Y}} right) \
& = mathbb{E} left( mathbb{E} left( e^{i (xi sqrt{Y}) Z} |Y right) right) \
& = mathbb{E} left( e^{- frac{xi^2 Y}{2}} right) \
& = frac{1}{1+frac{xi^2}{2lambda}}, \
end{align}$$
which is the Fourier transform of a Laplace distribution of parameter $1/ sqrt{2 lambda}$. With the argument of continuity given in the first paragraph, we get:
$$frac{lambdasqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{lambda}}{sqrt{2}} e^{-sqrt{2lambda}|b|},$$
so that:
$$int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{pi}}{2 sqrt{lambda}} e^{-sqrt{2lambda}|b|}.$$
The proof in the first paragraph is the streamlined version of this reasoning. All in all, an interpretation of this integral is that the product of a centered Gaussian and of the square root of an independent exponential random variable is a Laplace random variable.
$endgroup$
add a comment |
$begingroup$
A proof by Fourier transform
This won't be the shortest nor the most elementary proof here, but it has a nice background which I'll explain later. The main drawback is that it assumes that we know the Fourier transform of the Gaussian, which is about as hard to compute rigorously than the initial integral.
Fix $a > 0$. Then, for any $xi in mathbb{R}$,
$$begin{align}
int_{mathbb{R}} e^{i xi b} I(a,b^2) db
& = int_{mathbb{R}} e^{i xi b} int_0^{+ infty} e^{-ax^2-frac{b^2}{x^2}} dx db\
& = int_0^{+ infty} e^{-ax^2} int_{mathbb{R}} e^{i xi b} e^{-frac{b^2}{x^2}} db dx hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
& = sqrt{pi} int_0^{+ infty} x e^{-left( a+ frac{xi^2}{4}right) x^2} dx hspace{2em} color{#00f}{text{Fourier transform of the Gaussian}} \
& = frac{sqrt{pi}}{2} int_0^{+ infty} e^{-left( a+ frac{xi^2}{4}right) u} du hspace{2em} color{#00f}{text{Change of variables }u=x^2} \
& = frac{sqrt{pi}}{2 left( a+ frac{xi^2}{4}right)} hspace{2em} color{#00f}{text{Evaluation of the integral}} \
& = frac{sqrt{pi}}{2sqrt{a}} left( frac{1}{2sqrt{a}+ixi} + frac{1}{2sqrt{a}-ixi} right) hspace{2em} color{#00f}{text{Partial fraction decomposition}} \
& = frac{sqrt{pi}}{2sqrt{a}} left( int_0^{+ infty} e^{-(i xi + 2 sqrt{a})b} db + int_0^{+ infty} e^{-(-i xi + 2 sqrt{a})b} db right) \
& = frac{sqrt{pi}}{2sqrt{a}} int_{mathbb{R}} e^{i xi b} e^{-2 sqrt{a}|b|} db.
end{align}$$
Hence, $I(a, b^2)$ and $frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{a}|b|}$ have the same Fourier transform. Then you can check that both are continuous and decay exponentially fast at infinity, so they are pointwise the inverse Fourier transform of their Fourier transform, and thus coincide for all $b$. Finally, we get:
$$I(a, b) = frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{ab}}.$$
Motivation: a probabilistic proof
I stumbled upon this integral during my research (or rather, a family of such integrals). Let $X$ and $Y$ be two independent random variables, with $Y$ being exponential $mathcal{E} (lambda)$ and $Z$ being standard normal $mathcal{N} (0, 1)$. Let $X := Z sqrt{Y}$.
A first computation yields the density of the distribution of $X$. Let $f$ be continuous and bounded on $mathbb{R}$. Then:
$$begin{align}
mathbb{E} (f(X))
& = frac{lambda}{sigma sqrt{2 pi}} int_0^{+ infty} int_mathbb{R} f(z sqrt{y}) e^{-frac{z^2}{2}} e^{- lambda y} dz dy \
& = frac{lambda}{sqrt{2 pi}} int_0^{+ infty} e^{- lambda y} int_mathbb{R} frac{1}{sqrt{y}} f(b) e^{-frac{b^2}{2 y}} db dy hspace{2em} color{#00f}{text{Change of variables }b=zsqrt{y}} \
& = frac{lambda}{sqrt{2 pi}} int_mathbb{R} f(b) int_0^{+ infty} frac{e^{- lambda y}}{sqrt{y}} e^{-frac{b^2}{2 y}} dy db hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
& = frac{lambda sqrt{2}}{sqrt{pi}} int_mathbb{R} f(b) int_0^{+ infty} e^{- lambda x^2} e^{-frac{b^2}{2 x^2}} dx db hspace{2em} color{#00f}{text{Change of variables }x=sqrt{y}} \
end{align}$$
The density of $X$ is thus given by the function:
$$b mapsto frac{lambda sqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx.$$
And then, if we compute this integral, we can get a simpler expression for the density. However, it turns out that there is an easier way to compute the distribution of $X$, with the Fourier transform. Indeed, for all real $xi$,
$$begin{align}
mathbb{E} left( e^{i xi X} right)
& = mathbb{E} left( e^{i xi Z sqrt{Y}} right) \
& = mathbb{E} left( mathbb{E} left( e^{i (xi sqrt{Y}) Z} |Y right) right) \
& = mathbb{E} left( e^{- frac{xi^2 Y}{2}} right) \
& = frac{1}{1+frac{xi^2}{2lambda}}, \
end{align}$$
which is the Fourier transform of a Laplace distribution of parameter $1/ sqrt{2 lambda}$. With the argument of continuity given in the first paragraph, we get:
$$frac{lambdasqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{lambda}}{sqrt{2}} e^{-sqrt{2lambda}|b|},$$
so that:
$$int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{pi}}{2 sqrt{lambda}} e^{-sqrt{2lambda}|b|}.$$
The proof in the first paragraph is the streamlined version of this reasoning. All in all, an interpretation of this integral is that the product of a centered Gaussian and of the square root of an independent exponential random variable is a Laplace random variable.
$endgroup$
A proof by Fourier transform
This won't be the shortest nor the most elementary proof here, but it has a nice background which I'll explain later. The main drawback is that it assumes that we know the Fourier transform of the Gaussian, which is about as hard to compute rigorously than the initial integral.
Fix $a > 0$. Then, for any $xi in mathbb{R}$,
$$begin{align}
int_{mathbb{R}} e^{i xi b} I(a,b^2) db
& = int_{mathbb{R}} e^{i xi b} int_0^{+ infty} e^{-ax^2-frac{b^2}{x^2}} dx db\
& = int_0^{+ infty} e^{-ax^2} int_{mathbb{R}} e^{i xi b} e^{-frac{b^2}{x^2}} db dx hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
& = sqrt{pi} int_0^{+ infty} x e^{-left( a+ frac{xi^2}{4}right) x^2} dx hspace{2em} color{#00f}{text{Fourier transform of the Gaussian}} \
& = frac{sqrt{pi}}{2} int_0^{+ infty} e^{-left( a+ frac{xi^2}{4}right) u} du hspace{2em} color{#00f}{text{Change of variables }u=x^2} \
& = frac{sqrt{pi}}{2 left( a+ frac{xi^2}{4}right)} hspace{2em} color{#00f}{text{Evaluation of the integral}} \
& = frac{sqrt{pi}}{2sqrt{a}} left( frac{1}{2sqrt{a}+ixi} + frac{1}{2sqrt{a}-ixi} right) hspace{2em} color{#00f}{text{Partial fraction decomposition}} \
& = frac{sqrt{pi}}{2sqrt{a}} left( int_0^{+ infty} e^{-(i xi + 2 sqrt{a})b} db + int_0^{+ infty} e^{-(-i xi + 2 sqrt{a})b} db right) \
& = frac{sqrt{pi}}{2sqrt{a}} int_{mathbb{R}} e^{i xi b} e^{-2 sqrt{a}|b|} db.
end{align}$$
Hence, $I(a, b^2)$ and $frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{a}|b|}$ have the same Fourier transform. Then you can check that both are continuous and decay exponentially fast at infinity, so they are pointwise the inverse Fourier transform of their Fourier transform, and thus coincide for all $b$. Finally, we get:
$$I(a, b) = frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{ab}}.$$
Motivation: a probabilistic proof
I stumbled upon this integral during my research (or rather, a family of such integrals). Let $X$ and $Y$ be two independent random variables, with $Y$ being exponential $mathcal{E} (lambda)$ and $Z$ being standard normal $mathcal{N} (0, 1)$. Let $X := Z sqrt{Y}$.
A first computation yields the density of the distribution of $X$. Let $f$ be continuous and bounded on $mathbb{R}$. Then:
$$begin{align}
mathbb{E} (f(X))
& = frac{lambda}{sigma sqrt{2 pi}} int_0^{+ infty} int_mathbb{R} f(z sqrt{y}) e^{-frac{z^2}{2}} e^{- lambda y} dz dy \
& = frac{lambda}{sqrt{2 pi}} int_0^{+ infty} e^{- lambda y} int_mathbb{R} frac{1}{sqrt{y}} f(b) e^{-frac{b^2}{2 y}} db dy hspace{2em} color{#00f}{text{Change of variables }b=zsqrt{y}} \
& = frac{lambda}{sqrt{2 pi}} int_mathbb{R} f(b) int_0^{+ infty} frac{e^{- lambda y}}{sqrt{y}} e^{-frac{b^2}{2 y}} dy db hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
& = frac{lambda sqrt{2}}{sqrt{pi}} int_mathbb{R} f(b) int_0^{+ infty} e^{- lambda x^2} e^{-frac{b^2}{2 x^2}} dx db hspace{2em} color{#00f}{text{Change of variables }x=sqrt{y}} \
end{align}$$
The density of $X$ is thus given by the function:
$$b mapsto frac{lambda sqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx.$$
And then, if we compute this integral, we can get a simpler expression for the density. However, it turns out that there is an easier way to compute the distribution of $X$, with the Fourier transform. Indeed, for all real $xi$,
$$begin{align}
mathbb{E} left( e^{i xi X} right)
& = mathbb{E} left( e^{i xi Z sqrt{Y}} right) \
& = mathbb{E} left( mathbb{E} left( e^{i (xi sqrt{Y}) Z} |Y right) right) \
& = mathbb{E} left( e^{- frac{xi^2 Y}{2}} right) \
& = frac{1}{1+frac{xi^2}{2lambda}}, \
end{align}$$
which is the Fourier transform of a Laplace distribution of parameter $1/ sqrt{2 lambda}$. With the argument of continuity given in the first paragraph, we get:
$$frac{lambdasqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{lambda}}{sqrt{2}} e^{-sqrt{2lambda}|b|},$$
so that:
$$int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{pi}}{2 sqrt{lambda}} e^{-sqrt{2lambda}|b|}.$$
The proof in the first paragraph is the streamlined version of this reasoning. All in all, an interpretation of this integral is that the product of a centered Gaussian and of the square root of an independent exponential random variable is a Laplace random variable.
answered Mar 1 '16 at 21:36
D. ThomineD. Thomine
7,5691538
7,5691538
add a comment |
add a comment |
$begingroup$
Let’s do the general integral
$displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$
Differentiate with respect to a
$displaystyle frac{partial I}{partial a}=int_{0}^{infty}x^{-2}e^{-(ax^{-2}+bx^{2})}dx$
Now differentiate with respect to b
$displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}x^{-2}x^{2}e^{-(ax^{-2}+bx^{2})}dx$
$displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$
$displaystyle frac{partial^2 I}{partial a partial b}=I$
Thus our integral satisfies this PDE.This is a hyperbolic homogenous PDE. It is a second order PDE but it is first order with respect to each of the variables so we’ll need two boundary conditions to determine a unique solution.(In this case two asympotic BCs and one Drichlet boundary condition will be used).Keep this in mind we’ll need it later.
Let’s complete the square of expression in the exponential.
$displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2}-2sqrt{ab}+2sqrt{ab})}dx$
$displaystyle I(a,b)=int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}-2sqrt{ab}}dx$
$displaystyle I(a,b)=e^{-2sqrt{ab}}int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}}dx$
Now let’s explore more of it’s properties.One thing to note is that this integral diverges(blows up) at b=0 but at a=0 it has a well known value. It is the Gaussian integral so
$displaystyle I(0,b)=int_{0}^{infty}e^{-(bx^{2})}dx=frac{1}{2}sqrt{frac{pi}{b}}$
The negative exponential was extracted from the integral rather than the positive one beacause
$displaystyle lim_{atoinfty}int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx=0$
and
$displaystyle lim_{atoinfty}e^{-2sqrt{ab}}=0$
So let’s assume that we assume that the solution to our PDE is of the form
$displaystyle I(a,b)=e^{-2sqrt{ab}}K(b)$
where K is a function of b(and diverges at b=0)
Let’s put this in the PDE
$displaystyle frac{partial I}{partial a}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K(b)$
$displaystyle frac{partial^2 I}{partial a partial b}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K^{'}(b)-frac{1}{2sqrt{ab}}e^{-2sqrt{ab}}K(b)+sqrt{frac{b}{a}}sqrt{frac{a}{b}}e^{-2sqrt{ab}}K(b)$
$displaystyle frac{partial^2 I}{partial a partial b}=e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))$
As
$displaystyle frac{partial^2 I}{partial a partial b}=I$
So
$displaystyle e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))=e^{-2sqrt{ab}}K(b)$
$displaystyle -sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b)=K(b)$
$displaystyle -sqrt{frac{b}{a}}K^{'}(a)=frac{K(b)}{2sqrt{ab}}$
$displaystyle K^{'}(b)=-frac{K(b)}{2b}$
This is a separable ODE.Let’s solve it
$displaystyle frac{1}{K}dK=-frac{1}{2}frac{1}{b}db$
Let’s integrate
$displaystyle int frac{1}{K}dK=-frac{1}{2}int frac{1}{b}db$
$displaystyle ln(K)=-frac{1}{2}ln(b)+C$
$displaystyle ln(K)=ln(b^{-frac{1}{2}})+C$
$displaystyle K=e^{C}b^{-frac{1}{2}}$
Let
$displaystyle v=e^{C}$
So
$displaystyle K(b)=vb^{-frac{1}{2}}$
Thus the solution is
$displaystyle I(a,b)=ve^{-2sqrt{ab}}b^{-frac{1}{2}}$
This expression diverges at b=0 which is exactly what we wanted. Now let’s determine the constant v. As
$displaystyle I(0,b)=frac{1}{2}sqrt{frac{pi}{b}}$
So
$displaystyle frac{1}{2}sqrt{frac{pi}{b}}=vb^{-frac{1}{2}}e^{0}$
$v=frac{sqrt{pi}}{2}$
Thus the integral is
$displaystyle boxed{I(a,b)=frac{1}{2}sqrt{frac{pi}{b}}e^{-2sqrt{ab}}} (0leqslant a,b)$
The given integral is I(b,a) so
$displaystyle boxed{I(b,a)=frac{1}{2}sqrt{frac{pi}{a}}e^{-2sqrt{ab}}} (0leqslant a,b)$
$endgroup$
add a comment |
$begingroup$
Let’s do the general integral
$displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$
Differentiate with respect to a
$displaystyle frac{partial I}{partial a}=int_{0}^{infty}x^{-2}e^{-(ax^{-2}+bx^{2})}dx$
Now differentiate with respect to b
$displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}x^{-2}x^{2}e^{-(ax^{-2}+bx^{2})}dx$
$displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$
$displaystyle frac{partial^2 I}{partial a partial b}=I$
Thus our integral satisfies this PDE.This is a hyperbolic homogenous PDE. It is a second order PDE but it is first order with respect to each of the variables so we’ll need two boundary conditions to determine a unique solution.(In this case two asympotic BCs and one Drichlet boundary condition will be used).Keep this in mind we’ll need it later.
Let’s complete the square of expression in the exponential.
$displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2}-2sqrt{ab}+2sqrt{ab})}dx$
$displaystyle I(a,b)=int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}-2sqrt{ab}}dx$
$displaystyle I(a,b)=e^{-2sqrt{ab}}int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}}dx$
Now let’s explore more of it’s properties.One thing to note is that this integral diverges(blows up) at b=0 but at a=0 it has a well known value. It is the Gaussian integral so
$displaystyle I(0,b)=int_{0}^{infty}e^{-(bx^{2})}dx=frac{1}{2}sqrt{frac{pi}{b}}$
The negative exponential was extracted from the integral rather than the positive one beacause
$displaystyle lim_{atoinfty}int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx=0$
and
$displaystyle lim_{atoinfty}e^{-2sqrt{ab}}=0$
So let’s assume that we assume that the solution to our PDE is of the form
$displaystyle I(a,b)=e^{-2sqrt{ab}}K(b)$
where K is a function of b(and diverges at b=0)
Let’s put this in the PDE
$displaystyle frac{partial I}{partial a}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K(b)$
$displaystyle frac{partial^2 I}{partial a partial b}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K^{'}(b)-frac{1}{2sqrt{ab}}e^{-2sqrt{ab}}K(b)+sqrt{frac{b}{a}}sqrt{frac{a}{b}}e^{-2sqrt{ab}}K(b)$
$displaystyle frac{partial^2 I}{partial a partial b}=e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))$
As
$displaystyle frac{partial^2 I}{partial a partial b}=I$
So
$displaystyle e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))=e^{-2sqrt{ab}}K(b)$
$displaystyle -sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b)=K(b)$
$displaystyle -sqrt{frac{b}{a}}K^{'}(a)=frac{K(b)}{2sqrt{ab}}$
$displaystyle K^{'}(b)=-frac{K(b)}{2b}$
This is a separable ODE.Let’s solve it
$displaystyle frac{1}{K}dK=-frac{1}{2}frac{1}{b}db$
Let’s integrate
$displaystyle int frac{1}{K}dK=-frac{1}{2}int frac{1}{b}db$
$displaystyle ln(K)=-frac{1}{2}ln(b)+C$
$displaystyle ln(K)=ln(b^{-frac{1}{2}})+C$
$displaystyle K=e^{C}b^{-frac{1}{2}}$
Let
$displaystyle v=e^{C}$
So
$displaystyle K(b)=vb^{-frac{1}{2}}$
Thus the solution is
$displaystyle I(a,b)=ve^{-2sqrt{ab}}b^{-frac{1}{2}}$
This expression diverges at b=0 which is exactly what we wanted. Now let’s determine the constant v. As
$displaystyle I(0,b)=frac{1}{2}sqrt{frac{pi}{b}}$
So
$displaystyle frac{1}{2}sqrt{frac{pi}{b}}=vb^{-frac{1}{2}}e^{0}$
$v=frac{sqrt{pi}}{2}$
Thus the integral is
$displaystyle boxed{I(a,b)=frac{1}{2}sqrt{frac{pi}{b}}e^{-2sqrt{ab}}} (0leqslant a,b)$
The given integral is I(b,a) so
$displaystyle boxed{I(b,a)=frac{1}{2}sqrt{frac{pi}{a}}e^{-2sqrt{ab}}} (0leqslant a,b)$
$endgroup$
add a comment |
$begingroup$
Let’s do the general integral
$displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$
Differentiate with respect to a
$displaystyle frac{partial I}{partial a}=int_{0}^{infty}x^{-2}e^{-(ax^{-2}+bx^{2})}dx$
Now differentiate with respect to b
$displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}x^{-2}x^{2}e^{-(ax^{-2}+bx^{2})}dx$
$displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$
$displaystyle frac{partial^2 I}{partial a partial b}=I$
Thus our integral satisfies this PDE.This is a hyperbolic homogenous PDE. It is a second order PDE but it is first order with respect to each of the variables so we’ll need two boundary conditions to determine a unique solution.(In this case two asympotic BCs and one Drichlet boundary condition will be used).Keep this in mind we’ll need it later.
Let’s complete the square of expression in the exponential.
$displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2}-2sqrt{ab}+2sqrt{ab})}dx$
$displaystyle I(a,b)=int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}-2sqrt{ab}}dx$
$displaystyle I(a,b)=e^{-2sqrt{ab}}int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}}dx$
Now let’s explore more of it’s properties.One thing to note is that this integral diverges(blows up) at b=0 but at a=0 it has a well known value. It is the Gaussian integral so
$displaystyle I(0,b)=int_{0}^{infty}e^{-(bx^{2})}dx=frac{1}{2}sqrt{frac{pi}{b}}$
The negative exponential was extracted from the integral rather than the positive one beacause
$displaystyle lim_{atoinfty}int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx=0$
and
$displaystyle lim_{atoinfty}e^{-2sqrt{ab}}=0$
So let’s assume that we assume that the solution to our PDE is of the form
$displaystyle I(a,b)=e^{-2sqrt{ab}}K(b)$
where K is a function of b(and diverges at b=0)
Let’s put this in the PDE
$displaystyle frac{partial I}{partial a}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K(b)$
$displaystyle frac{partial^2 I}{partial a partial b}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K^{'}(b)-frac{1}{2sqrt{ab}}e^{-2sqrt{ab}}K(b)+sqrt{frac{b}{a}}sqrt{frac{a}{b}}e^{-2sqrt{ab}}K(b)$
$displaystyle frac{partial^2 I}{partial a partial b}=e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))$
As
$displaystyle frac{partial^2 I}{partial a partial b}=I$
So
$displaystyle e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))=e^{-2sqrt{ab}}K(b)$
$displaystyle -sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b)=K(b)$
$displaystyle -sqrt{frac{b}{a}}K^{'}(a)=frac{K(b)}{2sqrt{ab}}$
$displaystyle K^{'}(b)=-frac{K(b)}{2b}$
This is a separable ODE.Let’s solve it
$displaystyle frac{1}{K}dK=-frac{1}{2}frac{1}{b}db$
Let’s integrate
$displaystyle int frac{1}{K}dK=-frac{1}{2}int frac{1}{b}db$
$displaystyle ln(K)=-frac{1}{2}ln(b)+C$
$displaystyle ln(K)=ln(b^{-frac{1}{2}})+C$
$displaystyle K=e^{C}b^{-frac{1}{2}}$
Let
$displaystyle v=e^{C}$
So
$displaystyle K(b)=vb^{-frac{1}{2}}$
Thus the solution is
$displaystyle I(a,b)=ve^{-2sqrt{ab}}b^{-frac{1}{2}}$
This expression diverges at b=0 which is exactly what we wanted. Now let’s determine the constant v. As
$displaystyle I(0,b)=frac{1}{2}sqrt{frac{pi}{b}}$
So
$displaystyle frac{1}{2}sqrt{frac{pi}{b}}=vb^{-frac{1}{2}}e^{0}$
$v=frac{sqrt{pi}}{2}$
Thus the integral is
$displaystyle boxed{I(a,b)=frac{1}{2}sqrt{frac{pi}{b}}e^{-2sqrt{ab}}} (0leqslant a,b)$
The given integral is I(b,a) so
$displaystyle boxed{I(b,a)=frac{1}{2}sqrt{frac{pi}{a}}e^{-2sqrt{ab}}} (0leqslant a,b)$
$endgroup$
Let’s do the general integral
$displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$
Differentiate with respect to a
$displaystyle frac{partial I}{partial a}=int_{0}^{infty}x^{-2}e^{-(ax^{-2}+bx^{2})}dx$
Now differentiate with respect to b
$displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}x^{-2}x^{2}e^{-(ax^{-2}+bx^{2})}dx$
$displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$
$displaystyle frac{partial^2 I}{partial a partial b}=I$
Thus our integral satisfies this PDE.This is a hyperbolic homogenous PDE. It is a second order PDE but it is first order with respect to each of the variables so we’ll need two boundary conditions to determine a unique solution.(In this case two asympotic BCs and one Drichlet boundary condition will be used).Keep this in mind we’ll need it later.
Let’s complete the square of expression in the exponential.
$displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2}-2sqrt{ab}+2sqrt{ab})}dx$
$displaystyle I(a,b)=int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}-2sqrt{ab}}dx$
$displaystyle I(a,b)=e^{-2sqrt{ab}}int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}}dx$
Now let’s explore more of it’s properties.One thing to note is that this integral diverges(blows up) at b=0 but at a=0 it has a well known value. It is the Gaussian integral so
$displaystyle I(0,b)=int_{0}^{infty}e^{-(bx^{2})}dx=frac{1}{2}sqrt{frac{pi}{b}}$
The negative exponential was extracted from the integral rather than the positive one beacause
$displaystyle lim_{atoinfty}int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx=0$
and
$displaystyle lim_{atoinfty}e^{-2sqrt{ab}}=0$
So let’s assume that we assume that the solution to our PDE is of the form
$displaystyle I(a,b)=e^{-2sqrt{ab}}K(b)$
where K is a function of b(and diverges at b=0)
Let’s put this in the PDE
$displaystyle frac{partial I}{partial a}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K(b)$
$displaystyle frac{partial^2 I}{partial a partial b}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K^{'}(b)-frac{1}{2sqrt{ab}}e^{-2sqrt{ab}}K(b)+sqrt{frac{b}{a}}sqrt{frac{a}{b}}e^{-2sqrt{ab}}K(b)$
$displaystyle frac{partial^2 I}{partial a partial b}=e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))$
As
$displaystyle frac{partial^2 I}{partial a partial b}=I$
So
$displaystyle e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))=e^{-2sqrt{ab}}K(b)$
$displaystyle -sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b)=K(b)$
$displaystyle -sqrt{frac{b}{a}}K^{'}(a)=frac{K(b)}{2sqrt{ab}}$
$displaystyle K^{'}(b)=-frac{K(b)}{2b}$
This is a separable ODE.Let’s solve it
$displaystyle frac{1}{K}dK=-frac{1}{2}frac{1}{b}db$
Let’s integrate
$displaystyle int frac{1}{K}dK=-frac{1}{2}int frac{1}{b}db$
$displaystyle ln(K)=-frac{1}{2}ln(b)+C$
$displaystyle ln(K)=ln(b^{-frac{1}{2}})+C$
$displaystyle K=e^{C}b^{-frac{1}{2}}$
Let
$displaystyle v=e^{C}$
So
$displaystyle K(b)=vb^{-frac{1}{2}}$
Thus the solution is
$displaystyle I(a,b)=ve^{-2sqrt{ab}}b^{-frac{1}{2}}$
This expression diverges at b=0 which is exactly what we wanted. Now let’s determine the constant v. As
$displaystyle I(0,b)=frac{1}{2}sqrt{frac{pi}{b}}$
So
$displaystyle frac{1}{2}sqrt{frac{pi}{b}}=vb^{-frac{1}{2}}e^{0}$
$v=frac{sqrt{pi}}{2}$
Thus the integral is
$displaystyle boxed{I(a,b)=frac{1}{2}sqrt{frac{pi}{b}}e^{-2sqrt{ab}}} (0leqslant a,b)$
The given integral is I(b,a) so
$displaystyle boxed{I(b,a)=frac{1}{2}sqrt{frac{pi}{a}}e^{-2sqrt{ab}}} (0leqslant a,b)$
edited Dec 23 '18 at 13:42
answered Dec 23 '18 at 13:31
user628607
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f496088%2fhow-to-evaluate-int-0-infty-exp-ax2-frac-bx2-dx-for-a-b0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
related: math.stackexchange.com/q/112372/73324
$endgroup$
– vadim123
Sep 17 '13 at 5:20
1
$begingroup$
The Maple command $$int(exp(-a*x^2-b/x^2), x = 0 .. infinity) assuming a>0,b>0 $$ outputs $$1/2,frac {sqrt {pi}}{ left( e^{sqrt{ab}} right) ^2sqrt{a}}. $$
$endgroup$
– user64494
Sep 17 '13 at 7:08
1
$begingroup$
It also works for $a,binmathbb{C}$.
$endgroup$
– Tunk-Fey
May 17 '14 at 6:24
$begingroup$
@Tunk-Fey Can you slow down a bit with the retagging? At the moment, over 70% of my front page is occupied by your retaggings, that's a bit much for my liking.
$endgroup$
– Daniel Fischer♦
Jun 17 '14 at 12:04
$begingroup$
@DanielFischer OK, sorry if that bothered you.
$endgroup$
– Tunk-Fey
Jun 17 '14 at 12:08