Write a subspace as a Kernel of a linear application












1












$begingroup$


I'd like to discuss the following problem :



Write U = { $f in V | hspace{0.3 cm}x^{2} | f$},where | means "divides", and $ V = mathbb{R}_{k}[x]$



As kernel of the linear application : $$ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$$



With k that doens't depend on s,



And write down the matrix of change basis in the canonical basis of $mathbb{R}_{k}[x]$ and $mathbb{R}^{s}$.



The second part should be quite easier once found what $F$ does.



My attempt was to pass in coordinates because the kernel of $ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$ should be equal to the kernel of $ phi : mathbb{R}^{k+1} longmapsto mathbb{R}^{s}$,



Trying to find $U$ in $mathbb{R}^{k+1}$ writing $$mathbb{R}^{k+1} = Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix} bigoplus Span {e_{1}, cdots e_{s} }$$ with $e_{3}$ missing, and ${a,b,cdots,k} in mathbb{R}$,



And defining $phi$ to be zero on the vectors of $Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix}$,



This will work ?



Any help would be appreciated, thank you all!










share|cite|improve this question









$endgroup$












  • $begingroup$
    Looks rather weird. What is ${Bbb R}_k[x]$? First study the structure of $U$.
    $endgroup$
    – Wuestenfux
    Dec 21 '18 at 10:08












  • $begingroup$
    @Wuestenfux U should be the ideal generated by $x^{2}$ ?
    $endgroup$
    – jacopoburelli
    Dec 21 '18 at 10:09










  • $begingroup$
    What about $Fcolon p(x)=p_0+p_1x+ldotsmapsto (p_0,p_1)$?
    $endgroup$
    – A.Γ.
    Dec 21 '18 at 10:15
















1












$begingroup$


I'd like to discuss the following problem :



Write U = { $f in V | hspace{0.3 cm}x^{2} | f$},where | means "divides", and $ V = mathbb{R}_{k}[x]$



As kernel of the linear application : $$ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$$



With k that doens't depend on s,



And write down the matrix of change basis in the canonical basis of $mathbb{R}_{k}[x]$ and $mathbb{R}^{s}$.



The second part should be quite easier once found what $F$ does.



My attempt was to pass in coordinates because the kernel of $ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$ should be equal to the kernel of $ phi : mathbb{R}^{k+1} longmapsto mathbb{R}^{s}$,



Trying to find $U$ in $mathbb{R}^{k+1}$ writing $$mathbb{R}^{k+1} = Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix} bigoplus Span {e_{1}, cdots e_{s} }$$ with $e_{3}$ missing, and ${a,b,cdots,k} in mathbb{R}$,



And defining $phi$ to be zero on the vectors of $Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix}$,



This will work ?



Any help would be appreciated, thank you all!










share|cite|improve this question









$endgroup$












  • $begingroup$
    Looks rather weird. What is ${Bbb R}_k[x]$? First study the structure of $U$.
    $endgroup$
    – Wuestenfux
    Dec 21 '18 at 10:08












  • $begingroup$
    @Wuestenfux U should be the ideal generated by $x^{2}$ ?
    $endgroup$
    – jacopoburelli
    Dec 21 '18 at 10:09










  • $begingroup$
    What about $Fcolon p(x)=p_0+p_1x+ldotsmapsto (p_0,p_1)$?
    $endgroup$
    – A.Γ.
    Dec 21 '18 at 10:15














1












1








1





$begingroup$


I'd like to discuss the following problem :



Write U = { $f in V | hspace{0.3 cm}x^{2} | f$},where | means "divides", and $ V = mathbb{R}_{k}[x]$



As kernel of the linear application : $$ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$$



With k that doens't depend on s,



And write down the matrix of change basis in the canonical basis of $mathbb{R}_{k}[x]$ and $mathbb{R}^{s}$.



The second part should be quite easier once found what $F$ does.



My attempt was to pass in coordinates because the kernel of $ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$ should be equal to the kernel of $ phi : mathbb{R}^{k+1} longmapsto mathbb{R}^{s}$,



Trying to find $U$ in $mathbb{R}^{k+1}$ writing $$mathbb{R}^{k+1} = Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix} bigoplus Span {e_{1}, cdots e_{s} }$$ with $e_{3}$ missing, and ${a,b,cdots,k} in mathbb{R}$,



And defining $phi$ to be zero on the vectors of $Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix}$,



This will work ?



Any help would be appreciated, thank you all!










share|cite|improve this question









$endgroup$




I'd like to discuss the following problem :



Write U = { $f in V | hspace{0.3 cm}x^{2} | f$},where | means "divides", and $ V = mathbb{R}_{k}[x]$



As kernel of the linear application : $$ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$$



With k that doens't depend on s,



And write down the matrix of change basis in the canonical basis of $mathbb{R}_{k}[x]$ and $mathbb{R}^{s}$.



The second part should be quite easier once found what $F$ does.



