How to evaluate $int_{0}^{+infty}exp(-ax^2-frac b{x^2}),dx$ for $a,b>0$












17












$begingroup$


How can I evaluate
$$I=int_{0}^{+infty}!e^{-ax^2-frac b{x^2}},dx$$
for $a,b>0$?



My methods:



Let $a,b > 0$ and let
$$I(b)=int_{0}^{+infty}e^{-ax^2-frac b{x^2}},dx.$$
Then
$$I'(b)=int_{0}^{infty}-frac{1}{x^2}e^{-ax^2-frac b{x^2}},dx.$$



What the other methods that can I use to evaluate it? Thank you.










share|cite|improve this question











$endgroup$












  • $begingroup$
    related: math.stackexchange.com/q/112372/73324
    $endgroup$
    – vadim123
    Sep 17 '13 at 5:20






  • 1




    $begingroup$
    The Maple command $$int(exp(-a*x^2-b/x^2), x = 0 .. infinity) assuming a>0,b>0 $$ outputs $$1/2,frac {sqrt {pi}}{ left( e^{sqrt{ab}} right) ^2sqrt{a}}. $$
    $endgroup$
    – user64494
    Sep 17 '13 at 7:08








  • 1




    $begingroup$
    It also works for $a,binmathbb{C}$.
    $endgroup$
    – Tunk-Fey
    May 17 '14 at 6:24










  • $begingroup$
    @Tunk-Fey Can you slow down a bit with the retagging? At the moment, over 70% of my front page is occupied by your retaggings, that's a bit much for my liking.
    $endgroup$
    – Daniel Fischer
    Jun 17 '14 at 12:04












  • $begingroup$
    @DanielFischer OK, sorry if that bothered you.
    $endgroup$
    – Tunk-Fey
    Jun 17 '14 at 12:08
















17












$begingroup$


How can I evaluate
$$I=int_{0}^{+infty}!e^{-ax^2-frac b{x^2}},dx$$
for $a,b>0$?



My methods:



Let $a,b > 0$ and let
$$I(b)=int_{0}^{+infty}e^{-ax^2-frac b{x^2}},dx.$$
Then
$$I'(b)=int_{0}^{infty}-frac{1}{x^2}e^{-ax^2-frac b{x^2}},dx.$$



What the other methods that can I use to evaluate it? Thank you.










share|cite|improve this question











$endgroup$












  • $begingroup$
    related: math.stackexchange.com/q/112372/73324
    $endgroup$
    – vadim123
    Sep 17 '13 at 5:20






  • 1




    $begingroup$
    The Maple command $$int(exp(-a*x^2-b/x^2), x = 0 .. infinity) assuming a>0,b>0 $$ outputs $$1/2,frac {sqrt {pi}}{ left( e^{sqrt{ab}} right) ^2sqrt{a}}. $$
    $endgroup$
    – user64494
    Sep 17 '13 at 7:08








  • 1




    $begingroup$
    It also works for $a,binmathbb{C}$.
    $endgroup$
    – Tunk-Fey
    May 17 '14 at 6:24










  • $begingroup$
    @Tunk-Fey Can you slow down a bit with the retagging? At the moment, over 70% of my front page is occupied by your retaggings, that's a bit much for my liking.
    $endgroup$
    – Daniel Fischer
    Jun 17 '14 at 12:04












  • $begingroup$
    @DanielFischer OK, sorry if that bothered you.
    $endgroup$
    – Tunk-Fey
    Jun 17 '14 at 12:08














17












17








17


6



$begingroup$


How can I evaluate
$$I=int_{0}^{+infty}!e^{-ax^2-frac b{x^2}},dx$$
for $a,b>0$?



My methods:



Let $a,b > 0$ and let
$$I(b)=int_{0}^{+infty}e^{-ax^2-frac b{x^2}},dx.$$
Then
$$I'(b)=int_{0}^{infty}-frac{1}{x^2}e^{-ax^2-frac b{x^2}},dx.$$



What the other methods that can I use to evaluate it? Thank you.










share|cite|improve this question











$endgroup$




How can I evaluate
$$I=int_{0}^{+infty}!e^{-ax^2-frac b{x^2}},dx$$
for $a,b>0$?



My methods:



Let $a,b > 0$ and let
$$I(b)=int_{0}^{+infty}e^{-ax^2-frac b{x^2}},dx.$$
Then
$$I'(b)=int_{0}^{infty}-frac{1}{x^2}e^{-ax^2-frac b{x^2}},dx.$$



What the other methods that can I use to evaluate it? Thank you.







calculus integration definite-integrals improper-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 4 '15 at 11:19









mookid

25.6k52447




25.6k52447










asked Sep 17 '13 at 5:05









china mathchina math

10.2k631117




10.2k631117












  • $begingroup$
    related: math.stackexchange.com/q/112372/73324
    $endgroup$
    – vadim123
    Sep 17 '13 at 5:20






  • 1




    $begingroup$
    The Maple command $$int(exp(-a*x^2-b/x^2), x = 0 .. infinity) assuming a>0,b>0 $$ outputs $$1/2,frac {sqrt {pi}}{ left( e^{sqrt{ab}} right) ^2sqrt{a}}. $$
    $endgroup$
    – user64494
    Sep 17 '13 at 7:08








  • 1




    $begingroup$
    It also works for $a,binmathbb{C}$.
    $endgroup$
    – Tunk-Fey
    May 17 '14 at 6:24










  • $begingroup$
    @Tunk-Fey Can you slow down a bit with the retagging? At the moment, over 70% of my front page is occupied by your retaggings, that's a bit much for my liking.
    $endgroup$
    – Daniel Fischer
    Jun 17 '14 at 12:04












  • $begingroup$
    @DanielFischer OK, sorry if that bothered you.
    $endgroup$
    – Tunk-Fey
    Jun 17 '14 at 12:08


















  • $begingroup$
    related: math.stackexchange.com/q/112372/73324
    $endgroup$
    – vadim123
    Sep 17 '13 at 5:20






  • 1




    $begingroup$
    The Maple command $$int(exp(-a*x^2-b/x^2), x = 0 .. infinity) assuming a>0,b>0 $$ outputs $$1/2,frac {sqrt {pi}}{ left( e^{sqrt{ab}} right) ^2sqrt{a}}. $$
    $endgroup$
    – user64494
    Sep 17 '13 at 7:08








  • 1




    $begingroup$
    It also works for $a,binmathbb{C}$.
    $endgroup$
    – Tunk-Fey
    May 17 '14 at 6:24










  • $begingroup$
    @Tunk-Fey Can you slow down a bit with the retagging? At the moment, over 70% of my front page is occupied by your retaggings, that's a bit much for my liking.
    $endgroup$
    – Daniel Fischer
    Jun 17 '14 at 12:04












  • $begingroup$
    @DanielFischer OK, sorry if that bothered you.
    $endgroup$
    – Tunk-Fey
    Jun 17 '14 at 12:08
















$begingroup$
related: math.stackexchange.com/q/112372/73324
$endgroup$
– vadim123
Sep 17 '13 at 5:20




$begingroup$
related: math.stackexchange.com/q/112372/73324
$endgroup$
– vadim123
Sep 17 '13 at 5:20




1




1




$begingroup$
The Maple command $$int(exp(-a*x^2-b/x^2), x = 0 .. infinity) assuming a>0,b>0 $$ outputs $$1/2,frac {sqrt {pi}}{ left( e^{sqrt{ab}} right) ^2sqrt{a}}. $$
$endgroup$
– user64494
Sep 17 '13 at 7:08






$begingroup$
The Maple command $$int(exp(-a*x^2-b/x^2), x = 0 .. infinity) assuming a>0,b>0 $$ outputs $$1/2,frac {sqrt {pi}}{ left( e^{sqrt{ab}} right) ^2sqrt{a}}. $$
$endgroup$
– user64494
Sep 17 '13 at 7:08






1




1




$begingroup$
It also works for $a,binmathbb{C}$.
$endgroup$
– Tunk-Fey
May 17 '14 at 6:24




$begingroup$
It also works for $a,binmathbb{C}$.
$endgroup$
– Tunk-Fey
May 17 '14 at 6:24












$begingroup$
@Tunk-Fey Can you slow down a bit with the retagging? At the moment, over 70% of my front page is occupied by your retaggings, that's a bit much for my liking.
$endgroup$
– Daniel Fischer
Jun 17 '14 at 12:04






$begingroup$
@Tunk-Fey Can you slow down a bit with the retagging? At the moment, over 70% of my front page is occupied by your retaggings, that's a bit much for my liking.
$endgroup$
– Daniel Fischer
Jun 17 '14 at 12:04














$begingroup$
@DanielFischer OK, sorry if that bothered you.
$endgroup$
– Tunk-Fey
Jun 17 '14 at 12:08




$begingroup$
@DanielFischer OK, sorry if that bothered you.
$endgroup$
– Tunk-Fey
Jun 17 '14 at 12:08










7 Answers
7






active

oldest

votes


















20












$begingroup$

$$begin{align}
I
= & int_0^{infty} e^{-ax^2 - bx^{-2}} dx\
stackrel{color{blue}{[1]}}{=} &
left(frac{b}{a}right)^{1/4}int_0^{infty} e^{-sqrt{ab}(y^2 + y^{-2})} dy\
= &
left(frac{b}{a}right)^{1/4}left[ int_0^{1} + int_1^{infty} right] e^{-sqrt{ab}(y^2 + y^{-2})} dy\
stackrel{color{blue}{[2]}}{=} &
left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}(y^2 + y^{-2})}
left(frac{1}{y^2} + 1right) dy\
= &
left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}((y-y^{-1})^2+2)}
dleft( y - frac{1}{y}right)\
stackrel{color{blue}{[3]}}{=} &
left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} int_0^{infty} e^{-sqrt{ab},z^2} dz\
= &
left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} frac{sqrt{pi}}{2(ab)^{1/4}}\
= &
sqrt{frac{pi}{4a}} e^{-2sqrt{ab}}
end{align}
$$
Notes




  • $color{blue}{[1]}$ substitute $x$ by $y = sqrt{frac{a}{b}} x$.

  • $color{blue}{[2]}$ substitute $y$ by $frac{1}{y}$ over the interval $[0,1]$.

  • $color{blue}{[3]}$ substitute $y$ by $z = y - frac{1}{y}$.






share|cite|improve this answer









$endgroup$





















    8












    $begingroup$

    Before you use a differentiation under the integral sign it is suitable to do the following variable exchange: $x=frac{t}{sqrt{a}}$



    $$I=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{(-t^2-frac{s^2}{t^2})},dt;s^2=ab$$ Now, consider it as a function of $s$ and differentiate it with respect to $s$:



    $$frac{dI}{ds}=frac{-2}{sqrt{a}}int_{0}^{+infty}frac{e^{(-t^2-frac{s^2}{t^2})}}{t^2}sdt=frac{-2}{sqrt{a}}int_{0}^{+infty}e^{(-t^2-frac{s^2}{t^2})}dt=-2I$$



    So, to get an answer we need to solve the differential equation



    $$frac{dI}{ds}=-2I$$ and use the fact that



    $$I(0)=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{-t^2},dt=frac{1}{sqrt{a}}frac{sqrt{pi}}{2}$$






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      (+1) pretty clean approach. My only nitpick is the step of getting rid of the $frac{s}{t^2}$ factor in the integrand is not immediately obvious.
      $endgroup$
      – achille hui
      Sep 18 '13 at 2:07



















    6












    $begingroup$

    The integral can be evaluated as follows
    $$
    begin{align}
    int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=2int_{x=0}^infty expleft(-aleft(x^2-2sqrt{frac{b}{a}}+frac{b}{ax^2}+2sqrt{frac{b}{a}}right)right),dx\
    &=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2-2sqrt{ab}right),dx\
    &=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
    end{align}
    $$
    The trick to solve the last integral is by setting
    $$
    I=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
    $$
    Let $t=-frac{1}{x}sqrt{frac{b}{a}};rightarrow;x=-frac{1}{t}sqrt{frac{b}{a}};rightarrow;dx=frac{1}{t^2}sqrt{frac{b}{a}},dt$, then
    $$
    I_t=sqrt{frac{b}{a}}int_{t=0}^infty frac{expleft(-aleft(-frac{1}{t}sqrt{frac{b}{a}}+tright)^2right)}{t^2},dt.
    $$
    Let $t=x;rightarrow;dt=dx$, then
    $$
    I_t=int_{t=0}^infty expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
    $$
    Adding the two $I_t$s yields
    $$
    2I=I_t+I_t=int_{t=0}^inftyleft(1+frac{1}{t^2}sqrt{frac{b}{a}}right)expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
    $$
    Let $s=t-frac{1}{t}sqrt{frac{b}{a}};rightarrow;ds=left(1+frac{1}{t^2}sqrt{frac{b}{a}}right)dt$ and for $0<t<infty$ is corresponding to $-infty<s<infty$, then
    $$
    I=frac{1}{2}int_{s=-infty}^infty e^{-as^2},ds=frac{1}{2}sqrt{frac{pi}{a}}.
    $$
    Thus
    $$
    begin{align}
    int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx\
    &=frac{1}{2}sqrt{frac{pi}{a}}e^{large-2sqrt{ab}}.
    end{align}
    $$






    share|cite|improve this answer









    $endgroup$





















      5












      $begingroup$

      The integral is $$frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2(x-b/ax)^2}dx=frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2x^2}dx=frac{sqrt{pi}}{2a}e^{-2ab}.$$ (See M.L. Glasser, A Remarkable Property of Definite Integrals,
      Math.Comp.Vol 40, p.561 (1983).






      share|cite|improve this answer











      $endgroup$





















        2












        $begingroup$

        $newcommand{+}{^{dagger}}
        newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
        newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
        newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
        newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
        newcommand{dd}{{rm d}}
        newcommand{down}{downarrow}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,{rm e}^{#1},}
        newcommand{fermi}{,{rm f}}
        newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
        newcommand{half}{{1 over 2}}
        newcommand{ic}{{rm i}}
        newcommand{iff}{Longleftrightarrow}
        newcommand{imp}{Longrightarrow}
        newcommand{isdiv}{,left.rightvert,}
        newcommand{ket}[1]{leftvert #1rightrangle}
        newcommand{ol}[1]{overline{#1}}
        newcommand{pars}[1]{left(, #1 ,right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{pp}{{cal P}}
        newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
        newcommand{sech}{,{rm sech}}
        newcommand{sgn}{,{rm sgn}}
        newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
        newcommand{ul}[1]{underline{#1}}
        newcommand{verts}[1]{leftvert, #1 ,rightvert}
        newcommand{wt}[1]{widetilde{#1}}$

        $ds{Iequivint_{0}^{infty}exppars{-ax^{2} - {b over x^{2}}},dd x:
        {large ?}.qquad a, b > 0}$




        Lets $ds{x equiv Aexpo{theta}}$ such that
        $ds{-ax^{2} - {b over x^{2}} = -aA^{2}expo{2theta} - {b over A^{2}},
        expo{-2theta}}$
        .


        We choose
        $$
        A mbox{such that}quad
        aA^{2} = {b over A^{2}}quadimpquad A = pars{b over a}^{1/4}. mbox{Then,}
        -ax^{2} - {b over x^{2}} = -2root{ab}coshpars{2theta}
        $$




        begin{align}
        I&=int_{-infty}^{infty}!!expo{-2root{ab}coshpars{2theta}}pars{b over a}^{1/4}
        expo{theta},ddtheta
        =2pars{b over a}^{1/4}int_{0}^{infty}expo{-2root{ab}coshpars{2theta}}
        coshpars{theta},ddtheta
        \[5mm]&=2pars{b over a}^{1/4}
        overbrace{int_{0}^{infty}expo{-2root{ab}bracks{2sinh^{2}pars{theta} + 1}}
        coshpars{theta},ddtheta}^{ds{mbox{Set}quad t equiv sinhpars{theta}}}
        \[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
        int_{0}^{infty}expo{-4root{ab}t^{2}},dd t
        \[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
        bracks{{1 over 2pars{ab}^{1/4}}}
        overbrace{int_{0}^{infty}expo{-t^{2}},dd t}^{ds{= {root{pi} over 2}}}
        = color{#00f}{large half,root{pi over a}expo{-2root{ab}}}
        end{align}






        share|cite|improve this answer











        $endgroup$





















          0












          $begingroup$

          A proof by Fourier transform



          This won't be the shortest nor the most elementary proof here, but it has a nice background which I'll explain later. The main drawback is that it assumes that we know the Fourier transform of the Gaussian, which is about as hard to compute rigorously than the initial integral.



          Fix $a > 0$. Then, for any $xi in mathbb{R}$,



          $$begin{align}
          int_{mathbb{R}} e^{i xi b} I(a,b^2) db
          & = int_{mathbb{R}} e^{i xi b} int_0^{+ infty} e^{-ax^2-frac{b^2}{x^2}} dx db\
          & = int_0^{+ infty} e^{-ax^2} int_{mathbb{R}} e^{i xi b} e^{-frac{b^2}{x^2}} db dx hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
          & = sqrt{pi} int_0^{+ infty} x e^{-left( a+ frac{xi^2}{4}right) x^2} dx hspace{2em} color{#00f}{text{Fourier transform of the Gaussian}} \
          & = frac{sqrt{pi}}{2} int_0^{+ infty} e^{-left( a+ frac{xi^2}{4}right) u} du hspace{2em} color{#00f}{text{Change of variables }u=x^2} \
          & = frac{sqrt{pi}}{2 left( a+ frac{xi^2}{4}right)} hspace{2em} color{#00f}{text{Evaluation of the integral}} \
          & = frac{sqrt{pi}}{2sqrt{a}} left( frac{1}{2sqrt{a}+ixi} + frac{1}{2sqrt{a}-ixi} right) hspace{2em} color{#00f}{text{Partial fraction decomposition}} \
          & = frac{sqrt{pi}}{2sqrt{a}} left( int_0^{+ infty} e^{-(i xi + 2 sqrt{a})b} db + int_0^{+ infty} e^{-(-i xi + 2 sqrt{a})b} db right) \
          & = frac{sqrt{pi}}{2sqrt{a}} int_{mathbb{R}} e^{i xi b} e^{-2 sqrt{a}|b|} db.
          end{align}$$



          Hence, $I(a, b^2)$ and $frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{a}|b|}$ have the same Fourier transform. Then you can check that both are continuous and decay exponentially fast at infinity, so they are pointwise the inverse Fourier transform of their Fourier transform, and thus coincide for all $b$. Finally, we get:



          $$I(a, b) = frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{ab}}.$$



          Motivation: a probabilistic proof



          I stumbled upon this integral during my research (or rather, a family of such integrals). Let $X$ and $Y$ be two independent random variables, with $Y$ being exponential $mathcal{E} (lambda)$ and $Z$ being standard normal $mathcal{N} (0, 1)$. Let $X := Z sqrt{Y}$.



          A first computation yields the density of the distribution of $X$. Let $f$ be continuous and bounded on $mathbb{R}$. Then:



          $$begin{align}
          mathbb{E} (f(X))
          & = frac{lambda}{sigma sqrt{2 pi}} int_0^{+ infty} int_mathbb{R} f(z sqrt{y}) e^{-frac{z^2}{2}} e^{- lambda y} dz dy \
          & = frac{lambda}{sqrt{2 pi}} int_0^{+ infty} e^{- lambda y} int_mathbb{R} frac{1}{sqrt{y}} f(b) e^{-frac{b^2}{2 y}} db dy hspace{2em} color{#00f}{text{Change of variables }b=zsqrt{y}} \
          & = frac{lambda}{sqrt{2 pi}} int_mathbb{R} f(b) int_0^{+ infty} frac{e^{- lambda y}}{sqrt{y}} e^{-frac{b^2}{2 y}} dy db hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
          & = frac{lambda sqrt{2}}{sqrt{pi}} int_mathbb{R} f(b) int_0^{+ infty} e^{- lambda x^2} e^{-frac{b^2}{2 x^2}} dx db hspace{2em} color{#00f}{text{Change of variables }x=sqrt{y}} \
          end{align}$$



          The density of $X$ is thus given by the function:



          $$b mapsto frac{lambda sqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx.$$



          And then, if we compute this integral, we can get a simpler expression for the density. However, it turns out that there is an easier way to compute the distribution of $X$, with the Fourier transform. Indeed, for all real $xi$,



          $$begin{align}
          mathbb{E} left( e^{i xi X} right)
          & = mathbb{E} left( e^{i xi Z sqrt{Y}} right) \
          & = mathbb{E} left( mathbb{E} left( e^{i (xi sqrt{Y}) Z} |Y right) right) \
          & = mathbb{E} left( e^{- frac{xi^2 Y}{2}} right) \
          & = frac{1}{1+frac{xi^2}{2lambda}}, \
          end{align}$$



          which is the Fourier transform of a Laplace distribution of parameter $1/ sqrt{2 lambda}$. With the argument of continuity given in the first paragraph, we get:



          $$frac{lambdasqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{lambda}}{sqrt{2}} e^{-sqrt{2lambda}|b|},$$



          so that:



          $$int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{pi}}{2 sqrt{lambda}} e^{-sqrt{2lambda}|b|}.$$



          The proof in the first paragraph is the streamlined version of this reasoning. All in all, an interpretation of this integral is that the product of a centered Gaussian and of the square root of an independent exponential random variable is a Laplace random variable.






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Let’s do the general integral
            $displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$



            Differentiate with respect to a



            $displaystyle frac{partial I}{partial a}=int_{0}^{infty}x^{-2}e^{-(ax^{-2}+bx^{2})}dx$



            Now differentiate with respect to b
            $displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}x^{-2}x^{2}e^{-(ax^{-2}+bx^{2})}dx$



            $displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$



            $displaystyle frac{partial^2 I}{partial a partial b}=I$



            Thus our integral satisfies this PDE.This is a hyperbolic homogenous PDE. It is a second order PDE but it is first order with respect to each of the variables so we’ll need two boundary conditions to determine a unique solution.(In this case two asympotic BCs and one Drichlet boundary condition will be used).Keep this in mind we’ll need it later.



            Let’s complete the square of expression in the exponential.



            $displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2}-2sqrt{ab}+2sqrt{ab})}dx$



            $displaystyle I(a,b)=int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}-2sqrt{ab}}dx$



            $displaystyle I(a,b)=e^{-2sqrt{ab}}int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}}dx$



            Now let’s explore more of it’s properties.One thing to note is that this integral diverges(blows up) at b=0 but at a=0 it has a well known value. It is the Gaussian integral so



            $displaystyle I(0,b)=int_{0}^{infty}e^{-(bx^{2})}dx=frac{1}{2}sqrt{frac{pi}{b}}$



            The negative exponential was extracted from the integral rather than the positive one beacause



            $displaystyle lim_{atoinfty}int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx=0$



            and



            $displaystyle lim_{atoinfty}e^{-2sqrt{ab}}=0$



            So let’s assume that we assume that the solution to our PDE is of the form



            $displaystyle I(a,b)=e^{-2sqrt{ab}}K(b)$



            where K is a function of b(and diverges at b=0)



            Let’s put this in the PDE



            $displaystyle frac{partial I}{partial a}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K(b)$



            $displaystyle frac{partial^2 I}{partial a partial b}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K^{'}(b)-frac{1}{2sqrt{ab}}e^{-2sqrt{ab}}K(b)+sqrt{frac{b}{a}}sqrt{frac{a}{b}}e^{-2sqrt{ab}}K(b)$



            $displaystyle frac{partial^2 I}{partial a partial b}=e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))$



            As
            $displaystyle frac{partial^2 I}{partial a partial b}=I$



            So



            $displaystyle e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))=e^{-2sqrt{ab}}K(b)$



            $displaystyle -sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b)=K(b)$



            $displaystyle -sqrt{frac{b}{a}}K^{'}(a)=frac{K(b)}{2sqrt{ab}}$



            $displaystyle K^{'}(b)=-frac{K(b)}{2b}$



            This is a separable ODE.Let’s solve it



            $displaystyle frac{1}{K}dK=-frac{1}{2}frac{1}{b}db$



            Let’s integrate



            $displaystyle int frac{1}{K}dK=-frac{1}{2}int frac{1}{b}db$



            $displaystyle ln(K)=-frac{1}{2}ln(b)+C$



            $displaystyle ln(K)=ln(b^{-frac{1}{2}})+C$



            $displaystyle K=e^{C}b^{-frac{1}{2}}$



            Let
            $displaystyle v=e^{C}$



            So



            $displaystyle K(b)=vb^{-frac{1}{2}}$



            Thus the solution is
            $displaystyle I(a,b)=ve^{-2sqrt{ab}}b^{-frac{1}{2}}$



            This expression diverges at b=0 which is exactly what we wanted. Now let’s determine the constant v. As



            $displaystyle I(0,b)=frac{1}{2}sqrt{frac{pi}{b}}$



            So
            $displaystyle frac{1}{2}sqrt{frac{pi}{b}}=vb^{-frac{1}{2}}e^{0}$
            $v=frac{sqrt{pi}}{2}$



            Thus the integral is



            $displaystyle boxed{I(a,b)=frac{1}{2}sqrt{frac{pi}{b}}e^{-2sqrt{ab}}} (0leqslant a,b)$



            The given integral is I(b,a) so



            $displaystyle boxed{I(b,a)=frac{1}{2}sqrt{frac{pi}{a}}e^{-2sqrt{ab}}} (0leqslant a,b)$






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f496088%2fhow-to-evaluate-int-0-infty-exp-ax2-frac-bx2-dx-for-a-b0%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              7 Answers
              7






              active

              oldest

              votes








              7 Answers
              7






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              20












              $begingroup$

              $$begin{align}
              I
              = & int_0^{infty} e^{-ax^2 - bx^{-2}} dx\
              stackrel{color{blue}{[1]}}{=} &
              left(frac{b}{a}right)^{1/4}int_0^{infty} e^{-sqrt{ab}(y^2 + y^{-2})} dy\
              = &
              left(frac{b}{a}right)^{1/4}left[ int_0^{1} + int_1^{infty} right] e^{-sqrt{ab}(y^2 + y^{-2})} dy\
              stackrel{color{blue}{[2]}}{=} &
              left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}(y^2 + y^{-2})}
              left(frac{1}{y^2} + 1right) dy\
              = &
              left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}((y-y^{-1})^2+2)}
              dleft( y - frac{1}{y}right)\
              stackrel{color{blue}{[3]}}{=} &
              left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} int_0^{infty} e^{-sqrt{ab},z^2} dz\
              = &
              left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} frac{sqrt{pi}}{2(ab)^{1/4}}\
              = &
              sqrt{frac{pi}{4a}} e^{-2sqrt{ab}}
              end{align}
              $$
              Notes




              • $color{blue}{[1]}$ substitute $x$ by $y = sqrt{frac{a}{b}} x$.

              • $color{blue}{[2]}$ substitute $y$ by $frac{1}{y}$ over the interval $[0,1]$.

              • $color{blue}{[3]}$ substitute $y$ by $z = y - frac{1}{y}$.






              share|cite|improve this answer









              $endgroup$


















                20












                $begingroup$

                $$begin{align}
                I
                = & int_0^{infty} e^{-ax^2 - bx^{-2}} dx\
                stackrel{color{blue}{[1]}}{=} &
                left(frac{b}{a}right)^{1/4}int_0^{infty} e^{-sqrt{ab}(y^2 + y^{-2})} dy\
                = &
                left(frac{b}{a}right)^{1/4}left[ int_0^{1} + int_1^{infty} right] e^{-sqrt{ab}(y^2 + y^{-2})} dy\
                stackrel{color{blue}{[2]}}{=} &
                left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}(y^2 + y^{-2})}
                left(frac{1}{y^2} + 1right) dy\
                = &
                left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}((y-y^{-1})^2+2)}
                dleft( y - frac{1}{y}right)\
                stackrel{color{blue}{[3]}}{=} &
                left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} int_0^{infty} e^{-sqrt{ab},z^2} dz\
                = &
                left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} frac{sqrt{pi}}{2(ab)^{1/4}}\
                = &
                sqrt{frac{pi}{4a}} e^{-2sqrt{ab}}
                end{align}
                $$
                Notes




                • $color{blue}{[1]}$ substitute $x$ by $y = sqrt{frac{a}{b}} x$.

                • $color{blue}{[2]}$ substitute $y$ by $frac{1}{y}$ over the interval $[0,1]$.

                • $color{blue}{[3]}$ substitute $y$ by $z = y - frac{1}{y}$.






                share|cite|improve this answer









                $endgroup$
















                  20












                  20








                  20





                  $begingroup$

                  $$begin{align}
                  I
                  = & int_0^{infty} e^{-ax^2 - bx^{-2}} dx\
                  stackrel{color{blue}{[1]}}{=} &
                  left(frac{b}{a}right)^{1/4}int_0^{infty} e^{-sqrt{ab}(y^2 + y^{-2})} dy\
                  = &
                  left(frac{b}{a}right)^{1/4}left[ int_0^{1} + int_1^{infty} right] e^{-sqrt{ab}(y^2 + y^{-2})} dy\
                  stackrel{color{blue}{[2]}}{=} &
                  left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}(y^2 + y^{-2})}
                  left(frac{1}{y^2} + 1right) dy\
                  = &
                  left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}((y-y^{-1})^2+2)}
                  dleft( y - frac{1}{y}right)\
                  stackrel{color{blue}{[3]}}{=} &
                  left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} int_0^{infty} e^{-sqrt{ab},z^2} dz\
                  = &
                  left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} frac{sqrt{pi}}{2(ab)^{1/4}}\
                  = &
                  sqrt{frac{pi}{4a}} e^{-2sqrt{ab}}
                  end{align}
                  $$
                  Notes




                  • $color{blue}{[1]}$ substitute $x$ by $y = sqrt{frac{a}{b}} x$.

                  • $color{blue}{[2]}$ substitute $y$ by $frac{1}{y}$ over the interval $[0,1]$.

                  • $color{blue}{[3]}$ substitute $y$ by $z = y - frac{1}{y}$.






                  share|cite|improve this answer









                  $endgroup$



                  $$begin{align}
                  I
                  = & int_0^{infty} e^{-ax^2 - bx^{-2}} dx\
                  stackrel{color{blue}{[1]}}{=} &
                  left(frac{b}{a}right)^{1/4}int_0^{infty} e^{-sqrt{ab}(y^2 + y^{-2})} dy\
                  = &
                  left(frac{b}{a}right)^{1/4}left[ int_0^{1} + int_1^{infty} right] e^{-sqrt{ab}(y^2 + y^{-2})} dy\
                  stackrel{color{blue}{[2]}}{=} &
                  left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}(y^2 + y^{-2})}
                  left(frac{1}{y^2} + 1right) dy\
                  = &
                  left(frac{b}{a}right)^{1/4} int_1^{infty} e^{-sqrt{ab}((y-y^{-1})^2+2)}
                  dleft( y - frac{1}{y}right)\
                  stackrel{color{blue}{[3]}}{=} &
                  left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} int_0^{infty} e^{-sqrt{ab},z^2} dz\
                  = &
                  left(frac{b}{a}right)^{1/4} e^{-2sqrt{ab}} frac{sqrt{pi}}{2(ab)^{1/4}}\
                  = &
                  sqrt{frac{pi}{4a}} e^{-2sqrt{ab}}
                  end{align}
                  $$
                  Notes




                  • $color{blue}{[1]}$ substitute $x$ by $y = sqrt{frac{a}{b}} x$.

                  • $color{blue}{[2]}$ substitute $y$ by $frac{1}{y}$ over the interval $[0,1]$.

                  • $color{blue}{[3]}$ substitute $y$ by $z = y - frac{1}{y}$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Sep 17 '13 at 5:38









                  achille huiachille hui

                  95.9k5132258




                  95.9k5132258























                      8












                      $begingroup$

                      Before you use a differentiation under the integral sign it is suitable to do the following variable exchange: $x=frac{t}{sqrt{a}}$



                      $$I=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{(-t^2-frac{s^2}{t^2})},dt;s^2=ab$$ Now, consider it as a function of $s$ and differentiate it with respect to $s$:



                      $$frac{dI}{ds}=frac{-2}{sqrt{a}}int_{0}^{+infty}frac{e^{(-t^2-frac{s^2}{t^2})}}{t^2}sdt=frac{-2}{sqrt{a}}int_{0}^{+infty}e^{(-t^2-frac{s^2}{t^2})}dt=-2I$$



                      So, to get an answer we need to solve the differential equation



                      $$frac{dI}{ds}=-2I$$ and use the fact that



                      $$I(0)=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{-t^2},dt=frac{1}{sqrt{a}}frac{sqrt{pi}}{2}$$






                      share|cite|improve this answer









                      $endgroup$









                      • 1




                        $begingroup$
                        (+1) pretty clean approach. My only nitpick is the step of getting rid of the $frac{s}{t^2}$ factor in the integrand is not immediately obvious.
                        $endgroup$
                        – achille hui
                        Sep 18 '13 at 2:07
















                      8












                      $begingroup$

                      Before you use a differentiation under the integral sign it is suitable to do the following variable exchange: $x=frac{t}{sqrt{a}}$



                      $$I=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{(-t^2-frac{s^2}{t^2})},dt;s^2=ab$$ Now, consider it as a function of $s$ and differentiate it with respect to $s$:



                      $$frac{dI}{ds}=frac{-2}{sqrt{a}}int_{0}^{+infty}frac{e^{(-t^2-frac{s^2}{t^2})}}{t^2}sdt=frac{-2}{sqrt{a}}int_{0}^{+infty}e^{(-t^2-frac{s^2}{t^2})}dt=-2I$$



                      So, to get an answer we need to solve the differential equation



                      $$frac{dI}{ds}=-2I$$ and use the fact that



                      $$I(0)=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{-t^2},dt=frac{1}{sqrt{a}}frac{sqrt{pi}}{2}$$






                      share|cite|improve this answer









                      $endgroup$









                      • 1




                        $begingroup$
                        (+1) pretty clean approach. My only nitpick is the step of getting rid of the $frac{s}{t^2}$ factor in the integrand is not immediately obvious.
                        $endgroup$
                        – achille hui
                        Sep 18 '13 at 2:07














                      8












                      8








                      8





                      $begingroup$

                      Before you use a differentiation under the integral sign it is suitable to do the following variable exchange: $x=frac{t}{sqrt{a}}$



                      $$I=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{(-t^2-frac{s^2}{t^2})},dt;s^2=ab$$ Now, consider it as a function of $s$ and differentiate it with respect to $s$:



                      $$frac{dI}{ds}=frac{-2}{sqrt{a}}int_{0}^{+infty}frac{e^{(-t^2-frac{s^2}{t^2})}}{t^2}sdt=frac{-2}{sqrt{a}}int_{0}^{+infty}e^{(-t^2-frac{s^2}{t^2})}dt=-2I$$



                      So, to get an answer we need to solve the differential equation



                      $$frac{dI}{ds}=-2I$$ and use the fact that



                      $$I(0)=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{-t^2},dt=frac{1}{sqrt{a}}frac{sqrt{pi}}{2}$$






                      share|cite|improve this answer









                      $endgroup$



                      Before you use a differentiation under the integral sign it is suitable to do the following variable exchange: $x=frac{t}{sqrt{a}}$



                      $$I=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{(-t^2-frac{s^2}{t^2})},dt;s^2=ab$$ Now, consider it as a function of $s$ and differentiate it with respect to $s$:



                      $$frac{dI}{ds}=frac{-2}{sqrt{a}}int_{0}^{+infty}frac{e^{(-t^2-frac{s^2}{t^2})}}{t^2}sdt=frac{-2}{sqrt{a}}int_{0}^{+infty}e^{(-t^2-frac{s^2}{t^2})}dt=-2I$$



                      So, to get an answer we need to solve the differential equation



                      $$frac{dI}{ds}=-2I$$ and use the fact that



                      $$I(0)=frac{1}{sqrt{a}}int_{0}^{+infty}!e^{-t^2},dt=frac{1}{sqrt{a}}frac{sqrt{pi}}{2}$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Sep 17 '13 at 16:34









                      Martin GalesMartin Gales

                      3,53911935




                      3,53911935








                      • 1




                        $begingroup$
                        (+1) pretty clean approach. My only nitpick is the step of getting rid of the $frac{s}{t^2}$ factor in the integrand is not immediately obvious.
                        $endgroup$
                        – achille hui
                        Sep 18 '13 at 2:07














                      • 1




                        $begingroup$
                        (+1) pretty clean approach. My only nitpick is the step of getting rid of the $frac{s}{t^2}$ factor in the integrand is not immediately obvious.
                        $endgroup$
                        – achille hui
                        Sep 18 '13 at 2:07








                      1




                      1




                      $begingroup$
                      (+1) pretty clean approach. My only nitpick is the step of getting rid of the $frac{s}{t^2}$ factor in the integrand is not immediately obvious.
                      $endgroup$
                      – achille hui
                      Sep 18 '13 at 2:07




                      $begingroup$
                      (+1) pretty clean approach. My only nitpick is the step of getting rid of the $frac{s}{t^2}$ factor in the integrand is not immediately obvious.
                      $endgroup$
                      – achille hui
                      Sep 18 '13 at 2:07











                      6












                      $begingroup$

                      The integral can be evaluated as follows
                      $$
                      begin{align}
                      int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=2int_{x=0}^infty expleft(-aleft(x^2-2sqrt{frac{b}{a}}+frac{b}{ax^2}+2sqrt{frac{b}{a}}right)right),dx\
                      &=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2-2sqrt{ab}right),dx\
                      &=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
                      end{align}
                      $$
                      The trick to solve the last integral is by setting
                      $$
                      I=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
                      $$
                      Let $t=-frac{1}{x}sqrt{frac{b}{a}};rightarrow;x=-frac{1}{t}sqrt{frac{b}{a}};rightarrow;dx=frac{1}{t^2}sqrt{frac{b}{a}},dt$, then
                      $$
                      I_t=sqrt{frac{b}{a}}int_{t=0}^infty frac{expleft(-aleft(-frac{1}{t}sqrt{frac{b}{a}}+tright)^2right)}{t^2},dt.
                      $$
                      Let $t=x;rightarrow;dt=dx$, then
                      $$
                      I_t=int_{t=0}^infty expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
                      $$
                      Adding the two $I_t$s yields
                      $$
                      2I=I_t+I_t=int_{t=0}^inftyleft(1+frac{1}{t^2}sqrt{frac{b}{a}}right)expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
                      $$
                      Let $s=t-frac{1}{t}sqrt{frac{b}{a}};rightarrow;ds=left(1+frac{1}{t^2}sqrt{frac{b}{a}}right)dt$ and for $0<t<infty$ is corresponding to $-infty<s<infty$, then
                      $$
                      I=frac{1}{2}int_{s=-infty}^infty e^{-as^2},ds=frac{1}{2}sqrt{frac{pi}{a}}.
                      $$
                      Thus
                      $$
                      begin{align}
                      int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx\
                      &=frac{1}{2}sqrt{frac{pi}{a}}e^{large-2sqrt{ab}}.
                      end{align}
                      $$






                      share|cite|improve this answer









                      $endgroup$


















                        6












                        $begingroup$

                        The integral can be evaluated as follows
                        $$
                        begin{align}
                        int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=2int_{x=0}^infty expleft(-aleft(x^2-2sqrt{frac{b}{a}}+frac{b}{ax^2}+2sqrt{frac{b}{a}}right)right),dx\
                        &=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2-2sqrt{ab}right),dx\
                        &=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
                        end{align}
                        $$
                        The trick to solve the last integral is by setting
                        $$
                        I=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
                        $$
                        Let $t=-frac{1}{x}sqrt{frac{b}{a}};rightarrow;x=-frac{1}{t}sqrt{frac{b}{a}};rightarrow;dx=frac{1}{t^2}sqrt{frac{b}{a}},dt$, then
                        $$
                        I_t=sqrt{frac{b}{a}}int_{t=0}^infty frac{expleft(-aleft(-frac{1}{t}sqrt{frac{b}{a}}+tright)^2right)}{t^2},dt.
                        $$
                        Let $t=x;rightarrow;dt=dx$, then
                        $$
                        I_t=int_{t=0}^infty expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
                        $$
                        Adding the two $I_t$s yields
                        $$
                        2I=I_t+I_t=int_{t=0}^inftyleft(1+frac{1}{t^2}sqrt{frac{b}{a}}right)expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
                        $$
                        Let $s=t-frac{1}{t}sqrt{frac{b}{a}};rightarrow;ds=left(1+frac{1}{t^2}sqrt{frac{b}{a}}right)dt$ and for $0<t<infty$ is corresponding to $-infty<s<infty$, then
                        $$
                        I=frac{1}{2}int_{s=-infty}^infty e^{-as^2},ds=frac{1}{2}sqrt{frac{pi}{a}}.
                        $$
                        Thus
                        $$
                        begin{align}
                        int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx\
                        &=frac{1}{2}sqrt{frac{pi}{a}}e^{large-2sqrt{ab}}.
                        end{align}
                        $$






                        share|cite|improve this answer









                        $endgroup$
















                          6












                          6








                          6





                          $begingroup$

                          The integral can be evaluated as follows
                          $$
                          begin{align}
                          int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=2int_{x=0}^infty expleft(-aleft(x^2-2sqrt{frac{b}{a}}+frac{b}{ax^2}+2sqrt{frac{b}{a}}right)right),dx\
                          &=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2-2sqrt{ab}right),dx\
                          &=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
                          end{align}
                          $$
                          The trick to solve the last integral is by setting
                          $$
                          I=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
                          $$
                          Let $t=-frac{1}{x}sqrt{frac{b}{a}};rightarrow;x=-frac{1}{t}sqrt{frac{b}{a}};rightarrow;dx=frac{1}{t^2}sqrt{frac{b}{a}},dt$, then
                          $$
                          I_t=sqrt{frac{b}{a}}int_{t=0}^infty frac{expleft(-aleft(-frac{1}{t}sqrt{frac{b}{a}}+tright)^2right)}{t^2},dt.
                          $$
                          Let $t=x;rightarrow;dt=dx$, then
                          $$
                          I_t=int_{t=0}^infty expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
                          $$
                          Adding the two $I_t$s yields
                          $$
                          2I=I_t+I_t=int_{t=0}^inftyleft(1+frac{1}{t^2}sqrt{frac{b}{a}}right)expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
                          $$
                          Let $s=t-frac{1}{t}sqrt{frac{b}{a}};rightarrow;ds=left(1+frac{1}{t^2}sqrt{frac{b}{a}}right)dt$ and for $0<t<infty$ is corresponding to $-infty<s<infty$, then
                          $$
                          I=frac{1}{2}int_{s=-infty}^infty e^{-as^2},ds=frac{1}{2}sqrt{frac{pi}{a}}.
                          $$
                          Thus
                          $$
                          begin{align}
                          int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx\
                          &=frac{1}{2}sqrt{frac{pi}{a}}e^{large-2sqrt{ab}}.
                          end{align}
                          $$






                          share|cite|improve this answer









                          $endgroup$



                          The integral can be evaluated as follows
                          $$
                          begin{align}
                          int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=2int_{x=0}^infty expleft(-aleft(x^2-2sqrt{frac{b}{a}}+frac{b}{ax^2}+2sqrt{frac{b}{a}}right)right),dx\
                          &=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2-2sqrt{ab}right),dx\
                          &=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
                          end{align}
                          $$
                          The trick to solve the last integral is by setting
                          $$
                          I=int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx.
                          $$
                          Let $t=-frac{1}{x}sqrt{frac{b}{a}};rightarrow;x=-frac{1}{t}sqrt{frac{b}{a}};rightarrow;dx=frac{1}{t^2}sqrt{frac{b}{a}},dt$, then
                          $$
                          I_t=sqrt{frac{b}{a}}int_{t=0}^infty frac{expleft(-aleft(-frac{1}{t}sqrt{frac{b}{a}}+tright)^2right)}{t^2},dt.
                          $$
                          Let $t=x;rightarrow;dt=dx$, then
                          $$
                          I_t=int_{t=0}^infty expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
                          $$
                          Adding the two $I_t$s yields
                          $$
                          2I=I_t+I_t=int_{t=0}^inftyleft(1+frac{1}{t^2}sqrt{frac{b}{a}}right)expleft(-aleft(t-frac{1}{t}sqrt{frac{b}{a}}right)^2right),dt.
                          $$
                          Let $s=t-frac{1}{t}sqrt{frac{b}{a}};rightarrow;ds=left(1+frac{1}{t^2}sqrt{frac{b}{a}}right)dt$ and for $0<t<infty$ is corresponding to $-infty<s<infty$, then
                          $$
                          I=frac{1}{2}int_{s=-infty}^infty e^{-as^2},ds=frac{1}{2}sqrt{frac{pi}{a}}.
                          $$
                          Thus
                          $$
                          begin{align}
                          int_{x=0}^infty expleft(-aleft(x^2+frac{b}{ax^2}right)right),dx&=e^{large-2sqrt{ab}}int_{x=0}^infty expleft(-aleft(x-frac{1}{x}sqrt{frac{b}{a}}right)^2right),dx\
                          &=frac{1}{2}sqrt{frac{pi}{a}}e^{large-2sqrt{ab}}.
                          end{align}
                          $$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered May 11 '14 at 13:07









                          Tunk-FeyTunk-Fey

                          23.1k970100




                          23.1k970100























                              5












                              $begingroup$

                              The integral is $$frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2(x-b/ax)^2}dx=frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2x^2}dx=frac{sqrt{pi}}{2a}e^{-2ab}.$$ (See M.L. Glasser, A Remarkable Property of Definite Integrals,
                              Math.Comp.Vol 40, p.561 (1983).






                              share|cite|improve this answer











                              $endgroup$


















                                5












                                $begingroup$

                                The integral is $$frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2(x-b/ax)^2}dx=frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2x^2}dx=frac{sqrt{pi}}{2a}e^{-2ab}.$$ (See M.L. Glasser, A Remarkable Property of Definite Integrals,
                                Math.Comp.Vol 40, p.561 (1983).






                                share|cite|improve this answer











                                $endgroup$
















                                  5












                                  5








                                  5





                                  $begingroup$

                                  The integral is $$frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2(x-b/ax)^2}dx=frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2x^2}dx=frac{sqrt{pi}}{2a}e^{-2ab}.$$ (See M.L. Glasser, A Remarkable Property of Definite Integrals,
                                  Math.Comp.Vol 40, p.561 (1983).






                                  share|cite|improve this answer











                                  $endgroup$



                                  The integral is $$frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2(x-b/ax)^2}dx=frac{1}{2}e^{-2ab}int_{-infty}^{infty}e^{-a^2x^2}dx=frac{sqrt{pi}}{2a}e^{-2ab}.$$ (See M.L. Glasser, A Remarkable Property of Definite Integrals,
                                  Math.Comp.Vol 40, p.561 (1983).







                                  share|cite|improve this answer














                                  share|cite|improve this answer



                                  share|cite|improve this answer








                                  edited Sep 18 '13 at 1:56









                                  achille hui

                                  95.9k5132258




                                  95.9k5132258










                                  answered Sep 18 '13 at 1:47









                                  larrylarry

                                  52225




                                  52225























                                      2












                                      $begingroup$

                                      $newcommand{+}{^{dagger}}
                                      newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
                                      newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
                                      newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
                                      newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
                                      newcommand{dd}{{rm d}}
                                      newcommand{down}{downarrow}
                                      newcommand{ds}[1]{displaystyle{#1}}
                                      newcommand{expo}[1]{,{rm e}^{#1},}
                                      newcommand{fermi}{,{rm f}}
                                      newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
                                      newcommand{half}{{1 over 2}}
                                      newcommand{ic}{{rm i}}
                                      newcommand{iff}{Longleftrightarrow}
                                      newcommand{imp}{Longrightarrow}
                                      newcommand{isdiv}{,left.rightvert,}
                                      newcommand{ket}[1]{leftvert #1rightrangle}
                                      newcommand{ol}[1]{overline{#1}}
                                      newcommand{pars}[1]{left(, #1 ,right)}
                                      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                      newcommand{pp}{{cal P}}
                                      newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
                                      newcommand{sech}{,{rm sech}}
                                      newcommand{sgn}{,{rm sgn}}
                                      newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
                                      newcommand{ul}[1]{underline{#1}}
                                      newcommand{verts}[1]{leftvert, #1 ,rightvert}
                                      newcommand{wt}[1]{widetilde{#1}}$

                                      $ds{Iequivint_{0}^{infty}exppars{-ax^{2} - {b over x^{2}}},dd x:
                                      {large ?}.qquad a, b > 0}$




                                      Lets $ds{x equiv Aexpo{theta}}$ such that
                                      $ds{-ax^{2} - {b over x^{2}} = -aA^{2}expo{2theta} - {b over A^{2}},
                                      expo{-2theta}}$
                                      .


                                      We choose
                                      $$
                                      A mbox{such that}quad
                                      aA^{2} = {b over A^{2}}quadimpquad A = pars{b over a}^{1/4}. mbox{Then,}
                                      -ax^{2} - {b over x^{2}} = -2root{ab}coshpars{2theta}
                                      $$




                                      begin{align}
                                      I&=int_{-infty}^{infty}!!expo{-2root{ab}coshpars{2theta}}pars{b over a}^{1/4}
                                      expo{theta},ddtheta
                                      =2pars{b over a}^{1/4}int_{0}^{infty}expo{-2root{ab}coshpars{2theta}}
                                      coshpars{theta},ddtheta
                                      \[5mm]&=2pars{b over a}^{1/4}
                                      overbrace{int_{0}^{infty}expo{-2root{ab}bracks{2sinh^{2}pars{theta} + 1}}
                                      coshpars{theta},ddtheta}^{ds{mbox{Set}quad t equiv sinhpars{theta}}}
                                      \[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
                                      int_{0}^{infty}expo{-4root{ab}t^{2}},dd t
                                      \[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
                                      bracks{{1 over 2pars{ab}^{1/4}}}
                                      overbrace{int_{0}^{infty}expo{-t^{2}},dd t}^{ds{= {root{pi} over 2}}}
                                      = color{#00f}{large half,root{pi over a}expo{-2root{ab}}}
                                      end{align}






                                      share|cite|improve this answer











                                      $endgroup$


















                                        2












                                        $begingroup$

                                        $newcommand{+}{^{dagger}}
                                        newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
                                        newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
                                        newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
                                        newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
                                        newcommand{dd}{{rm d}}
                                        newcommand{down}{downarrow}
                                        newcommand{ds}[1]{displaystyle{#1}}
                                        newcommand{expo}[1]{,{rm e}^{#1},}
                                        newcommand{fermi}{,{rm f}}
                                        newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
                                        newcommand{half}{{1 over 2}}
                                        newcommand{ic}{{rm i}}
                                        newcommand{iff}{Longleftrightarrow}
                                        newcommand{imp}{Longrightarrow}
                                        newcommand{isdiv}{,left.rightvert,}
                                        newcommand{ket}[1]{leftvert #1rightrangle}
                                        newcommand{ol}[1]{overline{#1}}
                                        newcommand{pars}[1]{left(, #1 ,right)}
                                        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                        newcommand{pp}{{cal P}}
                                        newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
                                        newcommand{sech}{,{rm sech}}
                                        newcommand{sgn}{,{rm sgn}}
                                        newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
                                        newcommand{ul}[1]{underline{#1}}
                                        newcommand{verts}[1]{leftvert, #1 ,rightvert}
                                        newcommand{wt}[1]{widetilde{#1}}$

                                        $ds{Iequivint_{0}^{infty}exppars{-ax^{2} - {b over x^{2}}},dd x:
                                        {large ?}.qquad a, b > 0}$




                                        Lets $ds{x equiv Aexpo{theta}}$ such that
                                        $ds{-ax^{2} - {b over x^{2}} = -aA^{2}expo{2theta} - {b over A^{2}},
                                        expo{-2theta}}$
                                        .


                                        We choose
                                        $$
                                        A mbox{such that}quad
                                        aA^{2} = {b over A^{2}}quadimpquad A = pars{b over a}^{1/4}. mbox{Then,}
                                        -ax^{2} - {b over x^{2}} = -2root{ab}coshpars{2theta}
                                        $$




                                        begin{align}
                                        I&=int_{-infty}^{infty}!!expo{-2root{ab}coshpars{2theta}}pars{b over a}^{1/4}
                                        expo{theta},ddtheta
                                        =2pars{b over a}^{1/4}int_{0}^{infty}expo{-2root{ab}coshpars{2theta}}
                                        coshpars{theta},ddtheta
                                        \[5mm]&=2pars{b over a}^{1/4}
                                        overbrace{int_{0}^{infty}expo{-2root{ab}bracks{2sinh^{2}pars{theta} + 1}}
                                        coshpars{theta},ddtheta}^{ds{mbox{Set}quad t equiv sinhpars{theta}}}
                                        \[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
                                        int_{0}^{infty}expo{-4root{ab}t^{2}},dd t
                                        \[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
                                        bracks{{1 over 2pars{ab}^{1/4}}}
                                        overbrace{int_{0}^{infty}expo{-t^{2}},dd t}^{ds{= {root{pi} over 2}}}
                                        = color{#00f}{large half,root{pi over a}expo{-2root{ab}}}
                                        end{align}






                                        share|cite|improve this answer











                                        $endgroup$
















                                          2












                                          2








                                          2





                                          $begingroup$

                                          $newcommand{+}{^{dagger}}
                                          newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
                                          newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
                                          newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
                                          newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
                                          newcommand{dd}{{rm d}}
                                          newcommand{down}{downarrow}
                                          newcommand{ds}[1]{displaystyle{#1}}
                                          newcommand{expo}[1]{,{rm e}^{#1},}
                                          newcommand{fermi}{,{rm f}}
                                          newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
                                          newcommand{half}{{1 over 2}}
                                          newcommand{ic}{{rm i}}
                                          newcommand{iff}{Longleftrightarrow}
                                          newcommand{imp}{Longrightarrow}
                                          newcommand{isdiv}{,left.rightvert,}
                                          newcommand{ket}[1]{leftvert #1rightrangle}
                                          newcommand{ol}[1]{overline{#1}}
                                          newcommand{pars}[1]{left(, #1 ,right)}
                                          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                          newcommand{pp}{{cal P}}
                                          newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
                                          newcommand{sech}{,{rm sech}}
                                          newcommand{sgn}{,{rm sgn}}
                                          newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
                                          newcommand{ul}[1]{underline{#1}}
                                          newcommand{verts}[1]{leftvert, #1 ,rightvert}
                                          newcommand{wt}[1]{widetilde{#1}}$

                                          $ds{Iequivint_{0}^{infty}exppars{-ax^{2} - {b over x^{2}}},dd x:
                                          {large ?}.qquad a, b > 0}$




                                          Lets $ds{x equiv Aexpo{theta}}$ such that
                                          $ds{-ax^{2} - {b over x^{2}} = -aA^{2}expo{2theta} - {b over A^{2}},
                                          expo{-2theta}}$
                                          .


                                          We choose
                                          $$
                                          A mbox{such that}quad
                                          aA^{2} = {b over A^{2}}quadimpquad A = pars{b over a}^{1/4}. mbox{Then,}
                                          -ax^{2} - {b over x^{2}} = -2root{ab}coshpars{2theta}
                                          $$




                                          begin{align}
                                          I&=int_{-infty}^{infty}!!expo{-2root{ab}coshpars{2theta}}pars{b over a}^{1/4}
                                          expo{theta},ddtheta
                                          =2pars{b over a}^{1/4}int_{0}^{infty}expo{-2root{ab}coshpars{2theta}}
                                          coshpars{theta},ddtheta
                                          \[5mm]&=2pars{b over a}^{1/4}
                                          overbrace{int_{0}^{infty}expo{-2root{ab}bracks{2sinh^{2}pars{theta} + 1}}
                                          coshpars{theta},ddtheta}^{ds{mbox{Set}quad t equiv sinhpars{theta}}}
                                          \[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
                                          int_{0}^{infty}expo{-4root{ab}t^{2}},dd t
                                          \[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
                                          bracks{{1 over 2pars{ab}^{1/4}}}
                                          overbrace{int_{0}^{infty}expo{-t^{2}},dd t}^{ds{= {root{pi} over 2}}}
                                          = color{#00f}{large half,root{pi over a}expo{-2root{ab}}}
                                          end{align}






                                          share|cite|improve this answer











                                          $endgroup$



                                          $newcommand{+}{^{dagger}}
                                          newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
                                          newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
                                          newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
                                          newcommand{ceil}[1]{,leftlceil, #1 ,rightrceil,}
                                          newcommand{dd}{{rm d}}
                                          newcommand{down}{downarrow}
                                          newcommand{ds}[1]{displaystyle{#1}}
                                          newcommand{expo}[1]{,{rm e}^{#1},}
                                          newcommand{fermi}{,{rm f}}
                                          newcommand{floor}[1]{,leftlfloor #1 rightrfloor,}
                                          newcommand{half}{{1 over 2}}
                                          newcommand{ic}{{rm i}}
                                          newcommand{iff}{Longleftrightarrow}
                                          newcommand{imp}{Longrightarrow}
                                          newcommand{isdiv}{,left.rightvert,}
                                          newcommand{ket}[1]{leftvert #1rightrangle}
                                          newcommand{ol}[1]{overline{#1}}
                                          newcommand{pars}[1]{left(, #1 ,right)}
                                          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                                          newcommand{pp}{{cal P}}
                                          newcommand{root}[2]{,sqrt[#1]{vphantom{large A},#2,},}
                                          newcommand{sech}{,{rm sech}}
                                          newcommand{sgn}{,{rm sgn}}
                                          newcommand{totald}[3]{frac{{rm d}^{#1} #2}{{rm d} #3^{#1}}}
                                          newcommand{ul}[1]{underline{#1}}
                                          newcommand{verts}[1]{leftvert, #1 ,rightvert}
                                          newcommand{wt}[1]{widetilde{#1}}$

                                          $ds{Iequivint_{0}^{infty}exppars{-ax^{2} - {b over x^{2}}},dd x:
                                          {large ?}.qquad a, b > 0}$




                                          Lets $ds{x equiv Aexpo{theta}}$ such that
                                          $ds{-ax^{2} - {b over x^{2}} = -aA^{2}expo{2theta} - {b over A^{2}},
                                          expo{-2theta}}$
                                          .


                                          We choose
                                          $$
                                          A mbox{such that}quad
                                          aA^{2} = {b over A^{2}}quadimpquad A = pars{b over a}^{1/4}. mbox{Then,}
                                          -ax^{2} - {b over x^{2}} = -2root{ab}coshpars{2theta}
                                          $$




                                          begin{align}
                                          I&=int_{-infty}^{infty}!!expo{-2root{ab}coshpars{2theta}}pars{b over a}^{1/4}
                                          expo{theta},ddtheta
                                          =2pars{b over a}^{1/4}int_{0}^{infty}expo{-2root{ab}coshpars{2theta}}
                                          coshpars{theta},ddtheta
                                          \[5mm]&=2pars{b over a}^{1/4}
                                          overbrace{int_{0}^{infty}expo{-2root{ab}bracks{2sinh^{2}pars{theta} + 1}}
                                          coshpars{theta},ddtheta}^{ds{mbox{Set}quad t equiv sinhpars{theta}}}
                                          \[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
                                          int_{0}^{infty}expo{-4root{ab}t^{2}},dd t
                                          \[5mm]&=2pars{b over a}^{1/4}expo{-2root{ab}}
                                          bracks{{1 over 2pars{ab}^{1/4}}}
                                          overbrace{int_{0}^{infty}expo{-t^{2}},dd t}^{ds{= {root{pi} over 2}}}
                                          = color{#00f}{large half,root{pi over a}expo{-2root{ab}}}
                                          end{align}







                                          share|cite|improve this answer














                                          share|cite|improve this answer



                                          share|cite|improve this answer








                                          edited Dec 23 '18 at 16:16

























                                          answered May 17 '14 at 8:14









                                          Felix MarinFelix Marin

                                          67.8k7107142




                                          67.8k7107142























                                              0












                                              $begingroup$

                                              A proof by Fourier transform



                                              This won't be the shortest nor the most elementary proof here, but it has a nice background which I'll explain later. The main drawback is that it assumes that we know the Fourier transform of the Gaussian, which is about as hard to compute rigorously than the initial integral.



                                              Fix $a > 0$. Then, for any $xi in mathbb{R}$,



                                              $$begin{align}
                                              int_{mathbb{R}} e^{i xi b} I(a,b^2) db
                                              & = int_{mathbb{R}} e^{i xi b} int_0^{+ infty} e^{-ax^2-frac{b^2}{x^2}} dx db\
                                              & = int_0^{+ infty} e^{-ax^2} int_{mathbb{R}} e^{i xi b} e^{-frac{b^2}{x^2}} db dx hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
                                              & = sqrt{pi} int_0^{+ infty} x e^{-left( a+ frac{xi^2}{4}right) x^2} dx hspace{2em} color{#00f}{text{Fourier transform of the Gaussian}} \
                                              & = frac{sqrt{pi}}{2} int_0^{+ infty} e^{-left( a+ frac{xi^2}{4}right) u} du hspace{2em} color{#00f}{text{Change of variables }u=x^2} \
                                              & = frac{sqrt{pi}}{2 left( a+ frac{xi^2}{4}right)} hspace{2em} color{#00f}{text{Evaluation of the integral}} \
                                              & = frac{sqrt{pi}}{2sqrt{a}} left( frac{1}{2sqrt{a}+ixi} + frac{1}{2sqrt{a}-ixi} right) hspace{2em} color{#00f}{text{Partial fraction decomposition}} \
                                              & = frac{sqrt{pi}}{2sqrt{a}} left( int_0^{+ infty} e^{-(i xi + 2 sqrt{a})b} db + int_0^{+ infty} e^{-(-i xi + 2 sqrt{a})b} db right) \
                                              & = frac{sqrt{pi}}{2sqrt{a}} int_{mathbb{R}} e^{i xi b} e^{-2 sqrt{a}|b|} db.
                                              end{align}$$



                                              Hence, $I(a, b^2)$ and $frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{a}|b|}$ have the same Fourier transform. Then you can check that both are continuous and decay exponentially fast at infinity, so they are pointwise the inverse Fourier transform of their Fourier transform, and thus coincide for all $b$. Finally, we get:



                                              $$I(a, b) = frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{ab}}.$$



                                              Motivation: a probabilistic proof



                                              I stumbled upon this integral during my research (or rather, a family of such integrals). Let $X$ and $Y$ be two independent random variables, with $Y$ being exponential $mathcal{E} (lambda)$ and $Z$ being standard normal $mathcal{N} (0, 1)$. Let $X := Z sqrt{Y}$.



                                              A first computation yields the density of the distribution of $X$. Let $f$ be continuous and bounded on $mathbb{R}$. Then:



                                              $$begin{align}
                                              mathbb{E} (f(X))
                                              & = frac{lambda}{sigma sqrt{2 pi}} int_0^{+ infty} int_mathbb{R} f(z sqrt{y}) e^{-frac{z^2}{2}} e^{- lambda y} dz dy \
                                              & = frac{lambda}{sqrt{2 pi}} int_0^{+ infty} e^{- lambda y} int_mathbb{R} frac{1}{sqrt{y}} f(b) e^{-frac{b^2}{2 y}} db dy hspace{2em} color{#00f}{text{Change of variables }b=zsqrt{y}} \
                                              & = frac{lambda}{sqrt{2 pi}} int_mathbb{R} f(b) int_0^{+ infty} frac{e^{- lambda y}}{sqrt{y}} e^{-frac{b^2}{2 y}} dy db hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
                                              & = frac{lambda sqrt{2}}{sqrt{pi}} int_mathbb{R} f(b) int_0^{+ infty} e^{- lambda x^2} e^{-frac{b^2}{2 x^2}} dx db hspace{2em} color{#00f}{text{Change of variables }x=sqrt{y}} \
                                              end{align}$$



                                              The density of $X$ is thus given by the function:



                                              $$b mapsto frac{lambda sqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx.$$



                                              And then, if we compute this integral, we can get a simpler expression for the density. However, it turns out that there is an easier way to compute the distribution of $X$, with the Fourier transform. Indeed, for all real $xi$,



                                              $$begin{align}
                                              mathbb{E} left( e^{i xi X} right)
                                              & = mathbb{E} left( e^{i xi Z sqrt{Y}} right) \
                                              & = mathbb{E} left( mathbb{E} left( e^{i (xi sqrt{Y}) Z} |Y right) right) \
                                              & = mathbb{E} left( e^{- frac{xi^2 Y}{2}} right) \
                                              & = frac{1}{1+frac{xi^2}{2lambda}}, \
                                              end{align}$$



                                              which is the Fourier transform of a Laplace distribution of parameter $1/ sqrt{2 lambda}$. With the argument of continuity given in the first paragraph, we get:



                                              $$frac{lambdasqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{lambda}}{sqrt{2}} e^{-sqrt{2lambda}|b|},$$



                                              so that:



                                              $$int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{pi}}{2 sqrt{lambda}} e^{-sqrt{2lambda}|b|}.$$



                                              The proof in the first paragraph is the streamlined version of this reasoning. All in all, an interpretation of this integral is that the product of a centered Gaussian and of the square root of an independent exponential random variable is a Laplace random variable.






                                              share|cite|improve this answer









                                              $endgroup$


















                                                0












                                                $begingroup$

                                                A proof by Fourier transform



                                                This won't be the shortest nor the most elementary proof here, but it has a nice background which I'll explain later. The main drawback is that it assumes that we know the Fourier transform of the Gaussian, which is about as hard to compute rigorously than the initial integral.



                                                Fix $a > 0$. Then, for any $xi in mathbb{R}$,



                                                $$begin{align}
                                                int_{mathbb{R}} e^{i xi b} I(a,b^2) db
                                                & = int_{mathbb{R}} e^{i xi b} int_0^{+ infty} e^{-ax^2-frac{b^2}{x^2}} dx db\
                                                & = int_0^{+ infty} e^{-ax^2} int_{mathbb{R}} e^{i xi b} e^{-frac{b^2}{x^2}} db dx hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
                                                & = sqrt{pi} int_0^{+ infty} x e^{-left( a+ frac{xi^2}{4}right) x^2} dx hspace{2em} color{#00f}{text{Fourier transform of the Gaussian}} \
                                                & = frac{sqrt{pi}}{2} int_0^{+ infty} e^{-left( a+ frac{xi^2}{4}right) u} du hspace{2em} color{#00f}{text{Change of variables }u=x^2} \
                                                & = frac{sqrt{pi}}{2 left( a+ frac{xi^2}{4}right)} hspace{2em} color{#00f}{text{Evaluation of the integral}} \
                                                & = frac{sqrt{pi}}{2sqrt{a}} left( frac{1}{2sqrt{a}+ixi} + frac{1}{2sqrt{a}-ixi} right) hspace{2em} color{#00f}{text{Partial fraction decomposition}} \
                                                & = frac{sqrt{pi}}{2sqrt{a}} left( int_0^{+ infty} e^{-(i xi + 2 sqrt{a})b} db + int_0^{+ infty} e^{-(-i xi + 2 sqrt{a})b} db right) \
                                                & = frac{sqrt{pi}}{2sqrt{a}} int_{mathbb{R}} e^{i xi b} e^{-2 sqrt{a}|b|} db.
                                                end{align}$$



                                                Hence, $I(a, b^2)$ and $frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{a}|b|}$ have the same Fourier transform. Then you can check that both are continuous and decay exponentially fast at infinity, so they are pointwise the inverse Fourier transform of their Fourier transform, and thus coincide for all $b$. Finally, we get:



                                                $$I(a, b) = frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{ab}}.$$



                                                Motivation: a probabilistic proof



                                                I stumbled upon this integral during my research (or rather, a family of such integrals). Let $X$ and $Y$ be two independent random variables, with $Y$ being exponential $mathcal{E} (lambda)$ and $Z$ being standard normal $mathcal{N} (0, 1)$. Let $X := Z sqrt{Y}$.



                                                A first computation yields the density of the distribution of $X$. Let $f$ be continuous and bounded on $mathbb{R}$. Then:



                                                $$begin{align}
                                                mathbb{E} (f(X))
                                                & = frac{lambda}{sigma sqrt{2 pi}} int_0^{+ infty} int_mathbb{R} f(z sqrt{y}) e^{-frac{z^2}{2}} e^{- lambda y} dz dy \
                                                & = frac{lambda}{sqrt{2 pi}} int_0^{+ infty} e^{- lambda y} int_mathbb{R} frac{1}{sqrt{y}} f(b) e^{-frac{b^2}{2 y}} db dy hspace{2em} color{#00f}{text{Change of variables }b=zsqrt{y}} \
                                                & = frac{lambda}{sqrt{2 pi}} int_mathbb{R} f(b) int_0^{+ infty} frac{e^{- lambda y}}{sqrt{y}} e^{-frac{b^2}{2 y}} dy db hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
                                                & = frac{lambda sqrt{2}}{sqrt{pi}} int_mathbb{R} f(b) int_0^{+ infty} e^{- lambda x^2} e^{-frac{b^2}{2 x^2}} dx db hspace{2em} color{#00f}{text{Change of variables }x=sqrt{y}} \
                                                end{align}$$



                                                The density of $X$ is thus given by the function:



                                                $$b mapsto frac{lambda sqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx.$$



                                                And then, if we compute this integral, we can get a simpler expression for the density. However, it turns out that there is an easier way to compute the distribution of $X$, with the Fourier transform. Indeed, for all real $xi$,



                                                $$begin{align}
                                                mathbb{E} left( e^{i xi X} right)
                                                & = mathbb{E} left( e^{i xi Z sqrt{Y}} right) \
                                                & = mathbb{E} left( mathbb{E} left( e^{i (xi sqrt{Y}) Z} |Y right) right) \
                                                & = mathbb{E} left( e^{- frac{xi^2 Y}{2}} right) \
                                                & = frac{1}{1+frac{xi^2}{2lambda}}, \
                                                end{align}$$



                                                which is the Fourier transform of a Laplace distribution of parameter $1/ sqrt{2 lambda}$. With the argument of continuity given in the first paragraph, we get:



                                                $$frac{lambdasqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{lambda}}{sqrt{2}} e^{-sqrt{2lambda}|b|},$$



                                                so that:



                                                $$int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{pi}}{2 sqrt{lambda}} e^{-sqrt{2lambda}|b|}.$$



                                                The proof in the first paragraph is the streamlined version of this reasoning. All in all, an interpretation of this integral is that the product of a centered Gaussian and of the square root of an independent exponential random variable is a Laplace random variable.






                                                share|cite|improve this answer









                                                $endgroup$
















                                                  0












                                                  0








                                                  0





                                                  $begingroup$

                                                  A proof by Fourier transform



                                                  This won't be the shortest nor the most elementary proof here, but it has a nice background which I'll explain later. The main drawback is that it assumes that we know the Fourier transform of the Gaussian, which is about as hard to compute rigorously than the initial integral.



                                                  Fix $a > 0$. Then, for any $xi in mathbb{R}$,



                                                  $$begin{align}
                                                  int_{mathbb{R}} e^{i xi b} I(a,b^2) db
                                                  & = int_{mathbb{R}} e^{i xi b} int_0^{+ infty} e^{-ax^2-frac{b^2}{x^2}} dx db\
                                                  & = int_0^{+ infty} e^{-ax^2} int_{mathbb{R}} e^{i xi b} e^{-frac{b^2}{x^2}} db dx hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
                                                  & = sqrt{pi} int_0^{+ infty} x e^{-left( a+ frac{xi^2}{4}right) x^2} dx hspace{2em} color{#00f}{text{Fourier transform of the Gaussian}} \
                                                  & = frac{sqrt{pi}}{2} int_0^{+ infty} e^{-left( a+ frac{xi^2}{4}right) u} du hspace{2em} color{#00f}{text{Change of variables }u=x^2} \
                                                  & = frac{sqrt{pi}}{2 left( a+ frac{xi^2}{4}right)} hspace{2em} color{#00f}{text{Evaluation of the integral}} \
                                                  & = frac{sqrt{pi}}{2sqrt{a}} left( frac{1}{2sqrt{a}+ixi} + frac{1}{2sqrt{a}-ixi} right) hspace{2em} color{#00f}{text{Partial fraction decomposition}} \
                                                  & = frac{sqrt{pi}}{2sqrt{a}} left( int_0^{+ infty} e^{-(i xi + 2 sqrt{a})b} db + int_0^{+ infty} e^{-(-i xi + 2 sqrt{a})b} db right) \
                                                  & = frac{sqrt{pi}}{2sqrt{a}} int_{mathbb{R}} e^{i xi b} e^{-2 sqrt{a}|b|} db.
                                                  end{align}$$



                                                  Hence, $I(a, b^2)$ and $frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{a}|b|}$ have the same Fourier transform. Then you can check that both are continuous and decay exponentially fast at infinity, so they are pointwise the inverse Fourier transform of their Fourier transform, and thus coincide for all $b$. Finally, we get:



                                                  $$I(a, b) = frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{ab}}.$$



                                                  Motivation: a probabilistic proof



                                                  I stumbled upon this integral during my research (or rather, a family of such integrals). Let $X$ and $Y$ be two independent random variables, with $Y$ being exponential $mathcal{E} (lambda)$ and $Z$ being standard normal $mathcal{N} (0, 1)$. Let $X := Z sqrt{Y}$.



                                                  A first computation yields the density of the distribution of $X$. Let $f$ be continuous and bounded on $mathbb{R}$. Then:



                                                  $$begin{align}
                                                  mathbb{E} (f(X))
                                                  & = frac{lambda}{sigma sqrt{2 pi}} int_0^{+ infty} int_mathbb{R} f(z sqrt{y}) e^{-frac{z^2}{2}} e^{- lambda y} dz dy \
                                                  & = frac{lambda}{sqrt{2 pi}} int_0^{+ infty} e^{- lambda y} int_mathbb{R} frac{1}{sqrt{y}} f(b) e^{-frac{b^2}{2 y}} db dy hspace{2em} color{#00f}{text{Change of variables }b=zsqrt{y}} \
                                                  & = frac{lambda}{sqrt{2 pi}} int_mathbb{R} f(b) int_0^{+ infty} frac{e^{- lambda y}}{sqrt{y}} e^{-frac{b^2}{2 y}} dy db hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
                                                  & = frac{lambda sqrt{2}}{sqrt{pi}} int_mathbb{R} f(b) int_0^{+ infty} e^{- lambda x^2} e^{-frac{b^2}{2 x^2}} dx db hspace{2em} color{#00f}{text{Change of variables }x=sqrt{y}} \
                                                  end{align}$$



                                                  The density of $X$ is thus given by the function:



                                                  $$b mapsto frac{lambda sqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx.$$



                                                  And then, if we compute this integral, we can get a simpler expression for the density. However, it turns out that there is an easier way to compute the distribution of $X$, with the Fourier transform. Indeed, for all real $xi$,



                                                  $$begin{align}
                                                  mathbb{E} left( e^{i xi X} right)
                                                  & = mathbb{E} left( e^{i xi Z sqrt{Y}} right) \
                                                  & = mathbb{E} left( mathbb{E} left( e^{i (xi sqrt{Y}) Z} |Y right) right) \
                                                  & = mathbb{E} left( e^{- frac{xi^2 Y}{2}} right) \
                                                  & = frac{1}{1+frac{xi^2}{2lambda}}, \
                                                  end{align}$$



                                                  which is the Fourier transform of a Laplace distribution of parameter $1/ sqrt{2 lambda}$. With the argument of continuity given in the first paragraph, we get:



                                                  $$frac{lambdasqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{lambda}}{sqrt{2}} e^{-sqrt{2lambda}|b|},$$



                                                  so that:



                                                  $$int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{pi}}{2 sqrt{lambda}} e^{-sqrt{2lambda}|b|}.$$



                                                  The proof in the first paragraph is the streamlined version of this reasoning. All in all, an interpretation of this integral is that the product of a centered Gaussian and of the square root of an independent exponential random variable is a Laplace random variable.






                                                  share|cite|improve this answer









                                                  $endgroup$



                                                  A proof by Fourier transform



                                                  This won't be the shortest nor the most elementary proof here, but it has a nice background which I'll explain later. The main drawback is that it assumes that we know the Fourier transform of the Gaussian, which is about as hard to compute rigorously than the initial integral.



                                                  Fix $a > 0$. Then, for any $xi in mathbb{R}$,



                                                  $$begin{align}
                                                  int_{mathbb{R}} e^{i xi b} I(a,b^2) db
                                                  & = int_{mathbb{R}} e^{i xi b} int_0^{+ infty} e^{-ax^2-frac{b^2}{x^2}} dx db\
                                                  & = int_0^{+ infty} e^{-ax^2} int_{mathbb{R}} e^{i xi b} e^{-frac{b^2}{x^2}} db dx hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
                                                  & = sqrt{pi} int_0^{+ infty} x e^{-left( a+ frac{xi^2}{4}right) x^2} dx hspace{2em} color{#00f}{text{Fourier transform of the Gaussian}} \
                                                  & = frac{sqrt{pi}}{2} int_0^{+ infty} e^{-left( a+ frac{xi^2}{4}right) u} du hspace{2em} color{#00f}{text{Change of variables }u=x^2} \
                                                  & = frac{sqrt{pi}}{2 left( a+ frac{xi^2}{4}right)} hspace{2em} color{#00f}{text{Evaluation of the integral}} \
                                                  & = frac{sqrt{pi}}{2sqrt{a}} left( frac{1}{2sqrt{a}+ixi} + frac{1}{2sqrt{a}-ixi} right) hspace{2em} color{#00f}{text{Partial fraction decomposition}} \
                                                  & = frac{sqrt{pi}}{2sqrt{a}} left( int_0^{+ infty} e^{-(i xi + 2 sqrt{a})b} db + int_0^{+ infty} e^{-(-i xi + 2 sqrt{a})b} db right) \
                                                  & = frac{sqrt{pi}}{2sqrt{a}} int_{mathbb{R}} e^{i xi b} e^{-2 sqrt{a}|b|} db.
                                                  end{align}$$



                                                  Hence, $I(a, b^2)$ and $frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{a}|b|}$ have the same Fourier transform. Then you can check that both are continuous and decay exponentially fast at infinity, so they are pointwise the inverse Fourier transform of their Fourier transform, and thus coincide for all $b$. Finally, we get:



                                                  $$I(a, b) = frac{sqrt{pi}}{2sqrt{a}} e^{-2 sqrt{ab}}.$$



                                                  Motivation: a probabilistic proof



                                                  I stumbled upon this integral during my research (or rather, a family of such integrals). Let $X$ and $Y$ be two independent random variables, with $Y$ being exponential $mathcal{E} (lambda)$ and $Z$ being standard normal $mathcal{N} (0, 1)$. Let $X := Z sqrt{Y}$.



                                                  A first computation yields the density of the distribution of $X$. Let $f$ be continuous and bounded on $mathbb{R}$. Then:



                                                  $$begin{align}
                                                  mathbb{E} (f(X))
                                                  & = frac{lambda}{sigma sqrt{2 pi}} int_0^{+ infty} int_mathbb{R} f(z sqrt{y}) e^{-frac{z^2}{2}} e^{- lambda y} dz dy \
                                                  & = frac{lambda}{sqrt{2 pi}} int_0^{+ infty} e^{- lambda y} int_mathbb{R} frac{1}{sqrt{y}} f(b) e^{-frac{b^2}{2 y}} db dy hspace{2em} color{#00f}{text{Change of variables }b=zsqrt{y}} \
                                                  & = frac{lambda}{sqrt{2 pi}} int_mathbb{R} f(b) int_0^{+ infty} frac{e^{- lambda y}}{sqrt{y}} e^{-frac{b^2}{2 y}} dy db hspace{2em} color{#00f}{text{Fubini-Tonelli}} \
                                                  & = frac{lambda sqrt{2}}{sqrt{pi}} int_mathbb{R} f(b) int_0^{+ infty} e^{- lambda x^2} e^{-frac{b^2}{2 x^2}} dx db hspace{2em} color{#00f}{text{Change of variables }x=sqrt{y}} \
                                                  end{align}$$



                                                  The density of $X$ is thus given by the function:



                                                  $$b mapsto frac{lambda sqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx.$$



                                                  And then, if we compute this integral, we can get a simpler expression for the density. However, it turns out that there is an easier way to compute the distribution of $X$, with the Fourier transform. Indeed, for all real $xi$,



                                                  $$begin{align}
                                                  mathbb{E} left( e^{i xi X} right)
                                                  & = mathbb{E} left( e^{i xi Z sqrt{Y}} right) \
                                                  & = mathbb{E} left( mathbb{E} left( e^{i (xi sqrt{Y}) Z} |Y right) right) \
                                                  & = mathbb{E} left( e^{- frac{xi^2 Y}{2}} right) \
                                                  & = frac{1}{1+frac{xi^2}{2lambda}}, \
                                                  end{align}$$



                                                  which is the Fourier transform of a Laplace distribution of parameter $1/ sqrt{2 lambda}$. With the argument of continuity given in the first paragraph, we get:



                                                  $$frac{lambdasqrt{2}}{sqrt{pi}} int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{lambda}}{sqrt{2}} e^{-sqrt{2lambda}|b|},$$



                                                  so that:



                                                  $$int_0^{+ infty} e^{- lambda x^2-frac{b^2}{2 x^2}} dx = frac{sqrt{pi}}{2 sqrt{lambda}} e^{-sqrt{2lambda}|b|}.$$



                                                  The proof in the first paragraph is the streamlined version of this reasoning. All in all, an interpretation of this integral is that the product of a centered Gaussian and of the square root of an independent exponential random variable is a Laplace random variable.







                                                  share|cite|improve this answer












                                                  share|cite|improve this answer



                                                  share|cite|improve this answer










                                                  answered Mar 1 '16 at 21:36









                                                  D. ThomineD. Thomine

                                                  7,5691538




                                                  7,5691538























                                                      0












                                                      $begingroup$

                                                      Let’s do the general integral
                                                      $displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$



                                                      Differentiate with respect to a



                                                      $displaystyle frac{partial I}{partial a}=int_{0}^{infty}x^{-2}e^{-(ax^{-2}+bx^{2})}dx$



                                                      Now differentiate with respect to b
                                                      $displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}x^{-2}x^{2}e^{-(ax^{-2}+bx^{2})}dx$



                                                      $displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$



                                                      $displaystyle frac{partial^2 I}{partial a partial b}=I$



                                                      Thus our integral satisfies this PDE.This is a hyperbolic homogenous PDE. It is a second order PDE but it is first order with respect to each of the variables so we’ll need two boundary conditions to determine a unique solution.(In this case two asympotic BCs and one Drichlet boundary condition will be used).Keep this in mind we’ll need it later.



                                                      Let’s complete the square of expression in the exponential.



                                                      $displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2}-2sqrt{ab}+2sqrt{ab})}dx$



                                                      $displaystyle I(a,b)=int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}-2sqrt{ab}}dx$



                                                      $displaystyle I(a,b)=e^{-2sqrt{ab}}int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}}dx$



                                                      Now let’s explore more of it’s properties.One thing to note is that this integral diverges(blows up) at b=0 but at a=0 it has a well known value. It is the Gaussian integral so



                                                      $displaystyle I(0,b)=int_{0}^{infty}e^{-(bx^{2})}dx=frac{1}{2}sqrt{frac{pi}{b}}$



                                                      The negative exponential was extracted from the integral rather than the positive one beacause



                                                      $displaystyle lim_{atoinfty}int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx=0$



                                                      and



                                                      $displaystyle lim_{atoinfty}e^{-2sqrt{ab}}=0$



                                                      So let’s assume that we assume that the solution to our PDE is of the form



                                                      $displaystyle I(a,b)=e^{-2sqrt{ab}}K(b)$



                                                      where K is a function of b(and diverges at b=0)



                                                      Let’s put this in the PDE



                                                      $displaystyle frac{partial I}{partial a}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K(b)$



                                                      $displaystyle frac{partial^2 I}{partial a partial b}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K^{'}(b)-frac{1}{2sqrt{ab}}e^{-2sqrt{ab}}K(b)+sqrt{frac{b}{a}}sqrt{frac{a}{b}}e^{-2sqrt{ab}}K(b)$



                                                      $displaystyle frac{partial^2 I}{partial a partial b}=e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))$



                                                      As
                                                      $displaystyle frac{partial^2 I}{partial a partial b}=I$



                                                      So



                                                      $displaystyle e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))=e^{-2sqrt{ab}}K(b)$



                                                      $displaystyle -sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b)=K(b)$



                                                      $displaystyle -sqrt{frac{b}{a}}K^{'}(a)=frac{K(b)}{2sqrt{ab}}$



                                                      $displaystyle K^{'}(b)=-frac{K(b)}{2b}$



                                                      This is a separable ODE.Let’s solve it



                                                      $displaystyle frac{1}{K}dK=-frac{1}{2}frac{1}{b}db$



                                                      Let’s integrate



                                                      $displaystyle int frac{1}{K}dK=-frac{1}{2}int frac{1}{b}db$



                                                      $displaystyle ln(K)=-frac{1}{2}ln(b)+C$



                                                      $displaystyle ln(K)=ln(b^{-frac{1}{2}})+C$



                                                      $displaystyle K=e^{C}b^{-frac{1}{2}}$



                                                      Let
                                                      $displaystyle v=e^{C}$



                                                      So



                                                      $displaystyle K(b)=vb^{-frac{1}{2}}$



                                                      Thus the solution is
                                                      $displaystyle I(a,b)=ve^{-2sqrt{ab}}b^{-frac{1}{2}}$



                                                      This expression diverges at b=0 which is exactly what we wanted. Now let’s determine the constant v. As



                                                      $displaystyle I(0,b)=frac{1}{2}sqrt{frac{pi}{b}}$



                                                      So
                                                      $displaystyle frac{1}{2}sqrt{frac{pi}{b}}=vb^{-frac{1}{2}}e^{0}$
                                                      $v=frac{sqrt{pi}}{2}$



                                                      Thus the integral is



                                                      $displaystyle boxed{I(a,b)=frac{1}{2}sqrt{frac{pi}{b}}e^{-2sqrt{ab}}} (0leqslant a,b)$



                                                      The given integral is I(b,a) so



                                                      $displaystyle boxed{I(b,a)=frac{1}{2}sqrt{frac{pi}{a}}e^{-2sqrt{ab}}} (0leqslant a,b)$






                                                      share|cite|improve this answer











                                                      $endgroup$


















                                                        0












                                                        $begingroup$

                                                        Let’s do the general integral
                                                        $displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$



                                                        Differentiate with respect to a



                                                        $displaystyle frac{partial I}{partial a}=int_{0}^{infty}x^{-2}e^{-(ax^{-2}+bx^{2})}dx$



                                                        Now differentiate with respect to b
                                                        $displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}x^{-2}x^{2}e^{-(ax^{-2}+bx^{2})}dx$



                                                        $displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$



                                                        $displaystyle frac{partial^2 I}{partial a partial b}=I$



                                                        Thus our integral satisfies this PDE.This is a hyperbolic homogenous PDE. It is a second order PDE but it is first order with respect to each of the variables so we’ll need two boundary conditions to determine a unique solution.(In this case two asympotic BCs and one Drichlet boundary condition will be used).Keep this in mind we’ll need it later.



                                                        Let’s complete the square of expression in the exponential.



                                                        $displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2}-2sqrt{ab}+2sqrt{ab})}dx$



                                                        $displaystyle I(a,b)=int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}-2sqrt{ab}}dx$



                                                        $displaystyle I(a,b)=e^{-2sqrt{ab}}int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}}dx$



                                                        Now let’s explore more of it’s properties.One thing to note is that this integral diverges(blows up) at b=0 but at a=0 it has a well known value. It is the Gaussian integral so



                                                        $displaystyle I(0,b)=int_{0}^{infty}e^{-(bx^{2})}dx=frac{1}{2}sqrt{frac{pi}{b}}$



                                                        The negative exponential was extracted from the integral rather than the positive one beacause



                                                        $displaystyle lim_{atoinfty}int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx=0$



                                                        and



                                                        $displaystyle lim_{atoinfty}e^{-2sqrt{ab}}=0$



                                                        So let’s assume that we assume that the solution to our PDE is of the form



                                                        $displaystyle I(a,b)=e^{-2sqrt{ab}}K(b)$



                                                        where K is a function of b(and diverges at b=0)



                                                        Let’s put this in the PDE



                                                        $displaystyle frac{partial I}{partial a}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K(b)$



                                                        $displaystyle frac{partial^2 I}{partial a partial b}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K^{'}(b)-frac{1}{2sqrt{ab}}e^{-2sqrt{ab}}K(b)+sqrt{frac{b}{a}}sqrt{frac{a}{b}}e^{-2sqrt{ab}}K(b)$



                                                        $displaystyle frac{partial^2 I}{partial a partial b}=e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))$



                                                        As
                                                        $displaystyle frac{partial^2 I}{partial a partial b}=I$



                                                        So



                                                        $displaystyle e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))=e^{-2sqrt{ab}}K(b)$



                                                        $displaystyle -sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b)=K(b)$



                                                        $displaystyle -sqrt{frac{b}{a}}K^{'}(a)=frac{K(b)}{2sqrt{ab}}$



                                                        $displaystyle K^{'}(b)=-frac{K(b)}{2b}$



                                                        This is a separable ODE.Let’s solve it



                                                        $displaystyle frac{1}{K}dK=-frac{1}{2}frac{1}{b}db$



                                                        Let’s integrate



                                                        $displaystyle int frac{1}{K}dK=-frac{1}{2}int frac{1}{b}db$



                                                        $displaystyle ln(K)=-frac{1}{2}ln(b)+C$



                                                        $displaystyle ln(K)=ln(b^{-frac{1}{2}})+C$



                                                        $displaystyle K=e^{C}b^{-frac{1}{2}}$



                                                        Let
                                                        $displaystyle v=e^{C}$



                                                        So



                                                        $displaystyle K(b)=vb^{-frac{1}{2}}$



                                                        Thus the solution is
                                                        $displaystyle I(a,b)=ve^{-2sqrt{ab}}b^{-frac{1}{2}}$



                                                        This expression diverges at b=0 which is exactly what we wanted. Now let’s determine the constant v. As



                                                        $displaystyle I(0,b)=frac{1}{2}sqrt{frac{pi}{b}}$



                                                        So
                                                        $displaystyle frac{1}{2}sqrt{frac{pi}{b}}=vb^{-frac{1}{2}}e^{0}$
                                                        $v=frac{sqrt{pi}}{2}$



                                                        Thus the integral is



                                                        $displaystyle boxed{I(a,b)=frac{1}{2}sqrt{frac{pi}{b}}e^{-2sqrt{ab}}} (0leqslant a,b)$



                                                        The given integral is I(b,a) so



                                                        $displaystyle boxed{I(b,a)=frac{1}{2}sqrt{frac{pi}{a}}e^{-2sqrt{ab}}} (0leqslant a,b)$






                                                        share|cite|improve this answer











                                                        $endgroup$
















                                                          0












                                                          0








                                                          0





                                                          $begingroup$

                                                          Let’s do the general integral
                                                          $displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$



                                                          Differentiate with respect to a



                                                          $displaystyle frac{partial I}{partial a}=int_{0}^{infty}x^{-2}e^{-(ax^{-2}+bx^{2})}dx$



                                                          Now differentiate with respect to b
                                                          $displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}x^{-2}x^{2}e^{-(ax^{-2}+bx^{2})}dx$



                                                          $displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$



                                                          $displaystyle frac{partial^2 I}{partial a partial b}=I$



                                                          Thus our integral satisfies this PDE.This is a hyperbolic homogenous PDE. It is a second order PDE but it is first order with respect to each of the variables so we’ll need two boundary conditions to determine a unique solution.(In this case two asympotic BCs and one Drichlet boundary condition will be used).Keep this in mind we’ll need it later.



                                                          Let’s complete the square of expression in the exponential.



                                                          $displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2}-2sqrt{ab}+2sqrt{ab})}dx$



                                                          $displaystyle I(a,b)=int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}-2sqrt{ab}}dx$



                                                          $displaystyle I(a,b)=e^{-2sqrt{ab}}int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}}dx$



                                                          Now let’s explore more of it’s properties.One thing to note is that this integral diverges(blows up) at b=0 but at a=0 it has a well known value. It is the Gaussian integral so



                                                          $displaystyle I(0,b)=int_{0}^{infty}e^{-(bx^{2})}dx=frac{1}{2}sqrt{frac{pi}{b}}$



                                                          The negative exponential was extracted from the integral rather than the positive one beacause



                                                          $displaystyle lim_{atoinfty}int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx=0$



                                                          and



                                                          $displaystyle lim_{atoinfty}e^{-2sqrt{ab}}=0$



                                                          So let’s assume that we assume that the solution to our PDE is of the form



                                                          $displaystyle I(a,b)=e^{-2sqrt{ab}}K(b)$



                                                          where K is a function of b(and diverges at b=0)



                                                          Let’s put this in the PDE



                                                          $displaystyle frac{partial I}{partial a}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K(b)$



                                                          $displaystyle frac{partial^2 I}{partial a partial b}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K^{'}(b)-frac{1}{2sqrt{ab}}e^{-2sqrt{ab}}K(b)+sqrt{frac{b}{a}}sqrt{frac{a}{b}}e^{-2sqrt{ab}}K(b)$



                                                          $displaystyle frac{partial^2 I}{partial a partial b}=e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))$



                                                          As
                                                          $displaystyle frac{partial^2 I}{partial a partial b}=I$



                                                          So



                                                          $displaystyle e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))=e^{-2sqrt{ab}}K(b)$



                                                          $displaystyle -sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b)=K(b)$



                                                          $displaystyle -sqrt{frac{b}{a}}K^{'}(a)=frac{K(b)}{2sqrt{ab}}$



                                                          $displaystyle K^{'}(b)=-frac{K(b)}{2b}$



                                                          This is a separable ODE.Let’s solve it



                                                          $displaystyle frac{1}{K}dK=-frac{1}{2}frac{1}{b}db$



                                                          Let’s integrate



                                                          $displaystyle int frac{1}{K}dK=-frac{1}{2}int frac{1}{b}db$



                                                          $displaystyle ln(K)=-frac{1}{2}ln(b)+C$



                                                          $displaystyle ln(K)=ln(b^{-frac{1}{2}})+C$



                                                          $displaystyle K=e^{C}b^{-frac{1}{2}}$



                                                          Let
                                                          $displaystyle v=e^{C}$



                                                          So



                                                          $displaystyle K(b)=vb^{-frac{1}{2}}$



                                                          Thus the solution is
                                                          $displaystyle I(a,b)=ve^{-2sqrt{ab}}b^{-frac{1}{2}}$



                                                          This expression diverges at b=0 which is exactly what we wanted. Now let’s determine the constant v. As



                                                          $displaystyle I(0,b)=frac{1}{2}sqrt{frac{pi}{b}}$



                                                          So
                                                          $displaystyle frac{1}{2}sqrt{frac{pi}{b}}=vb^{-frac{1}{2}}e^{0}$
                                                          $v=frac{sqrt{pi}}{2}$



                                                          Thus the integral is



                                                          $displaystyle boxed{I(a,b)=frac{1}{2}sqrt{frac{pi}{b}}e^{-2sqrt{ab}}} (0leqslant a,b)$



                                                          The given integral is I(b,a) so



                                                          $displaystyle boxed{I(b,a)=frac{1}{2}sqrt{frac{pi}{a}}e^{-2sqrt{ab}}} (0leqslant a,b)$






                                                          share|cite|improve this answer











                                                          $endgroup$



                                                          Let’s do the general integral
                                                          $displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$



                                                          Differentiate with respect to a



                                                          $displaystyle frac{partial I}{partial a}=int_{0}^{infty}x^{-2}e^{-(ax^{-2}+bx^{2})}dx$



                                                          Now differentiate with respect to b
                                                          $displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}x^{-2}x^{2}e^{-(ax^{-2}+bx^{2})}dx$



                                                          $displaystyle frac{partial^2 I}{partial a partial b}=int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx$



                                                          $displaystyle frac{partial^2 I}{partial a partial b}=I$



                                                          Thus our integral satisfies this PDE.This is a hyperbolic homogenous PDE. It is a second order PDE but it is first order with respect to each of the variables so we’ll need two boundary conditions to determine a unique solution.(In this case two asympotic BCs and one Drichlet boundary condition will be used).Keep this in mind we’ll need it later.



                                                          Let’s complete the square of expression in the exponential.



                                                          $displaystyle I(a,b)=int_{0}^{infty}e^{-(ax^{-2}+bx^{2}-2sqrt{ab}+2sqrt{ab})}dx$



                                                          $displaystyle I(a,b)=int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}-2sqrt{ab}}dx$



                                                          $displaystyle I(a,b)=e^{-2sqrt{ab}}int_{0}^{infty}e^{-(sqrt{a}x^{-1}-sqrt{b}x)^{2}}dx$



                                                          Now let’s explore more of it’s properties.One thing to note is that this integral diverges(blows up) at b=0 but at a=0 it has a well known value. It is the Gaussian integral so



                                                          $displaystyle I(0,b)=int_{0}^{infty}e^{-(bx^{2})}dx=frac{1}{2}sqrt{frac{pi}{b}}$



                                                          The negative exponential was extracted from the integral rather than the positive one beacause



                                                          $displaystyle lim_{atoinfty}int_{0}^{infty}e^{-(ax^{-2}+bx^{2})}dx=0$



                                                          and



                                                          $displaystyle lim_{atoinfty}e^{-2sqrt{ab}}=0$



                                                          So let’s assume that we assume that the solution to our PDE is of the form



                                                          $displaystyle I(a,b)=e^{-2sqrt{ab}}K(b)$



                                                          where K is a function of b(and diverges at b=0)



                                                          Let’s put this in the PDE



                                                          $displaystyle frac{partial I}{partial a}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K(b)$



                                                          $displaystyle frac{partial^2 I}{partial a partial b}=-sqrt{frac{b}{a}}e^{-2sqrt{ab}}K^{'}(b)-frac{1}{2sqrt{ab}}e^{-2sqrt{ab}}K(b)+sqrt{frac{b}{a}}sqrt{frac{a}{b}}e^{-2sqrt{ab}}K(b)$



                                                          $displaystyle frac{partial^2 I}{partial a partial b}=e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))$



                                                          As
                                                          $displaystyle frac{partial^2 I}{partial a partial b}=I$



                                                          So



                                                          $displaystyle e^{-2sqrt{ab}}(-sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b))=e^{-2sqrt{ab}}K(b)$



                                                          $displaystyle -sqrt{frac{b}{a}}K^{'}(b)-frac{K(b)}{2sqrt{ab}}+K(b)=K(b)$



                                                          $displaystyle -sqrt{frac{b}{a}}K^{'}(a)=frac{K(b)}{2sqrt{ab}}$



                                                          $displaystyle K^{'}(b)=-frac{K(b)}{2b}$



                                                          This is a separable ODE.Let’s solve it



                                                          $displaystyle frac{1}{K}dK=-frac{1}{2}frac{1}{b}db$



                                                          Let’s integrate



                                                          $displaystyle int frac{1}{K}dK=-frac{1}{2}int frac{1}{b}db$



                                                          $displaystyle ln(K)=-frac{1}{2}ln(b)+C$



                                                          $displaystyle ln(K)=ln(b^{-frac{1}{2}})+C$



                                                          $displaystyle K=e^{C}b^{-frac{1}{2}}$



                                                          Let
                                                          $displaystyle v=e^{C}$



                                                          So



                                                          $displaystyle K(b)=vb^{-frac{1}{2}}$



                                                          Thus the solution is
                                                          $displaystyle I(a,b)=ve^{-2sqrt{ab}}b^{-frac{1}{2}}$



                                                          This expression diverges at b=0 which is exactly what we wanted. Now let’s determine the constant v. As



                                                          $displaystyle I(0,b)=frac{1}{2}sqrt{frac{pi}{b}}$



                                                          So
                                                          $displaystyle frac{1}{2}sqrt{frac{pi}{b}}=vb^{-frac{1}{2}}e^{0}$
                                                          $v=frac{sqrt{pi}}{2}$



                                                          Thus the integral is



                                                          $displaystyle boxed{I(a,b)=frac{1}{2}sqrt{frac{pi}{b}}e^{-2sqrt{ab}}} (0leqslant a,b)$



                                                          The given integral is I(b,a) so



                                                          $displaystyle boxed{I(b,a)=frac{1}{2}sqrt{frac{pi}{a}}e^{-2sqrt{ab}}} (0leqslant a,b)$







                                                          share|cite|improve this answer














                                                          share|cite|improve this answer



                                                          share|cite|improve this answer








                                                          edited Dec 23 '18 at 13:42

























                                                          answered Dec 23 '18 at 13:31







                                                          user628607





































                                                              draft saved

                                                              draft discarded




















































                                                              Thanks for contributing an answer to Mathematics Stack Exchange!


                                                              • Please be sure to answer the question. Provide details and share your research!

                                                              But avoid



                                                              • Asking for help, clarification, or responding to other answers.

                                                              • Making statements based on opinion; back them up with references or personal experience.


                                                              Use MathJax to format equations. MathJax reference.


                                                              To learn more, see our tips on writing great answers.




                                                              draft saved


                                                              draft discarded














                                                              StackExchange.ready(
                                                              function () {
                                                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f496088%2fhow-to-evaluate-int-0-infty-exp-ax2-frac-bx2-dx-for-a-b0%23new-answer', 'question_page');
                                                              }
                                                              );

                                                              Post as a guest















                                                              Required, but never shown





















































                                                              Required, but never shown














                                                              Required, but never shown












                                                              Required, but never shown







                                                              Required, but never shown

































                                                              Required, but never shown














                                                              Required, but never shown












                                                              Required, but never shown







                                                              Required, but never shown







                                                              Popular posts from this blog

                                                              Bressuire

                                                              Cabo Verde

                                                              Gyllenstierna