How would I go about solving for $x$ in $frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=a-b$?












1












$begingroup$


The question



This is a homework question. Given the following, I am to solve for $x$ in terms of $a$ and $b$:



$$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=a-b;a>b.$$



My attempt



Although I see the pattern of multiple occurrences of $(x-a)$, $(x-b)$ I can't see any way to simplify the fraction further, so I go on to simplify the expression by multiplying by $sqrt{x-a}+sqrt{x-b}$:



$$begin{align*}
(x-a)sqrt{x-a}+(x-b)sqrt{x-b}&=(a-b)(sqrt{x-a}+sqrt{x-b})\
&=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}
end{align*}$$



Now I have the following:



$$(x-a)sqrt{x-a}+(x-b)sqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$



Simplifying the RHS as I was out of ideas at that point:



$$xsqrt{x-a}-asqrt{x-a}+xsqrt{x-b}-bsqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$



I noticed that all one of the common factors $sqrt{x-a},sqrt{x-b}$ so I tried to isolate them and factor them out -- that is, all $sqrt{x-b}$ terms on one side and $sqrt{x-a}$ terms on the other.



$$sqrt{x-b}(x-a)=sqrt{x-a}(2a-b-x)$$



I tried to then square both sides, but that led to quite a mess.



$$(x-b)(x^2-2ax+a^2)=(x-a)(4a^2-4ab+2bx-4ax+b^2+x^2)$$



I'm afraid to even begin trying to simplifying this. I'm convinced I'm going about it in the wrong way.



The $a>b$ hint is interesting, but I have no clue what implication it may have here.



I think the $(x-a)sqrt {x-a}$ patterns may mean something, perhaps I could do something with $asqrt a=sqrt{a^3}$, but at this point it is probably a dead end.



I appreciate any help.










share|cite|improve this question









$endgroup$












  • $begingroup$
    $(x-a)sqrt{x-a}=(sqrt{x-a})^3$ and $(x-b)sqrt{x-b}=(sqrt{x-})^3$.
    $endgroup$
    – Nosrati
    Dec 21 '18 at 10:58












  • $begingroup$
    Split the numerator, then rationalize and see that you get $((x-a)-(x-b))^2$ in the numerator
    $endgroup$
    – Yadati Kiran
    Dec 21 '18 at 10:59


















1












$begingroup$


The question



This is a homework question. Given the following, I am to solve for $x$ in terms of $a$ and $b$:



$$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=a-b;a>b.$$



My attempt



Although I see the pattern of multiple occurrences of $(x-a)$, $(x-b)$ I can't see any way to simplify the fraction further, so I go on to simplify the expression by multiplying by $sqrt{x-a}+sqrt{x-b}$:



$$begin{align*}
(x-a)sqrt{x-a}+(x-b)sqrt{x-b}&=(a-b)(sqrt{x-a}+sqrt{x-b})\
&=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}
end{align*}$$



Now I have the following:



$$(x-a)sqrt{x-a}+(x-b)sqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$



Simplifying the RHS as I was out of ideas at that point:



$$xsqrt{x-a}-asqrt{x-a}+xsqrt{x-b}-bsqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$



I noticed that all one of the common factors $sqrt{x-a},sqrt{x-b}$ so I tried to isolate them and factor them out -- that is, all $sqrt{x-b}$ terms on one side and $sqrt{x-a}$ terms on the other.



$$sqrt{x-b}(x-a)=sqrt{x-a}(2a-b-x)$$



I tried to then square both sides, but that led to quite a mess.



$$(x-b)(x^2-2ax+a^2)=(x-a)(4a^2-4ab+2bx-4ax+b^2+x^2)$$



I'm afraid to even begin trying to simplifying this. I'm convinced I'm going about it in the wrong way.



The $a>b$ hint is interesting, but I have no clue what implication it may have here.



I think the $(x-a)sqrt {x-a}$ patterns may mean something, perhaps I could do something with $asqrt a=sqrt{a^3}$, but at this point it is probably a dead end.



I appreciate any help.










share|cite|improve this question









$endgroup$












  • $begingroup$
    $(x-a)sqrt{x-a}=(sqrt{x-a})^3$ and $(x-b)sqrt{x-b}=(sqrt{x-})^3$.
    $endgroup$
    – Nosrati
    Dec 21 '18 at 10:58












  • $begingroup$
    Split the numerator, then rationalize and see that you get $((x-a)-(x-b))^2$ in the numerator
    $endgroup$
    – Yadati Kiran
    Dec 21 '18 at 10:59
















1












1








1





$begingroup$


The question



This is a homework question. Given the following, I am to solve for $x$ in terms of $a$ and $b$:



$$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=a-b;a>b.$$



My attempt



Although I see the pattern of multiple occurrences of $(x-a)$, $(x-b)$ I can't see any way to simplify the fraction further, so I go on to simplify the expression by multiplying by $sqrt{x-a}+sqrt{x-b}$:



$$begin{align*}
(x-a)sqrt{x-a}+(x-b)sqrt{x-b}&=(a-b)(sqrt{x-a}+sqrt{x-b})\
&=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}
end{align*}$$



Now I have the following:



$$(x-a)sqrt{x-a}+(x-b)sqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$



Simplifying the RHS as I was out of ideas at that point:



$$xsqrt{x-a}-asqrt{x-a}+xsqrt{x-b}-bsqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$



I noticed that all one of the common factors $sqrt{x-a},sqrt{x-b}$ so I tried to isolate them and factor them out -- that is, all $sqrt{x-b}$ terms on one side and $sqrt{x-a}$ terms on the other.



$$sqrt{x-b}(x-a)=sqrt{x-a}(2a-b-x)$$



I tried to then square both sides, but that led to quite a mess.



$$(x-b)(x^2-2ax+a^2)=(x-a)(4a^2-4ab+2bx-4ax+b^2+x^2)$$



I'm afraid to even begin trying to simplifying this. I'm convinced I'm going about it in the wrong way.



The $a>b$ hint is interesting, but I have no clue what implication it may have here.



I think the $(x-a)sqrt {x-a}$ patterns may mean something, perhaps I could do something with $asqrt a=sqrt{a^3}$, but at this point it is probably a dead end.



I appreciate any help.










share|cite|improve this question









$endgroup$




The question



This is a homework question. Given the following, I am to solve for $x$ in terms of $a$ and $b$:



$$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=a-b;a>b.$$



My attempt



Although I see the pattern of multiple occurrences of $(x-a)$, $(x-b)$ I can't see any way to simplify the fraction further, so I go on to simplify the expression by multiplying by $sqrt{x-a}+sqrt{x-b}$:



$$begin{align*}
(x-a)sqrt{x-a}+(x-b)sqrt{x-b}&=(a-b)(sqrt{x-a}+sqrt{x-b})\
&=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}
end{align*}$$



Now I have the following:



$$(x-a)sqrt{x-a}+(x-b)sqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$



Simplifying the RHS as I was out of ideas at that point:



$$xsqrt{x-a}-asqrt{x-a}+xsqrt{x-b}-bsqrt{x-b}=asqrt{x-a}+asqrt{x-b}-bsqrt{x-a}-bsqrt{x-b}$$



I noticed that all one of the common factors $sqrt{x-a},sqrt{x-b}$ so I tried to isolate them and factor them out -- that is, all $sqrt{x-b}$ terms on one side and $sqrt{x-a}$ terms on the other.



$$sqrt{x-b}(x-a)=sqrt{x-a}(2a-b-x)$$



I tried to then square both sides, but that led to quite a mess.



$$(x-b)(x^2-2ax+a^2)=(x-a)(4a^2-4ab+2bx-4ax+b^2+x^2)$$



I'm afraid to even begin trying to simplifying this. I'm convinced I'm going about it in the wrong way.



The $a>b$ hint is interesting, but I have no clue what implication it may have here.



I think the $(x-a)sqrt {x-a}$ patterns may mean something, perhaps I could do something with $asqrt a=sqrt{a^3}$, but at this point it is probably a dead end.



I appreciate any help.







algebra-precalculus radicals fractions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 21 '18 at 10:54









javan.gjavan.g

61




61












  • $begingroup$
    $(x-a)sqrt{x-a}=(sqrt{x-a})^3$ and $(x-b)sqrt{x-b}=(sqrt{x-})^3$.
    $endgroup$
    – Nosrati
    Dec 21 '18 at 10:58












  • $begingroup$
    Split the numerator, then rationalize and see that you get $((x-a)-(x-b))^2$ in the numerator
    $endgroup$
    – Yadati Kiran
    Dec 21 '18 at 10:59




















  • $begingroup$
    $(x-a)sqrt{x-a}=(sqrt{x-a})^3$ and $(x-b)sqrt{x-b}=(sqrt{x-})^3$.
    $endgroup$
    – Nosrati
    Dec 21 '18 at 10:58












  • $begingroup$
    Split the numerator, then rationalize and see that you get $((x-a)-(x-b))^2$ in the numerator
    $endgroup$
    – Yadati Kiran
    Dec 21 '18 at 10:59


















$begingroup$
$(x-a)sqrt{x-a}=(sqrt{x-a})^3$ and $(x-b)sqrt{x-b}=(sqrt{x-})^3$.
$endgroup$
– Nosrati
Dec 21 '18 at 10:58






$begingroup$
$(x-a)sqrt{x-a}=(sqrt{x-a})^3$ and $(x-b)sqrt{x-b}=(sqrt{x-})^3$.
$endgroup$
– Nosrati
Dec 21 '18 at 10:58














$begingroup$
Split the numerator, then rationalize and see that you get $((x-a)-(x-b))^2$ in the numerator
$endgroup$
– Yadati Kiran
Dec 21 '18 at 10:59






$begingroup$
Split the numerator, then rationalize and see that you get $((x-a)-(x-b))^2$ in the numerator
$endgroup$
– Yadati Kiran
Dec 21 '18 at 10:59












4 Answers
4






active

oldest

votes


















2












$begingroup$

Use the formula: $a^3+b^3=(a+b)(a^2-ab+b^2)$.



We get:
$$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=\
frac{(sqrt{x-a}+sqrt{x-b})((x-a)-sqrt{(x-a)(x-b)}+(x-b))}{sqrt{x-a}+sqrt{x-b}}=\
2x-a-b-sqrt{(x-a)(x-b)}=a-b Rightarrow \
(x-a)(x-b)=(2x-2a)^2 Rightarrow \
3x^2+(b-7a)x+4a^2-ab=0 Rightarrow \
x=frac{(7a-b)pm sqrt{(b-7a)^2-12(4a^2-ab)}}{6}=\
frac{7a-bpm (a-b)}{6}=\
frac{4a-b}{3}; a.$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Hint: Define $$u=sqrt{x-a}\w=sqrt{x-b}$$therefore $${w^3+u^3over u+w}=w^2-u^2$$which yields to $$2u^3=uw^2-u^2w$$one answer is $u=0$ or $x=a$ which is valid. The others can be found by solving $$2u^2=w^2-uw$$or $$u^2+uw=a-b$$by substituting we obtain $$x-a+sqrt{(x-a)(x-b)}=a-b$$






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      Hint: Write your equation in the form
      $$sqrt{x-a}(x+b-2a)=sqrt{x-b}(a-x)$$ and square it. We get in the case of $$a>b$$ $$x=a$$ or $$x=frac{1}{3}(4a-b)$$






      share|cite|improve this answer











      $endgroup$





















        0












        $begingroup$

        Another way is as follows:




        • Set $boxed{x = a + t(a-b)}$ for $t geq 0$
          $$begin{eqnarray*}
          frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}} & = & a-b \
          & Leftrightarrow & \
          frac{t(a-b)sqrt{t(a-b)}+(t+1)(a-b)sqrt{(t+1)(a-b)}}{sqrt{t(a-b)}+sqrt{(t+1)(a-b)}} & = & a-b \
          & Leftrightarrow & \
          frac{tsqrt{t}+(t+1)sqrt{t+1}}{sqrt{t}+sqrt{t+1}} & = & 1 \
          & Leftrightarrow & \
          (t(sqrt{t+1} + sqrt{t})+sqrt{t+1})(sqrt{t+1}-sqrt{t}) & = & 1 \
          & Leftrightarrow & \
          t+ t+1 - sqrt{t(t+1)} & = & 1 \
          & Leftrightarrow & \
          2t & = & sqrt{t(t+1)} \
          & Leftrightarrow & \
          t =frac{1}{3} & mbox{ or } & t= 0 \
          & stackrel{x = a + t(a-b)}{Leftrightarrow} & \
          boxed{x = a + frac{1}{3}(a-b)} &mbox{ or } & boxed{x= a}
          end{eqnarray*}$$







        share|cite|improve this answer









        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048392%2fhow-would-i-go-about-solving-for-x-in-fracx-a-sqrtx-ax-b-sqrtx-b%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Use the formula: $a^3+b^3=(a+b)(a^2-ab+b^2)$.



          We get:
          $$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=\
          frac{(sqrt{x-a}+sqrt{x-b})((x-a)-sqrt{(x-a)(x-b)}+(x-b))}{sqrt{x-a}+sqrt{x-b}}=\
          2x-a-b-sqrt{(x-a)(x-b)}=a-b Rightarrow \
          (x-a)(x-b)=(2x-2a)^2 Rightarrow \
          3x^2+(b-7a)x+4a^2-ab=0 Rightarrow \
          x=frac{(7a-b)pm sqrt{(b-7a)^2-12(4a^2-ab)}}{6}=\
          frac{7a-bpm (a-b)}{6}=\
          frac{4a-b}{3}; a.$$






          share|cite|improve this answer









          $endgroup$


















            2












            $begingroup$

            Use the formula: $a^3+b^3=(a+b)(a^2-ab+b^2)$.



            We get:
            $$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=\
            frac{(sqrt{x-a}+sqrt{x-b})((x-a)-sqrt{(x-a)(x-b)}+(x-b))}{sqrt{x-a}+sqrt{x-b}}=\
            2x-a-b-sqrt{(x-a)(x-b)}=a-b Rightarrow \
            (x-a)(x-b)=(2x-2a)^2 Rightarrow \
            3x^2+(b-7a)x+4a^2-ab=0 Rightarrow \
            x=frac{(7a-b)pm sqrt{(b-7a)^2-12(4a^2-ab)}}{6}=\
            frac{7a-bpm (a-b)}{6}=\
            frac{4a-b}{3}; a.$$






            share|cite|improve this answer









            $endgroup$
















              2












              2








              2





              $begingroup$

              Use the formula: $a^3+b^3=(a+b)(a^2-ab+b^2)$.



              We get:
              $$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=\
              frac{(sqrt{x-a}+sqrt{x-b})((x-a)-sqrt{(x-a)(x-b)}+(x-b))}{sqrt{x-a}+sqrt{x-b}}=\
              2x-a-b-sqrt{(x-a)(x-b)}=a-b Rightarrow \
              (x-a)(x-b)=(2x-2a)^2 Rightarrow \
              3x^2+(b-7a)x+4a^2-ab=0 Rightarrow \
              x=frac{(7a-b)pm sqrt{(b-7a)^2-12(4a^2-ab)}}{6}=\
              frac{7a-bpm (a-b)}{6}=\
              frac{4a-b}{3}; a.$$






              share|cite|improve this answer









              $endgroup$



              Use the formula: $a^3+b^3=(a+b)(a^2-ab+b^2)$.



              We get:
              $$frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}}=\
              frac{(sqrt{x-a}+sqrt{x-b})((x-a)-sqrt{(x-a)(x-b)}+(x-b))}{sqrt{x-a}+sqrt{x-b}}=\
              2x-a-b-sqrt{(x-a)(x-b)}=a-b Rightarrow \
              (x-a)(x-b)=(2x-2a)^2 Rightarrow \
              3x^2+(b-7a)x+4a^2-ab=0 Rightarrow \
              x=frac{(7a-b)pm sqrt{(b-7a)^2-12(4a^2-ab)}}{6}=\
              frac{7a-bpm (a-b)}{6}=\
              frac{4a-b}{3}; a.$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Dec 21 '18 at 11:21









              farruhotafarruhota

              20k2738




              20k2738























                  1












                  $begingroup$

                  Hint: Define $$u=sqrt{x-a}\w=sqrt{x-b}$$therefore $${w^3+u^3over u+w}=w^2-u^2$$which yields to $$2u^3=uw^2-u^2w$$one answer is $u=0$ or $x=a$ which is valid. The others can be found by solving $$2u^2=w^2-uw$$or $$u^2+uw=a-b$$by substituting we obtain $$x-a+sqrt{(x-a)(x-b)}=a-b$$






                  share|cite|improve this answer









                  $endgroup$


















                    1












                    $begingroup$

                    Hint: Define $$u=sqrt{x-a}\w=sqrt{x-b}$$therefore $${w^3+u^3over u+w}=w^2-u^2$$which yields to $$2u^3=uw^2-u^2w$$one answer is $u=0$ or $x=a$ which is valid. The others can be found by solving $$2u^2=w^2-uw$$or $$u^2+uw=a-b$$by substituting we obtain $$x-a+sqrt{(x-a)(x-b)}=a-b$$






                    share|cite|improve this answer









                    $endgroup$
















                      1












                      1








                      1





                      $begingroup$

                      Hint: Define $$u=sqrt{x-a}\w=sqrt{x-b}$$therefore $${w^3+u^3over u+w}=w^2-u^2$$which yields to $$2u^3=uw^2-u^2w$$one answer is $u=0$ or $x=a$ which is valid. The others can be found by solving $$2u^2=w^2-uw$$or $$u^2+uw=a-b$$by substituting we obtain $$x-a+sqrt{(x-a)(x-b)}=a-b$$






                      share|cite|improve this answer









                      $endgroup$



                      Hint: Define $$u=sqrt{x-a}\w=sqrt{x-b}$$therefore $${w^3+u^3over u+w}=w^2-u^2$$which yields to $$2u^3=uw^2-u^2w$$one answer is $u=0$ or $x=a$ which is valid. The others can be found by solving $$2u^2=w^2-uw$$or $$u^2+uw=a-b$$by substituting we obtain $$x-a+sqrt{(x-a)(x-b)}=a-b$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Dec 21 '18 at 11:42









                      Mostafa AyazMostafa Ayaz

                      15.3k3939




                      15.3k3939























                          0












                          $begingroup$

                          Hint: Write your equation in the form
                          $$sqrt{x-a}(x+b-2a)=sqrt{x-b}(a-x)$$ and square it. We get in the case of $$a>b$$ $$x=a$$ or $$x=frac{1}{3}(4a-b)$$






                          share|cite|improve this answer











                          $endgroup$


















                            0












                            $begingroup$

                            Hint: Write your equation in the form
                            $$sqrt{x-a}(x+b-2a)=sqrt{x-b}(a-x)$$ and square it. We get in the case of $$a>b$$ $$x=a$$ or $$x=frac{1}{3}(4a-b)$$






                            share|cite|improve this answer











                            $endgroup$
















                              0












                              0








                              0





                              $begingroup$

                              Hint: Write your equation in the form
                              $$sqrt{x-a}(x+b-2a)=sqrt{x-b}(a-x)$$ and square it. We get in the case of $$a>b$$ $$x=a$$ or $$x=frac{1}{3}(4a-b)$$






                              share|cite|improve this answer











                              $endgroup$



                              Hint: Write your equation in the form
                              $$sqrt{x-a}(x+b-2a)=sqrt{x-b}(a-x)$$ and square it. We get in the case of $$a>b$$ $$x=a$$ or $$x=frac{1}{3}(4a-b)$$







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Dec 21 '18 at 11:10

























                              answered Dec 21 '18 at 11:00









                              Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                              74.8k42865




                              74.8k42865























                                  0












                                  $begingroup$

                                  Another way is as follows:




                                  • Set $boxed{x = a + t(a-b)}$ for $t geq 0$
                                    $$begin{eqnarray*}
                                    frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}} & = & a-b \
                                    & Leftrightarrow & \
                                    frac{t(a-b)sqrt{t(a-b)}+(t+1)(a-b)sqrt{(t+1)(a-b)}}{sqrt{t(a-b)}+sqrt{(t+1)(a-b)}} & = & a-b \
                                    & Leftrightarrow & \
                                    frac{tsqrt{t}+(t+1)sqrt{t+1}}{sqrt{t}+sqrt{t+1}} & = & 1 \
                                    & Leftrightarrow & \
                                    (t(sqrt{t+1} + sqrt{t})+sqrt{t+1})(sqrt{t+1}-sqrt{t}) & = & 1 \
                                    & Leftrightarrow & \
                                    t+ t+1 - sqrt{t(t+1)} & = & 1 \
                                    & Leftrightarrow & \
                                    2t & = & sqrt{t(t+1)} \
                                    & Leftrightarrow & \
                                    t =frac{1}{3} & mbox{ or } & t= 0 \
                                    & stackrel{x = a + t(a-b)}{Leftrightarrow} & \
                                    boxed{x = a + frac{1}{3}(a-b)} &mbox{ or } & boxed{x= a}
                                    end{eqnarray*}$$







                                  share|cite|improve this answer









                                  $endgroup$


















                                    0












                                    $begingroup$

                                    Another way is as follows:




                                    • Set $boxed{x = a + t(a-b)}$ for $t geq 0$
                                      $$begin{eqnarray*}
                                      frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}} & = & a-b \
                                      & Leftrightarrow & \
                                      frac{t(a-b)sqrt{t(a-b)}+(t+1)(a-b)sqrt{(t+1)(a-b)}}{sqrt{t(a-b)}+sqrt{(t+1)(a-b)}} & = & a-b \
                                      & Leftrightarrow & \
                                      frac{tsqrt{t}+(t+1)sqrt{t+1}}{sqrt{t}+sqrt{t+1}} & = & 1 \
                                      & Leftrightarrow & \
                                      (t(sqrt{t+1} + sqrt{t})+sqrt{t+1})(sqrt{t+1}-sqrt{t}) & = & 1 \
                                      & Leftrightarrow & \
                                      t+ t+1 - sqrt{t(t+1)} & = & 1 \
                                      & Leftrightarrow & \
                                      2t & = & sqrt{t(t+1)} \
                                      & Leftrightarrow & \
                                      t =frac{1}{3} & mbox{ or } & t= 0 \
                                      & stackrel{x = a + t(a-b)}{Leftrightarrow} & \
                                      boxed{x = a + frac{1}{3}(a-b)} &mbox{ or } & boxed{x= a}
                                      end{eqnarray*}$$







                                    share|cite|improve this answer









                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      Another way is as follows:




                                      • Set $boxed{x = a + t(a-b)}$ for $t geq 0$
                                        $$begin{eqnarray*}
                                        frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}} & = & a-b \
                                        & Leftrightarrow & \
                                        frac{t(a-b)sqrt{t(a-b)}+(t+1)(a-b)sqrt{(t+1)(a-b)}}{sqrt{t(a-b)}+sqrt{(t+1)(a-b)}} & = & a-b \
                                        & Leftrightarrow & \
                                        frac{tsqrt{t}+(t+1)sqrt{t+1}}{sqrt{t}+sqrt{t+1}} & = & 1 \
                                        & Leftrightarrow & \
                                        (t(sqrt{t+1} + sqrt{t})+sqrt{t+1})(sqrt{t+1}-sqrt{t}) & = & 1 \
                                        & Leftrightarrow & \
                                        t+ t+1 - sqrt{t(t+1)} & = & 1 \
                                        & Leftrightarrow & \
                                        2t & = & sqrt{t(t+1)} \
                                        & Leftrightarrow & \
                                        t =frac{1}{3} & mbox{ or } & t= 0 \
                                        & stackrel{x = a + t(a-b)}{Leftrightarrow} & \
                                        boxed{x = a + frac{1}{3}(a-b)} &mbox{ or } & boxed{x= a}
                                        end{eqnarray*}$$







                                      share|cite|improve this answer









                                      $endgroup$



                                      Another way is as follows:




                                      • Set $boxed{x = a + t(a-b)}$ for $t geq 0$
                                        $$begin{eqnarray*}
                                        frac{(x-a)sqrt{x-a}+(x-b)sqrt{x-b}}{sqrt{x-a}+sqrt{x-b}} & = & a-b \
                                        & Leftrightarrow & \
                                        frac{t(a-b)sqrt{t(a-b)}+(t+1)(a-b)sqrt{(t+1)(a-b)}}{sqrt{t(a-b)}+sqrt{(t+1)(a-b)}} & = & a-b \
                                        & Leftrightarrow & \
                                        frac{tsqrt{t}+(t+1)sqrt{t+1}}{sqrt{t}+sqrt{t+1}} & = & 1 \
                                        & Leftrightarrow & \
                                        (t(sqrt{t+1} + sqrt{t})+sqrt{t+1})(sqrt{t+1}-sqrt{t}) & = & 1 \
                                        & Leftrightarrow & \
                                        t+ t+1 - sqrt{t(t+1)} & = & 1 \
                                        & Leftrightarrow & \
                                        2t & = & sqrt{t(t+1)} \
                                        & Leftrightarrow & \
                                        t =frac{1}{3} & mbox{ or } & t= 0 \
                                        & stackrel{x = a + t(a-b)}{Leftrightarrow} & \
                                        boxed{x = a + frac{1}{3}(a-b)} &mbox{ or } & boxed{x= a}
                                        end{eqnarray*}$$








                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Dec 21 '18 at 15:18









                                      trancelocationtrancelocation

                                      10.7k1723




                                      10.7k1723






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048392%2fhow-would-i-go-about-solving-for-x-in-fracx-a-sqrtx-ax-b-sqrtx-b%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Bressuire

                                          Cabo Verde

                                          Gyllenstierna