My attempt was to pass in coordinates because the kernel of $ F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{s}$ should be equal to the kernel of $ phi : mathbb{R}^{k+1} longmapsto mathbb{R}^{s}$,



Trying to find $U$ in $mathbb{R}^{k+1}$ writing $$mathbb{R}^{k+1} = Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix} bigoplus Span {e_{1}, cdots e_{s} }$$ with $e_{3}$ missing, and ${a,b,cdots,k} in mathbb{R}$,



And defining $phi$ to be zero on the vectors of $Span begin{pmatrix}a \ b \ c+1 \ cdots \ k end{pmatrix}$,



This will work ?



Any help would be appreciated, thank you all!







linear-algebra vector-spaces linear-transformations direct-sum






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 21 '18 at 10:04









jacopoburellijacopoburelli

1687




1687












  • $begingroup$
    Looks rather weird. What is ${Bbb R}_k[x]$? First study the structure of $U$.
    $endgroup$
    – Wuestenfux
    Dec 21 '18 at 10:08












  • $begingroup$
    @Wuestenfux U should be the ideal generated by $x^{2}$ ?
    $endgroup$
    – jacopoburelli
    Dec 21 '18 at 10:09










  • $begingroup$
    What about $Fcolon p(x)=p_0+p_1x+ldotsmapsto (p_0,p_1)$?
    $endgroup$
    – A.Γ.
    Dec 21 '18 at 10:15


















  • $begingroup$
    Looks rather weird. What is ${Bbb R}_k[x]$? First study the structure of $U$.
    $endgroup$
    – Wuestenfux
    Dec 21 '18 at 10:08












  • $begingroup$
    @Wuestenfux U should be the ideal generated by $x^{2}$ ?
    $endgroup$
    – jacopoburelli
    Dec 21 '18 at 10:09










  • $begingroup$
    What about $Fcolon p(x)=p_0+p_1x+ldotsmapsto (p_0,p_1)$?
    $endgroup$
    – A.Γ.
    Dec 21 '18 at 10:15
















$begingroup$
Looks rather weird. What is ${Bbb R}_k[x]$? First study the structure of $U$.
$endgroup$
– Wuestenfux
Dec 21 '18 at 10:08






$begingroup$
Looks rather weird. What is ${Bbb R}_k[x]$? First study the structure of $U$.
$endgroup$
– Wuestenfux
Dec 21 '18 at 10:08














$begingroup$
@Wuestenfux U should be the ideal generated by $x^{2}$ ?
$endgroup$
– jacopoburelli
Dec 21 '18 at 10:09




$begingroup$
@Wuestenfux U should be the ideal generated by $x^{2}$ ?
$endgroup$
– jacopoburelli
Dec 21 '18 at 10:09












$begingroup$
What about $Fcolon p(x)=p_0+p_1x+ldotsmapsto (p_0,p_1)$?
$endgroup$
– A.Γ.
Dec 21 '18 at 10:15




$begingroup$
What about $Fcolon p(x)=p_0+p_1x+ldotsmapsto (p_0,p_1)$?
$endgroup$
– A.Γ.
Dec 21 '18 at 10:15










1 Answer
1






active

oldest

votes


















1












$begingroup$

Observe that $U$ consists of all polynomials of the form $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2$.



Now let $s=2$ and define $F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{2}$ as follows:



If $f in V$ and $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2+a_1x+a_0$,



then $F(f):=(a_1,a_0)$.



Show that $F$ has the desired properties.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048358%2fwrite-a-subspace-as-a-kernel-of-a-linear-application%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Observe that $U$ consists of all polynomials of the form $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2$.



    Now let $s=2$ and define $F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{2}$ as follows:



    If $f in V$ and $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2+a_1x+a_0$,



    then $F(f):=(a_1,a_0)$.



    Show that $F$ has the desired properties.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Observe that $U$ consists of all polynomials of the form $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2$.



      Now let $s=2$ and define $F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{2}$ as follows:



      If $f in V$ and $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2+a_1x+a_0$,



      then $F(f):=(a_1,a_0)$.



      Show that $F$ has the desired properties.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Observe that $U$ consists of all polynomials of the form $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2$.



        Now let $s=2$ and define $F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{2}$ as follows:



        If $f in V$ and $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2+a_1x+a_0$,



        then $F(f):=(a_1,a_0)$.



        Show that $F$ has the desired properties.






        share|cite|improve this answer









        $endgroup$



        Observe that $U$ consists of all polynomials of the form $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2$.



        Now let $s=2$ and define $F : mathbb{R}_{k}[x] longmapsto mathbb{R}^{2}$ as follows:



        If $f in V$ and $f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_2x^2+a_1x+a_0$,



        then $F(f):=(a_1,a_0)$.



        Show that $F$ has the desired properties.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 21 '18 at 10:18









        FredFred

        45.4k1848




        45.4k1848






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048358%2fwrite-a-subspace-as-a-kernel-of-a-linear-application%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna