Understanding Kronecker Delta Function for Faulhaber's Formula












0












$begingroup$


I am trying to use Faulhaber's formula to determine partial sums of a power series.



Faulhaber's formula is given by



$sum_{k=1}^{n}{k^{p}} = frac{1}{p+1}sum_{i=1}^{p+1}{(-1)^{delta_ip}{p+1choose i}}B_{p+1-i}n^{i}$ where $delta_ip$ is the Kronecker delta function and $B_{p+1-i}$ is the $p+1-i$th Bernoulli number.



My question is, what do I use for $i$ in the Kronecker delta function when using this formula?



For example, I am trying to derive the partial sum of the power series $sum_{k=1}^{n}{k^2}$ but I don't see what I would use for $i$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You mean $sumlimits_{k=1}^n color{red}k^2=frac16cdot ncdot (n+1)cdot (2n+1)$?
    $endgroup$
    – callculus
    Jan 5 at 18:20












  • $begingroup$
    Thank you @callculus. Yes, I will make that edit.
    $endgroup$
    – Gnumbertester
    Jan 5 at 18:21










  • $begingroup$
    $delta_{ip} = 1 space mathrm{for} space i=p$ and 0 otherwise. So one term gets a multiplier of $-1$ while all the others just get a multiplier of $1$.
    $endgroup$
    – Andy Walls
    Jan 5 at 18:23












  • $begingroup$
    @AndyWalls , yes, I understand how to evaluate $delta_{ip}$. I just don't understand what $i$ is in the context of Faulhaber's formula.
    $endgroup$
    – Gnumbertester
    Jan 5 at 18:25








  • 1




    $begingroup$
    It is the index of the summation on the RHS, i.e. the index of each term in the summation.
    $endgroup$
    – Andy Walls
    Jan 5 at 18:40


















0












$begingroup$


I am trying to use Faulhaber's formula to determine partial sums of a power series.



Faulhaber's formula is given by



$sum_{k=1}^{n}{k^{p}} = frac{1}{p+1}sum_{i=1}^{p+1}{(-1)^{delta_ip}{p+1choose i}}B_{p+1-i}n^{i}$ where $delta_ip$ is the Kronecker delta function and $B_{p+1-i}$ is the $p+1-i$th Bernoulli number.



My question is, what do I use for $i$ in the Kronecker delta function when using this formula?



For example, I am trying to derive the partial sum of the power series $sum_{k=1}^{n}{k^2}$ but I don't see what I would use for $i$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You mean $sumlimits_{k=1}^n color{red}k^2=frac16cdot ncdot (n+1)cdot (2n+1)$?
    $endgroup$
    – callculus
    Jan 5 at 18:20












  • $begingroup$
    Thank you @callculus. Yes, I will make that edit.
    $endgroup$
    – Gnumbertester
    Jan 5 at 18:21










  • $begingroup$
    $delta_{ip} = 1 space mathrm{for} space i=p$ and 0 otherwise. So one term gets a multiplier of $-1$ while all the others just get a multiplier of $1$.
    $endgroup$
    – Andy Walls
    Jan 5 at 18:23












  • $begingroup$
    @AndyWalls , yes, I understand how to evaluate $delta_{ip}$. I just don't understand what $i$ is in the context of Faulhaber's formula.
    $endgroup$
    – Gnumbertester
    Jan 5 at 18:25








  • 1




    $begingroup$
    It is the index of the summation on the RHS, i.e. the index of each term in the summation.
    $endgroup$
    – Andy Walls
    Jan 5 at 18:40
















0












0








0


0



$begingroup$


I am trying to use Faulhaber's formula to determine partial sums of a power series.



Faulhaber's formula is given by



$sum_{k=1}^{n}{k^{p}} = frac{1}{p+1}sum_{i=1}^{p+1}{(-1)^{delta_ip}{p+1choose i}}B_{p+1-i}n^{i}$ where $delta_ip$ is the Kronecker delta function and $B_{p+1-i}$ is the $p+1-i$th Bernoulli number.



My question is, what do I use for $i$ in the Kronecker delta function when using this formula?



For example, I am trying to derive the partial sum of the power series $sum_{k=1}^{n}{k^2}$ but I don't see what I would use for $i$.










share|cite|improve this question











$endgroup$




I am trying to use Faulhaber's formula to determine partial sums of a power series.



Faulhaber's formula is given by



$sum_{k=1}^{n}{k^{p}} = frac{1}{p+1}sum_{i=1}^{p+1}{(-1)^{delta_ip}{p+1choose i}}B_{p+1-i}n^{i}$ where $delta_ip$ is the Kronecker delta function and $B_{p+1-i}$ is the $p+1-i$th Bernoulli number.



My question is, what do I use for $i$ in the Kronecker delta function when using this formula?



For example, I am trying to derive the partial sum of the power series $sum_{k=1}^{n}{k^2}$ but I don't see what I would use for $i$.







calculus sequences-and-series summation binomial-coefficients






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 5 at 18:22







Gnumbertester

















asked Jan 5 at 18:04









GnumbertesterGnumbertester

670114




670114












  • $begingroup$
    You mean $sumlimits_{k=1}^n color{red}k^2=frac16cdot ncdot (n+1)cdot (2n+1)$?
    $endgroup$
    – callculus
    Jan 5 at 18:20












  • $begingroup$
    Thank you @callculus. Yes, I will make that edit.
    $endgroup$
    – Gnumbertester
    Jan 5 at 18:21










  • $begingroup$
    $delta_{ip} = 1 space mathrm{for} space i=p$ and 0 otherwise. So one term gets a multiplier of $-1$ while all the others just get a multiplier of $1$.
    $endgroup$
    – Andy Walls
    Jan 5 at 18:23












  • $begingroup$
    @AndyWalls , yes, I understand how to evaluate $delta_{ip}$. I just don't understand what $i$ is in the context of Faulhaber's formula.
    $endgroup$
    – Gnumbertester
    Jan 5 at 18:25








  • 1




    $begingroup$
    It is the index of the summation on the RHS, i.e. the index of each term in the summation.
    $endgroup$
    – Andy Walls
    Jan 5 at 18:40




















  • $begingroup$
    You mean $sumlimits_{k=1}^n color{red}k^2=frac16cdot ncdot (n+1)cdot (2n+1)$?
    $endgroup$
    – callculus
    Jan 5 at 18:20












  • $begingroup$
    Thank you @callculus. Yes, I will make that edit.
    $endgroup$
    – Gnumbertester
    Jan 5 at 18:21










  • $begingroup$
    $delta_{ip} = 1 space mathrm{for} space i=p$ and 0 otherwise. So one term gets a multiplier of $-1$ while all the others just get a multiplier of $1$.
    $endgroup$
    – Andy Walls
    Jan 5 at 18:23












  • $begingroup$
    @AndyWalls , yes, I understand how to evaluate $delta_{ip}$. I just don't understand what $i$ is in the context of Faulhaber's formula.
    $endgroup$
    – Gnumbertester
    Jan 5 at 18:25








  • 1




    $begingroup$
    It is the index of the summation on the RHS, i.e. the index of each term in the summation.
    $endgroup$
    – Andy Walls
    Jan 5 at 18:40


















$begingroup$
You mean $sumlimits_{k=1}^n color{red}k^2=frac16cdot ncdot (n+1)cdot (2n+1)$?
$endgroup$
– callculus
Jan 5 at 18:20






$begingroup$
You mean $sumlimits_{k=1}^n color{red}k^2=frac16cdot ncdot (n+1)cdot (2n+1)$?
$endgroup$
– callculus
Jan 5 at 18:20














$begingroup$
Thank you @callculus. Yes, I will make that edit.
$endgroup$
– Gnumbertester
Jan 5 at 18:21




$begingroup$
Thank you @callculus. Yes, I will make that edit.
$endgroup$
– Gnumbertester
Jan 5 at 18:21












$begingroup$
$delta_{ip} = 1 space mathrm{for} space i=p$ and 0 otherwise. So one term gets a multiplier of $-1$ while all the others just get a multiplier of $1$.
$endgroup$
– Andy Walls
Jan 5 at 18:23






$begingroup$
$delta_{ip} = 1 space mathrm{for} space i=p$ and 0 otherwise. So one term gets a multiplier of $-1$ while all the others just get a multiplier of $1$.
$endgroup$
– Andy Walls
Jan 5 at 18:23














$begingroup$
@AndyWalls , yes, I understand how to evaluate $delta_{ip}$. I just don't understand what $i$ is in the context of Faulhaber's formula.
$endgroup$
– Gnumbertester
Jan 5 at 18:25






$begingroup$
@AndyWalls , yes, I understand how to evaluate $delta_{ip}$. I just don't understand what $i$ is in the context of Faulhaber's formula.
$endgroup$
– Gnumbertester
Jan 5 at 18:25






1




1




$begingroup$
It is the index of the summation on the RHS, i.e. the index of each term in the summation.
$endgroup$
– Andy Walls
Jan 5 at 18:40






$begingroup$
It is the index of the summation on the RHS, i.e. the index of each term in the summation.
$endgroup$
– Andy Walls
Jan 5 at 18:40












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062997%2funderstanding-kronecker-delta-function-for-faulhabers-formula%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062997%2funderstanding-kronecker-delta-function-for-faulhabers-formula%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna