$lim_{n to infty} dfrac{e^{c sqrt{ln n . ln ln n}}}{n^{epsilon}}=0$?
$begingroup$
The general rule is discussed here but that doesn't solve my problem. I want to prove that $$lim_{n to infty} dfrac{e^{c sqrt{ln n . ln ln n}}}{n^{epsilon}}=0$$ where $c>0$ a fixed constant and $epsilon>0$ is any small positive number. I used different methods like l'hopital, etc and I found by expanding $e^{f(n)}$ it is the easiest, but need to know :
$lim_{n to infty} dfrac{(ln n . ln ln n)^k}{n^{epsilon}}=0$ for any $k in mathbb{N}$. Does it imply $lim_{n to infty} dfrac{e^{c sqrt{ln n . ln ln n}}}{n^{epsilon}}=0$?
If not, any hint for solving $lim_{n to infty} dfrac{e^{c sqrt{ln n . ln ln n}}}{n^{epsilon}}=0$ would be appreciated.
limits analytic-number-theory
$endgroup$
add a comment |
$begingroup$
The general rule is discussed here but that doesn't solve my problem. I want to prove that $$lim_{n to infty} dfrac{e^{c sqrt{ln n . ln ln n}}}{n^{epsilon}}=0$$ where $c>0$ a fixed constant and $epsilon>0$ is any small positive number. I used different methods like l'hopital, etc and I found by expanding $e^{f(n)}$ it is the easiest, but need to know :
$lim_{n to infty} dfrac{(ln n . ln ln n)^k}{n^{epsilon}}=0$ for any $k in mathbb{N}$. Does it imply $lim_{n to infty} dfrac{e^{c sqrt{ln n . ln ln n}}}{n^{epsilon}}=0$?
If not, any hint for solving $lim_{n to infty} dfrac{e^{c sqrt{ln n . ln ln n}}}{n^{epsilon}}=0$ would be appreciated.
limits analytic-number-theory
$endgroup$
add a comment |
$begingroup$
The general rule is discussed here but that doesn't solve my problem. I want to prove that $$lim_{n to infty} dfrac{e^{c sqrt{ln n . ln ln n}}}{n^{epsilon}}=0$$ where $c>0$ a fixed constant and $epsilon>0$ is any small positive number. I used different methods like l'hopital, etc and I found by expanding $e^{f(n)}$ it is the easiest, but need to know :
$lim_{n to infty} dfrac{(ln n . ln ln n)^k}{n^{epsilon}}=0$ for any $k in mathbb{N}$. Does it imply $lim_{n to infty} dfrac{e^{c sqrt{ln n . ln ln n}}}{n^{epsilon}}=0$?
If not, any hint for solving $lim_{n to infty} dfrac{e^{c sqrt{ln n . ln ln n}}}{n^{epsilon}}=0$ would be appreciated.
limits analytic-number-theory
$endgroup$
The general rule is discussed here but that doesn't solve my problem. I want to prove that $$lim_{n to infty} dfrac{e^{c sqrt{ln n . ln ln n}}}{n^{epsilon}}=0$$ where $c>0$ a fixed constant and $epsilon>0$ is any small positive number. I used different methods like l'hopital, etc and I found by expanding $e^{f(n)}$ it is the easiest, but need to know :
$lim_{n to infty} dfrac{(ln n . ln ln n)^k}{n^{epsilon}}=0$ for any $k in mathbb{N}$. Does it imply $lim_{n to infty} dfrac{e^{c sqrt{ln n . ln ln n}}}{n^{epsilon}}=0$?
If not, any hint for solving $lim_{n to infty} dfrac{e^{c sqrt{ln n . ln ln n}}}{n^{epsilon}}=0$ would be appreciated.
