Prove $Tx=x$, for $xin H$, if and only if $(Tx,x)=|x|^2$ and $ker(I-T)=ker(I-T^*)$












0












$begingroup$



Let $H$ be a complex Hilbert space and $T:Hrightarrow H$ an operation such that $|T|leq 1$. Show that





  1. $Tx=x$ if and only if $(Tx,x)=|x|^2$


  2. $ker(I-T)=ker(I-T^*)$.




My attempt

1. $(Tx,x)=(x,x)=|x|^2$ if $Tx=x$. Conversely, WTS $|Tx-x|=0$ $forall xin H$.



We get $|Tx-x|=(Tx-x,Tx-x)=|Tx|^2-(x,Tx)$. But $|T|leq 1$ has not been used.



Please how do I proceed?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$



    Let $H$ be a complex Hilbert space and $T:Hrightarrow H$ an operation such that $|T|leq 1$. Show that





    1. $Tx=x$ if and only if $(Tx,x)=|x|^2$


    2. $ker(I-T)=ker(I-T^*)$.




    My attempt

    1. $(Tx,x)=(x,x)=|x|^2$ if $Tx=x$. Conversely, WTS $|Tx-x|=0$ $forall xin H$.



    We get $|Tx-x|=(Tx-x,Tx-x)=|Tx|^2-(x,Tx)$. But $|T|leq 1$ has not been used.



    Please how do I proceed?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$



      Let $H$ be a complex Hilbert space and $T:Hrightarrow H$ an operation such that $|T|leq 1$. Show that





      1. $Tx=x$ if and only if $(Tx,x)=|x|^2$


      2. $ker(I-T)=ker(I-T^*)$.




      My attempt

      1. $(Tx,x)=(x,x)=|x|^2$ if $Tx=x$. Conversely, WTS $|Tx-x|=0$ $forall xin H$.



      We get $|Tx-x|=(Tx-x,Tx-x)=|Tx|^2-(x,Tx)$. But $|T|leq 1$ has not been used.



      Please how do I proceed?










      share|cite|improve this question











      $endgroup$





      Let $H$ be a complex Hilbert space and $T:Hrightarrow H$ an operation such that $|T|leq 1$. Show that





      1. $Tx=x$ if and only if $(Tx,x)=|x|^2$


      2. $ker(I-T)=ker(I-T^*)$.




      My attempt

      1. $(Tx,x)=(x,x)=|x|^2$ if $Tx=x$. Conversely, WTS $|Tx-x|=0$ $forall xin H$.



      We get $|Tx-x|=(Tx-x,Tx-x)=|Tx|^2-(x,Tx)$. But $|T|leq 1$ has not been used.



      Please how do I proceed?







      linear-algebra functional-analysis operator-theory hilbert-spaces adjoint-operators






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 6 at 16:36







      Muhammad Mubarak

















      asked Jan 6 at 15:17









      Muhammad MubarakMuhammad Mubarak

      9810




      9810






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          For the first point, first off since $left langle Tx,xrightrangle=|x|^2$ you also have $left langle x,Txrightrangle = overline{|x|^2}=|x|^2$. Thus
          $$0 leqleftlangle Tx-x,Tx-xrightrangle =|Tx|^2+|x|^2-leftlangle Tx, xrightrangle-leftlangle x,Txrightrangle= |Tx|^2-|x|^2 $$
          Since $|T|leq 1$,
          $$0 leq |Tx|^2-|x|^2 leq |x|^2-|x|^2=0 $$
          and hence $Tx=x$.



          For the second point, using the first point
          begin{align*}xin ker(I-T)iff Tx=x iff left langle Tx,xrightrangle =|x|^2end{align*}



          Now observe that if $|T|leq 1$ then also $|T^*|leq 1$. Indeed,
          begin{align*}|T^*|&=sup_{xneq 0}frac{|T^*x|}{|x|}=sup_{xneq 0}frac{leftlangle T^*x,T^*xrightrangle^{1/2}}{|x|}=sup_{xneq 0}frac{leftlangle TT^*x,xrightrangle^{1/2}}{|x|}leq sup_{xneq 0}frac{|TT^*x|^{1/2}}{|x|^{1/2}}leq\
          &leqsup_{xneq 0}frac{|T^*x|^{1/2}}{|x|^{1/2}}=|T^*|^{1/2}end{align*}

          i.e. $|T^*|leq |T^*|^{1/2}$ and thus $|T^*|leq 1$ (remark: this argument can be easily extended to prove that in general $|T|=|T^*|$ for any bounded linear operator $T$).



          Therefore the first point may be applied to $T^*$, too.



          begin{align*}
          xin ker (I-T^*)iff T^*x=xiff left langle T^*x,xrightrangle = |x|^2iff left langle x,Txrightrangle =|x|^2
          end{align*}

          But $left langle Tx,xrightrangle =|x|^2 $ implies $left langle x, Txrightrangle = left langle Tx,xrightrangle =|x|^2$, as shown above, and viceversa, thus the equivalence is proved.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063982%2fprove-tx-x-for-x-in-h-if-and-only-if-tx-x-x-2-and-keri-t-ker%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            For the first point, first off since $left langle Tx,xrightrangle=|x|^2$ you also have $left langle x,Txrightrangle = overline{|x|^2}=|x|^2$. Thus
            $$0 leqleftlangle Tx-x,Tx-xrightrangle =|Tx|^2+|x|^2-leftlangle Tx, xrightrangle-leftlangle x,Txrightrangle= |Tx|^2-|x|^2 $$
            Since $|T|leq 1$,
            $$0 leq |Tx|^2-|x|^2 leq |x|^2-|x|^2=0 $$
            and hence $Tx=x$.



            For the second point, using the first point
            begin{align*}xin ker(I-T)iff Tx=x iff left langle Tx,xrightrangle =|x|^2end{align*}



            Now observe that if $|T|leq 1$ then also $|T^*|leq 1$. Indeed,
            begin{align*}|T^*|&=sup_{xneq 0}frac{|T^*x|}{|x|}=sup_{xneq 0}frac{leftlangle T^*x,T^*xrightrangle^{1/2}}{|x|}=sup_{xneq 0}frac{leftlangle TT^*x,xrightrangle^{1/2}}{|x|}leq sup_{xneq 0}frac{|TT^*x|^{1/2}}{|x|^{1/2}}leq\
            &leqsup_{xneq 0}frac{|T^*x|^{1/2}}{|x|^{1/2}}=|T^*|^{1/2}end{align*}

            i.e. $|T^*|leq |T^*|^{1/2}$ and thus $|T^*|leq 1$ (remark: this argument can be easily extended to prove that in general $|T|=|T^*|$ for any bounded linear operator $T$).



            Therefore the first point may be applied to $T^*$, too.



            begin{align*}
            xin ker (I-T^*)iff T^*x=xiff left langle T^*x,xrightrangle = |x|^2iff left langle x,Txrightrangle =|x|^2
            end{align*}

            But $left langle Tx,xrightrangle =|x|^2 $ implies $left langle x, Txrightrangle = left langle Tx,xrightrangle =|x|^2$, as shown above, and viceversa, thus the equivalence is proved.






            share|cite|improve this answer











            $endgroup$


















              2












              $begingroup$

              For the first point, first off since $left langle Tx,xrightrangle=|x|^2$ you also have $left langle x,Txrightrangle = overline{|x|^2}=|x|^2$. Thus
              $$0 leqleftlangle Tx-x,Tx-xrightrangle =|Tx|^2+|x|^2-leftlangle Tx, xrightrangle-leftlangle x,Txrightrangle= |Tx|^2-|x|^2 $$
              Since $|T|leq 1$,
              $$0 leq |Tx|^2-|x|^2 leq |x|^2-|x|^2=0 $$
              and hence $Tx=x$.



              For the second point, using the first point
              begin{align*}xin ker(I-T)iff Tx=x iff left langle Tx,xrightrangle =|x|^2end{align*}



              Now observe that if $|T|leq 1$ then also $|T^*|leq 1$. Indeed,
              begin{align*}|T^*|&=sup_{xneq 0}frac{|T^*x|}{|x|}=sup_{xneq 0}frac{leftlangle T^*x,T^*xrightrangle^{1/2}}{|x|}=sup_{xneq 0}frac{leftlangle TT^*x,xrightrangle^{1/2}}{|x|}leq sup_{xneq 0}frac{|TT^*x|^{1/2}}{|x|^{1/2}}leq\
              &leqsup_{xneq 0}frac{|T^*x|^{1/2}}{|x|^{1/2}}=|T^*|^{1/2}end{align*}

              i.e. $|T^*|leq |T^*|^{1/2}$ and thus $|T^*|leq 1$ (remark: this argument can be easily extended to prove that in general $|T|=|T^*|$ for any bounded linear operator $T$).



              Therefore the first point may be applied to $T^*$, too.



              begin{align*}
              xin ker (I-T^*)iff T^*x=xiff left langle T^*x,xrightrangle = |x|^2iff left langle x,Txrightrangle =|x|^2
              end{align*}

              But $left langle Tx,xrightrangle =|x|^2 $ implies $left langle x, Txrightrangle = left langle Tx,xrightrangle =|x|^2$, as shown above, and viceversa, thus the equivalence is proved.






              share|cite|improve this answer











              $endgroup$
















                2












                2








                2





                $begingroup$

                For the first point, first off since $left langle Tx,xrightrangle=|x|^2$ you also have $left langle x,Txrightrangle = overline{|x|^2}=|x|^2$. Thus
                $$0 leqleftlangle Tx-x,Tx-xrightrangle =|Tx|^2+|x|^2-leftlangle Tx, xrightrangle-leftlangle x,Txrightrangle= |Tx|^2-|x|^2 $$
                Since $|T|leq 1$,
                $$0 leq |Tx|^2-|x|^2 leq |x|^2-|x|^2=0 $$
                and hence $Tx=x$.



                For the second point, using the first point
                begin{align*}xin ker(I-T)iff Tx=x iff left langle Tx,xrightrangle =|x|^2end{align*}



                Now observe that if $|T|leq 1$ then also $|T^*|leq 1$. Indeed,
                begin{align*}|T^*|&=sup_{xneq 0}frac{|T^*x|}{|x|}=sup_{xneq 0}frac{leftlangle T^*x,T^*xrightrangle^{1/2}}{|x|}=sup_{xneq 0}frac{leftlangle TT^*x,xrightrangle^{1/2}}{|x|}leq sup_{xneq 0}frac{|TT^*x|^{1/2}}{|x|^{1/2}}leq\
                &leqsup_{xneq 0}frac{|T^*x|^{1/2}}{|x|^{1/2}}=|T^*|^{1/2}end{align*}

                i.e. $|T^*|leq |T^*|^{1/2}$ and thus $|T^*|leq 1$ (remark: this argument can be easily extended to prove that in general $|T|=|T^*|$ for any bounded linear operator $T$).



                Therefore the first point may be applied to $T^*$, too.



                begin{align*}
                xin ker (I-T^*)iff T^*x=xiff left langle T^*x,xrightrangle = |x|^2iff left langle x,Txrightrangle =|x|^2
                end{align*}

                But $left langle Tx,xrightrangle =|x|^2 $ implies $left langle x, Txrightrangle = left langle Tx,xrightrangle =|x|^2$, as shown above, and viceversa, thus the equivalence is proved.






                share|cite|improve this answer











                $endgroup$



                For the first point, first off since $left langle Tx,xrightrangle=|x|^2$ you also have $left langle x,Txrightrangle = overline{|x|^2}=|x|^2$. Thus
                $$0 leqleftlangle Tx-x,Tx-xrightrangle =|Tx|^2+|x|^2-leftlangle Tx, xrightrangle-leftlangle x,Txrightrangle= |Tx|^2-|x|^2 $$
                Since $|T|leq 1$,
                $$0 leq |Tx|^2-|x|^2 leq |x|^2-|x|^2=0 $$
                and hence $Tx=x$.



                For the second point, using the first point
                begin{align*}xin ker(I-T)iff Tx=x iff left langle Tx,xrightrangle =|x|^2end{align*}



                Now observe that if $|T|leq 1$ then also $|T^*|leq 1$. Indeed,
                begin{align*}|T^*|&=sup_{xneq 0}frac{|T^*x|}{|x|}=sup_{xneq 0}frac{leftlangle T^*x,T^*xrightrangle^{1/2}}{|x|}=sup_{xneq 0}frac{leftlangle TT^*x,xrightrangle^{1/2}}{|x|}leq sup_{xneq 0}frac{|TT^*x|^{1/2}}{|x|^{1/2}}leq\
                &leqsup_{xneq 0}frac{|T^*x|^{1/2}}{|x|^{1/2}}=|T^*|^{1/2}end{align*}

                i.e. $|T^*|leq |T^*|^{1/2}$ and thus $|T^*|leq 1$ (remark: this argument can be easily extended to prove that in general $|T|=|T^*|$ for any bounded linear operator $T$).



                Therefore the first point may be applied to $T^*$, too.



                begin{align*}
                xin ker (I-T^*)iff T^*x=xiff left langle T^*x,xrightrangle = |x|^2iff left langle x,Txrightrangle =|x|^2
                end{align*}

                But $left langle Tx,xrightrangle =|x|^2 $ implies $left langle x, Txrightrangle = left langle Tx,xrightrangle =|x|^2$, as shown above, and viceversa, thus the equivalence is proved.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 6 at 16:18

























                answered Jan 6 at 15:49









                Lorenzo QuarisaLorenzo Quarisa

                3,775623




                3,775623






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063982%2fprove-tx-x-for-x-in-h-if-and-only-if-tx-x-x-2-and-keri-t-ker%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna