Showing that a curve is not rectifiable if its arc length is not a continuous function
up vote
2
down vote
favorite
This is a (translated) proof from a textbook of the fact that arc length of a rectifiable curve is a continuous function.
Let $phi:[T_0,T_1]rightarrowmathbb C$ be a function whose real part and imaginary part are continuous, and $C$ be a curve represented by $phi$. Suppose $C$ is rectifiable. Define $f:[T_0,T_1]rightarrowmathbb R$ by $f(t) = L(C|[T_0,t])$, where $L(C|I)$ is the arc length of $C$ restricted to the interval $I$. To show by contradiction that $f$ is continuous, assume $f$ is not continuous at $t_0in [T_0, T_1]$. Since $f$ is monotonously increasing, either of
$
lim_{trightarrow t_0-0} f(t) < f(t_0)
$ or $lim_{trightarrow t_0+0} f(t) > f(t_0)$ holds. WLOG we may assume the former holds. Here $t_0 > t$. Let $epsilon_0 = f(t_0) - lim_{trightarrow t_0-0}f(t)$. By definition, there exists an infinite number of $t_j < tilde{t_j} < t_{j+1} < tilde {t}_{j+1}quad(j = 1,2,dots)$ s.t. $L(C|[t_j,tilde{t}_j])>epsilon_0/2$. Then we have $L(C) = +infty$. Contradiction.
I can't figure out why the sentence that begin with "By definition" is true. Why are there such $t_j$'s?
EDIT: In the book, $L(C)$ is defined to be the supremum (possibly $+infty$) of $sum_{j=1}^{n}|phi(s_j)-phi(s_{j-1})|$ for any partition $T_0 = s_0 < s_1 < dots < s_n = T_1$. $C$ is rectifiable iff $L(C) <infty$.
calculus real-analysis complex-analysis
add a comment |
up vote
2
down vote
favorite
This is a (translated) proof from a textbook of the fact that arc length of a rectifiable curve is a continuous function.
Let $phi:[T_0,T_1]rightarrowmathbb C$ be a function whose real part and imaginary part are continuous, and $C$ be a curve represented by $phi$. Suppose $C$ is rectifiable. Define $f:[T_0,T_1]rightarrowmathbb R$ by $f(t) = L(C|[T_0,t])$, where $L(C|I)$ is the arc length of $C$ restricted to the interval $I$. To show by contradiction that $f$ is continuous, assume $f$ is not continuous at $t_0in [T_0, T_1]$. Since $f$ is monotonously increasing, either of
$
lim_{trightarrow t_0-0} f(t) < f(t_0)
$ or $lim_{trightarrow t_0+0} f(t) > f(t_0)$ holds. WLOG we may assume the former holds. Here $t_0 > t$. Let $epsilon_0 = f(t_0) - lim_{trightarrow t_0-0}f(t)$. By definition, there exists an infinite number of $t_j < tilde{t_j} < t_{j+1} < tilde {t}_{j+1}quad(j = 1,2,dots)$ s.t. $L(C|[t_j,tilde{t}_j])>epsilon_0/2$. Then we have $L(C) = +infty$. Contradiction.
I can't figure out why the sentence that begin with "By definition" is true. Why are there such $t_j$'s?
EDIT: In the book, $L(C)$ is defined to be the supremum (possibly $+infty$) of $sum_{j=1}^{n}|phi(s_j)-phi(s_{j-1})|$ for any partition $T_0 = s_0 < s_1 < dots < s_n = T_1$. $C$ is rectifiable iff $L(C) <infty$.
calculus real-analysis complex-analysis
this looks strange to me. Could you add the information how rectifiability and arc length are defined in that book?
– user20266
Mar 25 '12 at 12:51
I added it to the question statement.
– Pteromys
Mar 26 '12 at 4:23
1
I don't see the reasoning either, maybe there is some more context that is missing. Anyway, continuity is not difficult to demonstrate by other means. Burago, Burago, and Ivanov do it nicely in a few lines in "A Course in Metric Geometry", p. 35 Proposition 2.3.4 (you can find it online).
– yasmar
Mar 26 '12 at 18:54
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
This is a (translated) proof from a textbook of the fact that arc length of a rectifiable curve is a continuous function.
Let $phi:[T_0,T_1]rightarrowmathbb C$ be a function whose real part and imaginary part are continuous, and $C$ be a curve represented by $phi$. Suppose $C$ is rectifiable. Define $f:[T_0,T_1]rightarrowmathbb R$ by $f(t) = L(C|[T_0,t])$, where $L(C|I)$ is the arc length of $C$ restricted to the interval $I$. To show by contradiction that $f$ is continuous, assume $f$ is not continuous at $t_0in [T_0, T_1]$. Since $f$ is monotonously increasing, either of
$
lim_{trightarrow t_0-0} f(t) < f(t_0)
$ or $lim_{trightarrow t_0+0} f(t) > f(t_0)$ holds. WLOG we may assume the former holds. Here $t_0 > t$. Let $epsilon_0 = f(t_0) - lim_{trightarrow t_0-0}f(t)$. By definition, there exists an infinite number of $t_j < tilde{t_j} < t_{j+1} < tilde {t}_{j+1}quad(j = 1,2,dots)$ s.t. $L(C|[t_j,tilde{t}_j])>epsilon_0/2$. Then we have $L(C) = +infty$. Contradiction.
I can't figure out why the sentence that begin with "By definition" is true. Why are there such $t_j$'s?
EDIT: In the book, $L(C)$ is defined to be the supremum (possibly $+infty$) of $sum_{j=1}^{n}|phi(s_j)-phi(s_{j-1})|$ for any partition $T_0 = s_0 < s_1 < dots < s_n = T_1$. $C$ is rectifiable iff $L(C) <infty$.
calculus real-analysis complex-analysis
This is a (translated) proof from a textbook of the fact that arc length of a rectifiable curve is a continuous function.
Let $phi:[T_0,T_1]rightarrowmathbb C$ be a function whose real part and imaginary part are continuous, and $C$ be a curve represented by $phi$. Suppose $C$ is rectifiable. Define $f:[T_0,T_1]rightarrowmathbb R$ by $f(t) = L(C|[T_0,t])$, where $L(C|I)$ is the arc length of $C$ restricted to the interval $I$. To show by contradiction that $f$ is continuous, assume $f$ is not continuous at $t_0in [T_0, T_1]$. Since $f$ is monotonously increasing, either of
$
lim_{trightarrow t_0-0} f(t) < f(t_0)
$ or $lim_{trightarrow t_0+0} f(t) > f(t_0)$ holds. WLOG we may assume the former holds. Here $t_0 > t$. Let $epsilon_0 = f(t_0) - lim_{trightarrow t_0-0}f(t)$. By definition, there exists an infinite number of $t_j < tilde{t_j} < t_{j+1} < tilde {t}_{j+1}quad(j = 1,2,dots)$ s.t. $L(C|[t_j,tilde{t}_j])>epsilon_0/2$. Then we have $L(C) = +infty$. Contradiction.
I can't figure out why the sentence that begin with "By definition" is true. Why are there such $t_j$'s?
EDIT: In the book, $L(C)$ is defined to be the supremum (possibly $+infty$) of $sum_{j=1}^{n}|phi(s_j)-phi(s_{j-1})|$ for any partition $T_0 = s_0 < s_1 < dots < s_n = T_1$. $C$ is rectifiable iff $L(C) <infty$.
calculus real-analysis complex-analysis
calculus real-analysis complex-analysis
edited Mar 26 '12 at 4:37
asked Mar 25 '12 at 12:42
Pteromys
2,43721542
2,43721542
this looks strange to me. Could you add the information how rectifiability and arc length are defined in that book?
– user20266
Mar 25 '12 at 12:51
I added it to the question statement.
– Pteromys
Mar 26 '12 at 4:23
1
I don't see the reasoning either, maybe there is some more context that is missing. Anyway, continuity is not difficult to demonstrate by other means. Burago, Burago, and Ivanov do it nicely in a few lines in "A Course in Metric Geometry", p. 35 Proposition 2.3.4 (you can find it online).
– yasmar
Mar 26 '12 at 18:54
add a comment |
this looks strange to me. Could you add the information how rectifiability and arc length are defined in that book?
– user20266
Mar 25 '12 at 12:51
I added it to the question statement.
– Pteromys
Mar 26 '12 at 4:23
1
I don't see the reasoning either, maybe there is some more context that is missing. Anyway, continuity is not difficult to demonstrate by other means. Burago, Burago, and Ivanov do it nicely in a few lines in "A Course in Metric Geometry", p. 35 Proposition 2.3.4 (you can find it online).
– yasmar
Mar 26 '12 at 18:54
this looks strange to me. Could you add the information how rectifiability and arc length are defined in that book?
– user20266
Mar 25 '12 at 12:51
this looks strange to me. Could you add the information how rectifiability and arc length are defined in that book?
– user20266
Mar 25 '12 at 12:51
I added it to the question statement.
– Pteromys
Mar 26 '12 at 4:23
I added it to the question statement.
– Pteromys
Mar 26 '12 at 4:23
1
1
I don't see the reasoning either, maybe there is some more context that is missing. Anyway, continuity is not difficult to demonstrate by other means. Burago, Burago, and Ivanov do it nicely in a few lines in "A Course in Metric Geometry", p. 35 Proposition 2.3.4 (you can find it online).
– yasmar
Mar 26 '12 at 18:54
I don't see the reasoning either, maybe there is some more context that is missing. Anyway, continuity is not difficult to demonstrate by other means. Burago, Burago, and Ivanov do it nicely in a few lines in "A Course in Metric Geometry", p. 35 Proposition 2.3.4 (you can find it online).
– yasmar
Mar 26 '12 at 18:54
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
I am not sure this is what the author intended, but the claim that holds "by definition" can be shown as follows:
Take any $t_1<t_0$. Then $L(C|[t_1,t_0])ge epsilon_0$, so there exists a partition $t_1=s_0 < cdots < s_n=t_0$ such that $sum_{j=1}^n |phi(s_j)-phi(s_{j-1})|> 3 epsilon_0/4$. We may assume $|phi(s_n)-phi(s_{n-1})|< epsilon_0/4$, since $phi$ is continuous.
(Otherwise there exists $hat s_n in (s_{n-1},t_0)$ with $|t_0-hat s_n|<1/4 epsilon_0$. Take $hat s_j = s_j$ for $j=1,ldots n-1$, and $hat s_{n+1}=t_0$. Then $sum_{j=1}^{n+1} |phi(hat s_j)-phi(hat s_{j-1})| ge sum_{j=1}^n |phi(s_j)-phi(s_{j-1})|> 3 epsilon_0/4$ by triangle inequality).
Hence $L(C|[t_1,s_{n-1}]>epsilon_0/2$. Set $t_2=s_{n-1}$.
"e still have $L(C|[t_2,t_0])geepsilon_0$, so we can start over to get $t_3, t_4,ldots$ with $L(C|[t_j,t_{j+1}]) > epsilon_0/2$ by induction.
(Not sure why we need $tilde t_j$, but if we want to, we can take any $tilde t_j in (t_j,t_0)$ and then proceed in step 2 with $tilde t_j$ instead of $t_j$.)
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
I am not sure this is what the author intended, but the claim that holds "by definition" can be shown as follows:
Take any $t_1<t_0$. Then $L(C|[t_1,t_0])ge epsilon_0$, so there exists a partition $t_1=s_0 < cdots < s_n=t_0$ such that $sum_{j=1}^n |phi(s_j)-phi(s_{j-1})|> 3 epsilon_0/4$. We may assume $|phi(s_n)-phi(s_{n-1})|< epsilon_0/4$, since $phi$ is continuous.
(Otherwise there exists $hat s_n in (s_{n-1},t_0)$ with $|t_0-hat s_n|<1/4 epsilon_0$. Take $hat s_j = s_j$ for $j=1,ldots n-1$, and $hat s_{n+1}=t_0$. Then $sum_{j=1}^{n+1} |phi(hat s_j)-phi(hat s_{j-1})| ge sum_{j=1}^n |phi(s_j)-phi(s_{j-1})|> 3 epsilon_0/4$ by triangle inequality).
Hence $L(C|[t_1,s_{n-1}]>epsilon_0/2$. Set $t_2=s_{n-1}$.
"e still have $L(C|[t_2,t_0])geepsilon_0$, so we can start over to get $t_3, t_4,ldots$ with $L(C|[t_j,t_{j+1}]) > epsilon_0/2$ by induction.
(Not sure why we need $tilde t_j$, but if we want to, we can take any $tilde t_j in (t_j,t_0)$ and then proceed in step 2 with $tilde t_j$ instead of $t_j$.)
add a comment |
up vote
0
down vote
I am not sure this is what the author intended, but the claim that holds "by definition" can be shown as follows:
Take any $t_1<t_0$. Then $L(C|[t_1,t_0])ge epsilon_0$, so there exists a partition $t_1=s_0 < cdots < s_n=t_0$ such that $sum_{j=1}^n |phi(s_j)-phi(s_{j-1})|> 3 epsilon_0/4$. We may assume $|phi(s_n)-phi(s_{n-1})|< epsilon_0/4$, since $phi$ is continuous.
(Otherwise there exists $hat s_n in (s_{n-1},t_0)$ with $|t_0-hat s_n|<1/4 epsilon_0$. Take $hat s_j = s_j$ for $j=1,ldots n-1$, and $hat s_{n+1}=t_0$. Then $sum_{j=1}^{n+1} |phi(hat s_j)-phi(hat s_{j-1})| ge sum_{j=1}^n |phi(s_j)-phi(s_{j-1})|> 3 epsilon_0/4$ by triangle inequality).
Hence $L(C|[t_1,s_{n-1}]>epsilon_0/2$. Set $t_2=s_{n-1}$.
"e still have $L(C|[t_2,t_0])geepsilon_0$, so we can start over to get $t_3, t_4,ldots$ with $L(C|[t_j,t_{j+1}]) > epsilon_0/2$ by induction.
(Not sure why we need $tilde t_j$, but if we want to, we can take any $tilde t_j in (t_j,t_0)$ and then proceed in step 2 with $tilde t_j$ instead of $t_j$.)
add a comment |
up vote
0
down vote
up vote
0
down vote
I am not sure this is what the author intended, but the claim that holds "by definition" can be shown as follows:
Take any $t_1<t_0$. Then $L(C|[t_1,t_0])ge epsilon_0$, so there exists a partition $t_1=s_0 < cdots < s_n=t_0$ such that $sum_{j=1}^n |phi(s_j)-phi(s_{j-1})|> 3 epsilon_0/4$. We may assume $|phi(s_n)-phi(s_{n-1})|< epsilon_0/4$, since $phi$ is continuous.
(Otherwise there exists $hat s_n in (s_{n-1},t_0)$ with $|t_0-hat s_n|<1/4 epsilon_0$. Take $hat s_j = s_j$ for $j=1,ldots n-1$, and $hat s_{n+1}=t_0$. Then $sum_{j=1}^{n+1} |phi(hat s_j)-phi(hat s_{j-1})| ge sum_{j=1}^n |phi(s_j)-phi(s_{j-1})|> 3 epsilon_0/4$ by triangle inequality).
Hence $L(C|[t_1,s_{n-1}]>epsilon_0/2$. Set $t_2=s_{n-1}$.
"e still have $L(C|[t_2,t_0])geepsilon_0$, so we can start over to get $t_3, t_4,ldots$ with $L(C|[t_j,t_{j+1}]) > epsilon_0/2$ by induction.
(Not sure why we need $tilde t_j$, but if we want to, we can take any $tilde t_j in (t_j,t_0)$ and then proceed in step 2 with $tilde t_j$ instead of $t_j$.)
I am not sure this is what the author intended, but the claim that holds "by definition" can be shown as follows:
Take any $t_1<t_0$. Then $L(C|[t_1,t_0])ge epsilon_0$, so there exists a partition $t_1=s_0 < cdots < s_n=t_0$ such that $sum_{j=1}^n |phi(s_j)-phi(s_{j-1})|> 3 epsilon_0/4$. We may assume $|phi(s_n)-phi(s_{n-1})|< epsilon_0/4$, since $phi$ is continuous.
(Otherwise there exists $hat s_n in (s_{n-1},t_0)$ with $|t_0-hat s_n|<1/4 epsilon_0$. Take $hat s_j = s_j$ for $j=1,ldots n-1$, and $hat s_{n+1}=t_0$. Then $sum_{j=1}^{n+1} |phi(hat s_j)-phi(hat s_{j-1})| ge sum_{j=1}^n |phi(s_j)-phi(s_{j-1})|> 3 epsilon_0/4$ by triangle inequality).
Hence $L(C|[t_1,s_{n-1}]>epsilon_0/2$. Set $t_2=s_{n-1}$.
"e still have $L(C|[t_2,t_0])geepsilon_0$, so we can start over to get $t_3, t_4,ldots$ with $L(C|[t_j,t_{j+1}]) > epsilon_0/2$ by induction.
(Not sure why we need $tilde t_j$, but if we want to, we can take any $tilde t_j in (t_j,t_0)$ and then proceed in step 2 with $tilde t_j$ instead of $t_j$.)
answered Dec 1 at 16:36
hife
1587
1587
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f124244%2fshowing-that-a-curve-is-not-rectifiable-if-its-arc-length-is-not-a-continuous-fu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
this looks strange to me. Could you add the information how rectifiability and arc length are defined in that book?
– user20266
Mar 25 '12 at 12:51
I added it to the question statement.
– Pteromys
Mar 26 '12 at 4:23
1
I don't see the reasoning either, maybe there is some more context that is missing. Anyway, continuity is not difficult to demonstrate by other means. Burago, Burago, and Ivanov do it nicely in a few lines in "A Course in Metric Geometry", p. 35 Proposition 2.3.4 (you can find it online).
– yasmar
Mar 26 '12 at 18:54