Write a subspace as a Kernel of a linear application
$begingroup$
I'd like to discuss the following problem :
Write U = { $f in V | hspace{0.3 cm}x^{2} | f$},where | means "divides", and $ V = mathbb{R}_{k}[x]$
As kernel of the linear application : $$ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$$
With k that doens't depend on s,
And write down the matrix of change basis in the canonical basis of $mathbb{R}_{k}[x]$ and $mathbb{R}^{s}$.
The second part should be quite easier once found what $F$ does.
My attempt was to pass in coordinates because the kernel of $ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$ should be equal to the kernel of $ phi : mathbb{R}^{k+1} longmapsto mathbb{R}^{s}$,
Trying to find $U$ in $mathbb{R}^{k+1}$ writing $$mathbb{R}^{k+1} = Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix} bigoplus Span {e_{1}, cdots e_{s} }$$ with $e_{3}$ missing, and ${a,b,cdots,k} in mathbb{R}$,
And defining $phi$ to be zero on the vectors of $Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix}$,
This will work ?
Any help would be appreciated, thank you all!
linear-algebra vector-spaces linear-transformations direct-sum
$endgroup$
add a comment |
$begingroup$
I'd like to discuss the following problem :
Write U = { $f in V | hspace{0.3 cm}x^{2} | f$},where | means "divides", and $ V = mathbb{R}_{k}[x]$
As kernel of the linear application : $$ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$$
With k that doens't depend on s,
And write down the matrix of change basis in the canonical basis of $mathbb{R}_{k}[x]$ and $mathbb{R}^{s}$.
The second part should be quite easier once found what $F$ does.
My attempt was to pass in coordinates because the kernel of $ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$ should be equal to the kernel of $ phi : mathbb{R}^{k+1} longmapsto mathbb{R}^{s}$,
Trying to find $U$ in $mathbb{R}^{k+1}$ writing $$mathbb{R}^{k+1} = Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix} bigoplus Span {e_{1}, cdots e_{s} }$$ with $e_{3}$ missing, and ${a,b,cdots,k} in mathbb{R}$,
And defining $phi$ to be zero on the vectors of $Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix}$,
This will work ?
Any help would be appreciated, thank you all!
linear-algebra vector-spaces linear-transformations direct-sum
$endgroup$
$begingroup$
Looks rather weird. What is ${Bbb R}_k[x]$? First study the structure of $U$.
$endgroup$
– Wuestenfux
Dec 21 '18 at 10:08
$begingroup$
@Wuestenfux U should be the ideal generated by $x^{2}$ ?
$endgroup$
– jacopoburelli
Dec 21 '18 at 10:09
$begingroup$
What about $Fcolon p(x)=p_0+p_1x+ldotsmapsto (p_0,p_1)$?
$endgroup$
– A.Γ.
Dec 21 '18 at 10:15
add a comment |
$begingroup$
I'd like to discuss the following problem :
Write U = { $f in V | hspace{0.3 cm}x^{2} | f$},where | means "divides", and $ V = mathbb{R}_{k}[x]$
As kernel of the linear application : $$ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$$
With k that doens't depend on s,
And write down the matrix of change basis in the canonical basis of $mathbb{R}_{k}[x]$ and $mathbb{R}^{s}$.
The second part should be quite easier once found what $F$ does.
My attempt was to pass in coordinates because the kernel of $ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$ should be equal to the kernel of $ phi : mathbb{R}^{k+1} longmapsto mathbb{R}^{s}$,
Trying to find $U$ in $mathbb{R}^{k+1}$ writing $$mathbb{R}^{k+1} = Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix} bigoplus Span {e_{1}, cdots e_{s} }$$ with $e_{3}$ missing, and ${a,b,cdots,k} in mathbb{R}$,
And defining $phi$ to be zero on the vectors of $Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix}$,
This will work ?
Any help would be appreciated, thank you all!
linear-algebra vector-spaces linear-transformations direct-sum
$endgroup$
I'd like to discuss the following problem :
Write U = { $f in V | hspace{0.3 cm}x^{2} | f$},where | means "divides", and $ V = mathbb{R}_{k}[x]$
As kernel of the linear application : $$ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$$
With k that doens't depend on s,
And write down the matrix of change basis in the canonical basis of $mathbb{R}_{k}[x]$ and $mathbb{R}^{s}$.
The second part should be quite easier once found what $F$ does.
My attempt was to pass in coordinates because the kernel of $ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$ should be equal to the kernel of $ phi : mathbb{R}^{k+1} longmapsto mathbb{R}^{s}$,
Trying to find $U$ in $mathbb{R}^{k+1}$ writing $$mathbb{R}^{k+1} = Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix} bigoplus Span {e_{1}, cdots e_{s} }$$ with $e_{3}$ missing, and ${a,b,cdots,k} in mathbb{R}$,
And defining $phi$ to be zero on the vectors of $Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix}$,
This will work ?
Any help would be appreciated, thank you all!
linear-algebra vector-spaces linear-transformations direct-sum
linear-algebra vector-spaces linear-transformations direct-sum
asked Dec 21 '18 at 10:04
jacopoburellijacopoburelli
1687
1687
$begingroup$
Looks rather weird. What is ${Bbb R}_k[x]$? First study the structure of $U$.
$endgroup$
– Wuestenfux
Dec 21 '18 at 10:08
$begingroup$
@Wuestenfux U should be the ideal generated by $x^{2}$ ?
$endgroup$
– jacopoburelli
Dec 21 '18 at 10:09
$begingroup$
What about $Fcolon p(x)=p_0+p_1x+ldotsmapsto (p_0,p_1)$?
$endgroup$
– A.Γ.
Dec 21 '18 at 10:15
add a comment |
$begingroup$
Looks rather weird. What is ${Bbb R}_k[x]$? First study the structure of $U$.
$endgroup$
– Wuestenfux
Dec 21 '18 at 10:08
$begingroup$
@Wuestenfux U should be the ideal generated by $x^{2}$ ?
$endgroup$
– jacopoburelli
Dec 21 '18 at 10:09
$begingroup$
What about $Fcolon p(x)=p_0+p_1x+ldotsmapsto (p_0,p_1)$?
$endgroup$
– A.Γ.
Dec 21 '18 at 10:15
$begingroup$
Looks rather weird. What is ${Bbb R}_k[x]$? First study the structure of $U$.
$endgroup$
– Wuestenfux
Dec 21 '18 at 10:08
$begingroup$
Looks rather weird. What is ${Bbb R}_k[x]$? First study the structure of $U$.
$endgroup$
– Wuestenfux
Dec 21 '18 at 10:08
$begingroup$
@Wuestenfux U should be the ideal generated by $x^{2}$ ?
$endgroup$
– jacopoburelli
Dec 21 '18 at 10:09
$begingroup$
@Wuestenfux U should be the ideal generated by $x^{2}$ ?
$endgroup$
– jacopoburelli
Dec 21 '18 at 10:09
$begingroup$
What about $Fcolon p(x)=p_0+p_1x+ldotsmapsto (p_0,p_1)$?
$endgroup$
– A.Γ.
Dec 21 '18 at 10:15
$begingroup$
What about $Fcolon p(x)=p_0+p_1x+ldotsmapsto (p_0,p_1)$?
$endgroup$
– A.Γ.
Dec 21 '18 at 10:15
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Observe that $U$ consists of all polynomials of the form $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2$.
Now let $s=2$ and define $F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{2}$ as follows:
If $f in V$ and $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2+a_1x+a_0$,
then $F(f):=(a_1,a_0)$.
Show that $F$ has the desired properties.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048358%2fwrite-a-subspace-as-a-kernel-of-a-linear-application%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Observe that $U$ consists of all polynomials of the form $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2$.
Now let $s=2$ and define $F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{2}$ as follows:
If $f in V$ and $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2+a_1x+a_0$,
then $F(f):=(a_1,a_0)$.
Show that $F$ has the desired properties.
$endgroup$
add a comment |
$begingroup$
Observe that $U$ consists of all polynomials of the form $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2$.
Now let $s=2$ and define $F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{2}$ as follows:
If $f in V$ and $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2+a_1x+a_0$,
then $F(f):=(a_1,a_0)$.
Show that $F$ has the desired properties.
$endgroup$
add a comment |
$begingroup$
Observe that $U$ consists of all polynomials of the form $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2$.
Now let $s=2$ and define $F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{2}$ as follows:
If $f in V$ and $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2+a_1x+a_0$,
then $F(f):=(a_1,a_0)$.
Show that $F$ has the desired properties.
$endgroup$
Observe that $U$ consists of all polynomials of the form $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2$.
Now let $s=2$ and define $F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{2}$ as follows:
If $f in V$ and $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2+a_1x+a_0$,
then $F(f):=(a_1,a_0)$.
Show that $F$ has the desired properties.
answered Dec 21 '18 at 10:18
FredFred
45.4k1848
45.4k1848
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048358%2fwrite-a-subspace-as-a-kernel-of-a-linear-application%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Looks rather weird. What is ${Bbb R}_k[x]$? First study the structure of $U$.
$endgroup$
– Wuestenfux
Dec 21 '18 at 10:08
$begingroup$
@Wuestenfux U should be the ideal generated by $x^{2}$ ?
$endgroup$
– jacopoburelli
Dec 21 '18 at 10:09
$begingroup$
What about $Fcolon p(x)=p_0+p_1x+ldotsmapsto (p_0,p_1)$?
$endgroup$
– A.Γ.
Dec 21 '18 at 10:15