How would I go about solving for $x$ in $frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=a-b$?
$begingroup$
The question
This is a homework question. Given the following, I am to solve for $x$ in terms of $a$ and $b$:
$$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=a-b;a>b.$$
My attempt
Although I see the pattern of multiple occurrences of $(x-a)$, $(x-b)$ I can't see any way to simplify the fraction further, so I go on to simplify the expression by multiplying by $sqrt{x-a}+sqrt{x-b}$:
$$begin{align*}
(x-a)sqrt{x-a}+(x-b)sqrt{x-b}&=(a-b)(sqrt{x-a}+sqrt{x-b})\
&=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}
end{align*}$$
Now I have the following:
$$(x-a)sqrt{x-a}+(x-b)sqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$
Simplifying the RHS as I was out of ideas at that point:
$$xsqrt{x-a}-asqrt{x-a}+xsqrt{x-b}-bsqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$
I noticed that all one of the common factors $sqrt{x-a},sqrt{x-b}$ so I tried to isolate them and factor them out -- that is, all $sqrt{x-b}$ terms on one side and $sqrt{x-a}$ terms on the other.
$$sqrt{x-b}(x-a)=sqrt{x-a}(2a-b-x)$$
I tried to then square both sides, but that led to quite a mess.
$$(x-b)(x^2-2ax+a^2)=(x-a)(4a^2-4ab+2bx-4ax+b^2+x^2)$$
I'm afraid to even begin trying to simplifying this. I'm convinced I'm going about it in the wrong way.
The $a>b$ hint is interesting, but I have no clue what implication it may have here.
I think the $(x-a)sqrt {x-a}$ patterns may mean something, perhaps I could do something with $asqrt a=sqrt{a^3}$, but at this point it is probably a dead end.
I appreciate any help.
algebra-precalculus radicals fractions
$endgroup$
add a comment |
$begingroup$
The question
This is a homework question. Given the following, I am to solve for $x$ in terms of $a$ and $b$:
$$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=a-b;a>b.$$
My attempt
Although I see the pattern of multiple occurrences of $(x-a)$, $(x-b)$ I can't see any way to simplify the fraction further, so I go on to simplify the expression by multiplying by $sqrt{x-a}+sqrt{x-b}$:
$$begin{align*}
(x-a)sqrt{x-a}+(x-b)sqrt{x-b}&=(a-b)(sqrt{x-a}+sqrt{x-b})\
&=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}
end{align*}$$
Now I have the following:
$$(x-a)sqrt{x-a}+(x-b)sqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$
Simplifying the RHS as I was out of ideas at that point:
$$xsqrt{x-a}-asqrt{x-a}+xsqrt{x-b}-bsqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$
I noticed that all one of the common factors $sqrt{x-a},sqrt{x-b}$ so I tried to isolate them and factor them out -- that is, all $sqrt{x-b}$ terms on one side and $sqrt{x-a}$ terms on the other.
$$sqrt{x-b}(x-a)=sqrt{x-a}(2a-b-x)$$
I tried to then square both sides, but that led to quite a mess.
$$(x-b)(x^2-2ax+a^2)=(x-a)(4a^2-4ab+2bx-4ax+b^2+x^2)$$
I'm afraid to even begin trying to simplifying this. I'm convinced I'm going about it in the wrong way.
The $a>b$ hint is interesting, but I have no clue what implication it may have here.
I think the $(x-a)sqrt {x-a}$ patterns may mean something, perhaps I could do something with $asqrt a=sqrt{a^3}$, but at this point it is probably a dead end.
I appreciate any help.
algebra-precalculus radicals fractions
$endgroup$
$begingroup$
$(x-a)sqrt{x-a}=(sqrt{x-a})^3$ and $(x-b)sqrt{x-b}=(sqrt{x-})^3$.
$endgroup$
– Nosrati
Dec 21 '18 at 10:58
$begingroup$
Split the numerator, then rationalize and see that you get $((x-a)-(x-b))^2$ in the numerator
$endgroup$
– Yadati Kiran
Dec 21 '18 at 10:59
add a comment |
$begingroup$
The question
This is a homework question. Given the following, I am to solve for $x$ in terms of $a$ and $b$:
$$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=a-b;a>b.$$
My attempt
Although I see the pattern of multiple occurrences of $(x-a)$, $(x-b)$ I can't see any way to simplify the fraction further, so I go on to simplify the expression by multiplying by $sqrt{x-a}+sqrt{x-b}$:
$$begin{align*}
(x-a)sqrt{x-a}+(x-b)sqrt{x-b}&=(a-b)(sqrt{x-a}+sqrt{x-b})\
&=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}
end{align*}$$
Now I have the following:
$$(x-a)sqrt{x-a}+(x-b)sqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$
Simplifying the RHS as I was out of ideas at that point:
$$xsqrt{x-a}-asqrt{x-a}+xsqrt{x-b}-bsqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$
I noticed that all one of the common factors $sqrt{x-a},sqrt{x-b}$ so I tried to isolate them and factor them out -- that is, all $sqrt{x-b}$ terms on one side and $sqrt{x-a}$ terms on the other.
$$sqrt{x-b}(x-a)=sqrt{x-a}(2a-b-x)$$
I tried to then square both sides, but that led to quite a mess.
$$(x-b)(x^2-2ax+a^2)=(x-a)(4a^2-4ab+2bx-4ax+b^2+x^2)$$
I'm afraid to even begin trying to simplifying this. I'm convinced I'm going about it in the wrong way.
The $a>b$ hint is interesting, but I have no clue what implication it may have here.
I think the $(x-a)sqrt {x-a}$ patterns may mean something, perhaps I could do something with $asqrt a=sqrt{a^3}$, but at this point it is probably a dead end.
I appreciate any help.
algebra-precalculus radicals fractions
$endgroup$
The question
This is a homework question. Given the following, I am to solve for $x$ in terms of $a$ and $b$:
$$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=a-b;a>b.$$
My attempt
Although I see the pattern of multiple occurrences of $(x-a)$, $(x-b)$ I can't see any way to simplify the fraction further, so I go on to simplify the expression by multiplying by $sqrt{x-a}+sqrt{x-b}$:
$$begin{align*}
(x-a)sqrt{x-a}+(x-b)sqrt{x-b}&=(a-b)(sqrt{x-a}+sqrt{x-b})\
&=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}
end{align*}$$
Now I have the following:
$$(x-a)sqrt{x-a}+(x-b)sqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$
Simplifying the RHS as I was out of ideas at that point:
$$xsqrt{x-a}-asqrt{x-a}+xsqrt{x-b}-bsqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$
I noticed that all one of the common factors $sqrt{x-a},sqrt{x-b}$ so I tried to isolate them and factor them out -- that is, all $sqrt{x-b}$ terms on one side and $sqrt{x-a}$ terms on the other.
$$sqrt{x-b}(x-a)=sqrt{x-a}(2a-b-x)$$
I tried to then square both sides, but that led to quite a mess.
$$(x-b)(x^2-2ax+a^2)=(x-a)(4a^2-4ab+2bx-4ax+b^2+x^2)$$
I'm afraid to even begin trying to simplifying this. I'm convinced I'm going about it in the wrong way.
The $a>b$ hint is interesting, but I have no clue what implication it may have here.
I think the $(x-a)sqrt {x-a}$ patterns may mean something, perhaps I could do something with $asqrt a=sqrt{a^3}$, but at this point it is probably a dead end.
I appreciate any help.
algebra-precalculus radicals fractions
algebra-precalculus radicals fractions
asked Dec 21 '18 at 10:54
javan.gjavan.g
61
61
$begingroup$
$(x-a)sqrt{x-a}=(sqrt{x-a})^3$ and $(x-b)sqrt{x-b}=(sqrt{x-})^3$.
$endgroup$
– Nosrati
Dec 21 '18 at 10:58
$begingroup$
Split the numerator, then rationalize and see that you get $((x-a)-(x-b))^2$ in the numerator
$endgroup$
– Yadati Kiran
Dec 21 '18 at 10:59
add a comment |
$begingroup$
$(x-a)sqrt{x-a}=(sqrt{x-a})^3$ and $(x-b)sqrt{x-b}=(sqrt{x-})^3$.
$endgroup$
– Nosrati
Dec 21 '18 at 10:58
$begingroup$
Split the numerator, then rationalize and see that you get $((x-a)-(x-b))^2$ in the numerator
$endgroup$
– Yadati Kiran
Dec 21 '18 at 10:59
$begingroup$
$(x-a)sqrt{x-a}=(sqrt{x-a})^3$ and $(x-b)sqrt{x-b}=(sqrt{x-})^3$.
$endgroup$
– Nosrati
Dec 21 '18 at 10:58
$begingroup$
$(x-a)sqrt{x-a}=(sqrt{x-a})^3$ and $(x-b)sqrt{x-b}=(sqrt{x-})^3$.
$endgroup$
– Nosrati
Dec 21 '18 at 10:58
$begingroup$
Split the numerator, then rationalize and see that you get $((x-a)-(x-b))^2$ in the numerator
$endgroup$
– Yadati Kiran
Dec 21 '18 at 10:59
$begingroup$
Split the numerator, then rationalize and see that you get $((x-a)-(x-b))^2$ in the numerator
$endgroup$
– Yadati Kiran
Dec 21 '18 at 10:59
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Use the formula: $a^3+b^3=(a+b)(a^2-ab+b^2)$.
We get:
$$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=\
frac{(sqrt{x-a}+sqrt{x-b})((x-a)-sqrt{(x-a)(x-b)}+(x-b))}{sqrt{x-a}+sqrt{x-b}}=\
2x-a-b-sqrt{(x-a)(x-b)}=a-b Rightarrow \
(x-a)(x-b)=(2x-2a)^2 Rightarrow \
3x^2+(b-7a)x+4a^2-ab=0 Rightarrow \
x=frac{(7a-b)pm sqrt{(b-7a)^2-12(4a^2-ab)}}{6}=\
frac{7a-bpm (a-b)}{6}=\
frac{4a-b}{3}; a.$$
$endgroup$
add a comment |
$begingroup$
Hint: Define $$u=sqrt{x-a}\w=sqrt{x-b}$$therefore $${w^3+u^3over u+w}=w^2-u^2$$which yields to $$2u^3=uw^2-u^2w$$one answer is $u=0$ or $x=a$ which is valid. The others can be found by solving $$2u^2=w^2-uw$$or $$u^2+uw=a-b$$by substituting we obtain $$x-a+sqrt{(x-a)(x-b)}=a-b$$
$endgroup$
add a comment |
$begingroup$
Hint: Write your equation in the form
$$sqrt{x-a}(x+b-2a)=sqrt{x-b}(a-x)$$ and square it. We get in the case of $$a>b$$ $$x=a$$ or $$x=frac{1}{3}(4a-b)$$
$endgroup$
add a comment |
$begingroup$
Another way is as follows:
- Set $boxed{x = a + t(a-b)}$ for $t geq 0$
$$begin{eqnarray*}
frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}} & = & a-b \
& Leftrightarrow & \
frac{t(a-b)sqrt{t(a-b)}+(t+1)(a-b)sqrt{(t+1)(a-b)}}{sqrt{t(a-b)}+sqrt{(t+1)(a-b)}} & = & a-b \
& Leftrightarrow & \
frac{tsqrt{t}+(t+1)sqrt{t+1}}{sqrt{t}+sqrt{t+1}} & = & 1 \
& Leftrightarrow & \
(t(sqrt{t+1} + sqrt{t})+sqrt{t+1})(sqrt{t+1}-sqrt{t}) & = & 1 \
& Leftrightarrow & \
t+ t+1 - sqrt{t(t+1)} & = & 1 \
& Leftrightarrow & \
2t & = & sqrt{t(t+1)} \
& Leftrightarrow & \
t =frac{1}{3} & mbox{ or } & t= 0 \
& stackrel{x = a + t(a-b)}{Leftrightarrow} & \
boxed{x = a + frac{1}{3}(a-b)} &mbox{ or } & boxed{x= a}
end{eqnarray*}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048392%2fhow-would-i-go-about-solving-for-x-in-fracx-a-sqrtx-ax-b-sqrtx-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use the formula: $a^3+b^3=(a+b)(a^2-ab+b^2)$.
We get:
$$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=\
frac{(sqrt{x-a}+sqrt{x-b})((x-a)-sqrt{(x-a)(x-b)}+(x-b))}{sqrt{x-a}+sqrt{x-b}}=\
2x-a-b-sqrt{(x-a)(x-b)}=a-b Rightarrow \
(x-a)(x-b)=(2x-2a)^2 Rightarrow \
3x^2+(b-7a)x+4a^2-ab=0 Rightarrow \
x=frac{(7a-b)pm sqrt{(b-7a)^2-12(4a^2-ab)}}{6}=\
frac{7a-bpm (a-b)}{6}=\
frac{4a-b}{3}; a.$$
$endgroup$
add a comment |
$begingroup$
Use the formula: $a^3+b^3=(a+b)(a^2-ab+b^2)$.
We get:
$$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=\
frac{(sqrt{x-a}+sqrt{x-b})((x-a)-sqrt{(x-a)(x-b)}+(x-b))}{sqrt{x-a}+sqrt{x-b}}=\
2x-a-b-sqrt{(x-a)(x-b)}=a-b Rightarrow \
(x-a)(x-b)=(2x-2a)^2 Rightarrow \
3x^2+(b-7a)x+4a^2-ab=0 Rightarrow \
x=frac{(7a-b)pm sqrt{(b-7a)^2-12(4a^2-ab)}}{6}=\
frac{7a-bpm (a-b)}{6}=\
frac{4a-b}{3}; a.$$
$endgroup$
add a comment |
$begingroup$
Use the formula: $a^3+b^3=(a+b)(a^2-ab+b^2)$.
We get:
$$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=\
frac{(sqrt{x-a}+sqrt{x-b})((x-a)-sqrt{(x-a)(x-b)}+(x-b))}{sqrt{x-a}+sqrt{x-b}}=\
2x-a-b-sqrt{(x-a)(x-b)}=a-b Rightarrow \
(x-a)(x-b)=(2x-2a)^2 Rightarrow \
3x^2+(b-7a)x+4a^2-ab=0 Rightarrow \
x=frac{(7a-b)pm sqrt{(b-7a)^2-12(4a^2-ab)}}{6}=\
frac{7a-bpm (a-b)}{6}=\
frac{4a-b}{3}; a.$$
$endgroup$
Use the formula: $a^3+b^3=(a+b)(a^2-ab+b^2)$.
We get:
$$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=\
frac{(sqrt{x-a}+sqrt{x-b})((x-a)-sqrt{(x-a)(x-b)}+(x-b))}{sqrt{x-a}+sqrt{x-b}}=\
2x-a-b-sqrt{(x-a)(x-b)}=a-b Rightarrow \
(x-a)(x-b)=(2x-2a)^2 Rightarrow \
3x^2+(b-7a)x+4a^2-ab=0 Rightarrow \
x=frac{(7a-b)pm sqrt{(b-7a)^2-12(4a^2-ab)}}{6}=\
frac{7a-bpm (a-b)}{6}=\
frac{4a-b}{3}; a.$$
answered Dec 21 '18 at 11:21
farruhotafarruhota
20k2738
20k2738
add a comment |
add a comment |
$begingroup$
Hint: Define $$u=sqrt{x-a}\w=sqrt{x-b}$$therefore $${w^3+u^3over u+w}=w^2-u^2$$which yields to $$2u^3=uw^2-u^2w$$one answer is $u=0$ or $x=a$ which is valid. The others can be found by solving $$2u^2=w^2-uw$$or $$u^2+uw=a-b$$by substituting we obtain $$x-a+sqrt{(x-a)(x-b)}=a-b$$
$endgroup$
add a comment |
$begingroup$
Hint: Define $$u=sqrt{x-a}\w=sqrt{x-b}$$therefore $${w^3+u^3over u+w}=w^2-u^2$$which yields to $$2u^3=uw^2-u^2w$$one answer is $u=0$ or $x=a$ which is valid. The others can be found by solving $$2u^2=w^2-uw$$or $$u^2+uw=a-b$$by substituting we obtain $$x-a+sqrt{(x-a)(x-b)}=a-b$$
$endgroup$
add a comment |
$begingroup$
Hint: Define $$u=sqrt{x-a}\w=sqrt{x-b}$$therefore $${w^3+u^3over u+w}=w^2-u^2$$which yields to $$2u^3=uw^2-u^2w$$one answer is $u=0$ or $x=a$ which is valid. The others can be found by solving $$2u^2=w^2-uw$$or $$u^2+uw=a-b$$by substituting we obtain $$x-a+sqrt{(x-a)(x-b)}=a-b$$
$endgroup$
Hint: Define $$u=sqrt{x-a}\w=sqrt{x-b}$$therefore $${w^3+u^3over u+w}=w^2-u^2$$which yields to $$2u^3=uw^2-u^2w$$one answer is $u=0$ or $x=a$ which is valid. The others can be found by solving $$2u^2=w^2-uw$$or $$u^2+uw=a-b$$by substituting we obtain $$x-a+sqrt{(x-a)(x-b)}=a-b$$
answered Dec 21 '18 at 11:42
Mostafa AyazMostafa Ayaz
15.3k3939
15.3k3939
add a comment |
add a comment |
$begingroup$
Hint: Write your equation in the form
$$sqrt{x-a}(x+b-2a)=sqrt{x-b}(a-x)$$ and square it. We get in the case of $$a>b$$ $$x=a$$ or $$x=frac{1}{3}(4a-b)$$
$endgroup$
add a comment |
$begingroup$
Hint: Write your equation in the form
$$sqrt{x-a}(x+b-2a)=sqrt{x-b}(a-x)$$ and square it. We get in the case of $$a>b$$ $$x=a$$ or $$x=frac{1}{3}(4a-b)$$
$endgroup$
add a comment |
$begingroup$
Hint: Write your equation in the form
$$sqrt{x-a}(x+b-2a)=sqrt{x-b}(a-x)$$ and square it. We get in the case of $$a>b$$ $$x=a$$ or $$x=frac{1}{3}(4a-b)$$
$endgroup$
Hint: Write your equation in the form
$$sqrt{x-a}(x+b-2a)=sqrt{x-b}(a-x)$$ and square it. We get in the case of $$a>b$$ $$x=a$$ or $$x=frac{1}{3}(4a-b)$$
edited Dec 21 '18 at 11:10
answered Dec 21 '18 at 11:00
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
74.8k42865
74.8k42865
add a comment |
add a comment |
$begingroup$
Another way is as follows:
- Set $boxed{x = a + t(a-b)}$ for $t geq 0$
$$begin{eqnarray*}
frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}} & = & a-b \
& Leftrightarrow & \
frac{t(a-b)sqrt{t(a-b)}+(t+1)(a-b)sqrt{(t+1)(a-b)}}{sqrt{t(a-b)}+sqrt{(t+1)(a-b)}} & = & a-b \
& Leftrightarrow & \
frac{tsqrt{t}+(t+1)sqrt{t+1}}{sqrt{t}+sqrt{t+1}} & = & 1 \
& Leftrightarrow & \
(t(sqrt{t+1} + sqrt{t})+sqrt{t+1})(sqrt{t+1}-sqrt{t}) & = & 1 \
& Leftrightarrow & \
t+ t+1 - sqrt{t(t+1)} & = & 1 \
& Leftrightarrow & \
2t & = & sqrt{t(t+1)} \
& Leftrightarrow & \
t =frac{1}{3} & mbox{ or } & t= 0 \
& stackrel{x = a + t(a-b)}{Leftrightarrow} & \
boxed{x = a + frac{1}{3}(a-b)} &mbox{ or } & boxed{x= a}
end{eqnarray*}$$
$endgroup$
add a comment |
$begingroup$
Another way is as follows:
- Set $boxed{x = a + t(a-b)}$ for $t geq 0$
$$begin{eqnarray*}
frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}} & = & a-b \
& Leftrightarrow & \
frac{t(a-b)sqrt{t(a-b)}+(t+1)(a-b)sqrt{(t+1)(a-b)}}{sqrt{t(a-b)}+sqrt{(t+1)(a-b)}} & = & a-b \
& Leftrightarrow & \
frac{tsqrt{t}+(t+1)sqrt{t+1}}{sqrt{t}+sqrt{t+1}} & = & 1 \
& Leftrightarrow & \
(t(sqrt{t+1} + sqrt{t})+sqrt{t+1})(sqrt{t+1}-sqrt{t}) & = & 1 \
& Leftrightarrow & \
t+ t+1 - sqrt{t(t+1)} & = & 1 \
& Leftrightarrow & \
2t & = & sqrt{t(t+1)} \
& Leftrightarrow & \
t =frac{1}{3} & mbox{ or } & t= 0 \
& stackrel{x = a + t(a-b)}{Leftrightarrow} & \
boxed{x = a + frac{1}{3}(a-b)} &mbox{ or } & boxed{x= a}
end{eqnarray*}$$
$endgroup$
add a comment |
$begingroup$
Another way is as follows:
- Set $boxed{x = a + t(a-b)}$ for $t geq 0$
$$begin{eqnarray*}
frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}} & = & a-b \
& Leftrightarrow & \
frac{t(a-b)sqrt{t(a-b)}+(t+1)(a-b)sqrt{(t+1)(a-b)}}{sqrt{t(a-b)}+sqrt{(t+1)(a-b)}} & = & a-b \
& Leftrightarrow & \
frac{tsqrt{t}+(t+1)sqrt{t+1}}{sqrt{t}+sqrt{t+1}} & = & 1 \
& Leftrightarrow & \
(t(sqrt{t+1} + sqrt{t})+sqrt{t+1})(sqrt{t+1}-sqrt{t}) & = & 1 \
& Leftrightarrow & \
t+ t+1 - sqrt{t(t+1)} & = & 1 \
& Leftrightarrow & \
2t & = & sqrt{t(t+1)} \
& Leftrightarrow & \
t =frac{1}{3} & mbox{ or } & t= 0 \
& stackrel{x = a + t(a-b)}{Leftrightarrow} & \
boxed{x = a + frac{1}{3}(a-b)} &mbox{ or } & boxed{x= a}
end{eqnarray*}$$
$endgroup$
Another way is as follows:
- Set $boxed{x = a + t(a-b)}$ for $t geq 0$
$$begin{eqnarray*}
frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}} & = & a-b \
& Leftrightarrow & \
frac{t(a-b)sqrt{t(a-b)}+(t+1)(a-b)sqrt{(t+1)(a-b)}}{sqrt{t(a-b)}+sqrt{(t+1)(a-b)}} & = & a-b \
& Leftrightarrow & \
frac{tsqrt{t}+(t+1)sqrt{t+1}}{sqrt{t}+sqrt{t+1}} & = & 1 \
& Leftrightarrow & \
(t(sqrt{t+1} + sqrt{t})+sqrt{t+1})(sqrt{t+1}-sqrt{t}) & = & 1 \
& Leftrightarrow & \
t+ t+1 - sqrt{t(t+1)} & = & 1 \
& Leftrightarrow & \
2t & = & sqrt{t(t+1)} \
& Leftrightarrow & \
t =frac{1}{3} & mbox{ or } & t= 0 \
& stackrel{x = a + t(a-b)}{Leftrightarrow} & \
boxed{x = a + frac{1}{3}(a-b)} &mbox{ or } & boxed{x= a}
end{eqnarray*}$$
answered Dec 21 '18 at 15:18
trancelocationtrancelocation
10.7k1723
10.7k1723
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048392%2fhow-would-i-go-about-solving-for-x-in-fracx-a-sqrtx-ax-b-sqrtx-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$(x-a)sqrt{x-a}=(sqrt{x-a})^3$ and $(x-b)sqrt{x-b}=(sqrt{x-})^3$.
$endgroup$
– Nosrati
Dec 21 '18 at 10:58
$begingroup$
Split the numerator, then rationalize and see that you get $((x-a)-(x-b))^2$ in the numerator
$endgroup$
– Yadati Kiran
Dec 21 '18 at 10:59