limits analytic-number-theory
limits analytic-number-theory
asked Dec 21 '18 at 10:02
72D72D
512116
512116
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$displaystyle L=lim_{ntoinfty}frac{e^{csqrt{ln ncdotlnln n}}}{n^{epsilon}}$$
$displaystyleln L=lim_{ntoinfty}csqrt{ln ncdotlnln n}-epsilonln n$
$displaystyle=lim_{xtoinfty}csqrt{xcdotln x}-epsilon x$
$displaystyle=lim_{xtoinfty}frac{csqrt{frac{ln x}x}-epsilon}{frac1x}to-infty becauselim_{xtoinfty}frac{ln x}x=0 $
$therefore Lto e^{-infty}=0$
$endgroup$
add a comment |
$begingroup$
The statement is equivalent to $csqrt {ln, n lnln , n}-epsilon ln, n to -infty$. To show this write this as $-ln, n [frac {csqrt {ln, n lnln , n}} {-ln , n} +epsilon]$. Can you show that the expression inside goes to $epsilon$? It amounts to showing that $frac {ln ln ,n} {ln, n} to 0$ for which you can use L'Hopital's Rule.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048355%2flim-n-to-infty-dfracec-sqrt-ln-n-ln-ln-nn-epsilon-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$displaystyle L=lim_{ntoinfty}frac{e^{csqrt{ln ncdotlnln n}}}{n^{epsilon}}$$
$displaystyleln L=lim_{ntoinfty}csqrt{ln ncdotlnln n}-epsilonln n$
$displaystyle=lim_{xtoinfty}csqrt{xcdotln x}-epsilon x$
$displaystyle=lim_{xtoinfty}frac{csqrt{frac{ln x}x}-epsilon}{frac1x}to-infty becauselim_{xtoinfty}frac{ln x}x=0 $
$therefore Lto e^{-infty}=0$
$endgroup$
add a comment |
$begingroup$
$$displaystyle L=lim_{ntoinfty}frac{e^{csqrt{ln ncdotlnln n}}}{n^{epsilon}}$$
$displaystyleln L=lim_{ntoinfty}csqrt{ln ncdotlnln n}-epsilonln n$
$displaystyle=lim_{xtoinfty}csqrt{xcdotln x}-epsilon x$
$displaystyle=lim_{xtoinfty}frac{csqrt{frac{ln x}x}-epsilon}{frac1x}to-infty becauselim_{xtoinfty}frac{ln x}x=0 $
$therefore Lto e^{-infty}=0$
$endgroup$
add a comment |
$begingroup$
$$displaystyle L=lim_{ntoinfty}frac{e^{csqrt{ln ncdotlnln n}}}{n^{epsilon}}$$
$displaystyleln L=lim_{ntoinfty}csqrt{ln ncdotlnln n}-epsilonln n$
$displaystyle=lim_{xtoinfty}csqrt{xcdotln x}-epsilon x$
$displaystyle=lim_{xtoinfty}frac{csqrt{frac{ln x}x}-epsilon}{frac1x}to-infty becauselim_{xtoinfty}frac{ln x}x=0 $
$therefore Lto e^{-infty}=0$
$endgroup$
$$displaystyle L=lim_{ntoinfty}frac{e^{csqrt{ln ncdotlnln n}}}{n^{epsilon}}$$
$displaystyleln L=lim_{ntoinfty}csqrt{ln ncdotlnln n}-epsilonln n$
$displaystyle=lim_{xtoinfty}csqrt{xcdotln x}-epsilon x$
$displaystyle=lim_{xtoinfty}frac{csqrt{frac{ln x}x}-epsilon}{frac1x}to-infty becauselim_{xtoinfty}frac{ln x}x=0 $
$therefore Lto e^{-infty}=0$
answered Dec 21 '18 at 10:16
Shubham JohriShubham Johri
5,097717
5,097717
add a comment |
add a comment |
$begingroup$
The statement is equivalent to $csqrt {ln, n lnln , n}-epsilon ln, n to -infty$. To show this write this as $-ln, n [frac {csqrt {ln, n lnln , n}} {-ln , n} +epsilon]$. Can you show that the expression inside goes to $epsilon$? It amounts to showing that $frac {ln ln ,n} {ln, n} to 0$ for which you can use L'Hopital's Rule.
$endgroup$
add a comment |
$begingroup$
The statement is equivalent to $csqrt {ln, n lnln , n}-epsilon ln, n to -infty$. To show this write this as $-ln, n [frac {csqrt {ln, n lnln , n}} {-ln , n} +epsilon]$. Can you show that the expression inside goes to $epsilon$? It amounts to showing that $frac {ln ln ,n} {ln, n} to 0$ for which you can use L'Hopital's Rule.
$endgroup$
add a comment |
$begingroup$
The statement is equivalent to $csqrt {ln, n lnln , n}-epsilon ln, n to -infty$. To show this write this as $-ln, n [frac {csqrt {ln, n lnln , n}} {-ln , n} +epsilon]$. Can you show that the expression inside goes to $epsilon$? It amounts to showing that $frac {ln ln ,n} {ln, n} to 0$ for which you can use L'Hopital's Rule.
$endgroup$
The statement is equivalent to $csqrt {ln, n lnln , n}-epsilon ln, n to -infty$. To show this write this as $-ln, n [frac {csqrt {ln, n lnln , n}} {-ln , n} +epsilon]$. Can you show that the expression inside goes to $epsilon$? It amounts to showing that $frac {ln ln ,n} {ln, n} to 0$ for which you can use L'Hopital's Rule.
answered Dec 21 '18 at 10:14
Kavi Rama MurthyKavi Rama Murthy
57.3k42160
57.3k42160
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048355%2flim-n-to-infty-dfracec-sqrt-ln-n-ln-ln-nn-epsilon-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown