Basic linear algebra doubt on Dimension of Vector space












0












$begingroup$


Let $V(R)=M$ of order $2$



$$W_1=left{
begin{pmatrix}
a & b \
0 & 0 \
end{pmatrix}
: a ,b in Rright}$$



$$W_2=left{
begin{pmatrix}
a & 0 \
c & 0 \
end{pmatrix}
: a ,c in R right}$$



$$W_1+W_2=left{begin{pmatrix}
2a & b \
c & 0 \
end{pmatrix}
: a ,b,c in Rright}$$



I am trying to find out the dimension of $W_1+W_2$ using the definition: The number of elements in the basis for $V$ is called dimension of $V$.



Now we have vectors $v_1=(2a,c),v_2=(b,0)$



both are linearly independent and each have two elements in it so dimension is $2$. Is this the correct way to find dimension ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    For $W_i$, do you intend to type them in set notation but having difficulty displaying them?
    $endgroup$
    – Siong Thye Goh
    Jan 13 at 11:24










  • $begingroup$
    What is $W_2 $?
    $endgroup$
    – Bernard
    Jan 13 at 11:26










  • $begingroup$
    @SiongThyeGoh I didnt 't get you. I am just unable to find dimension.
    $endgroup$
    – Daman deep
    Jan 13 at 11:28










  • $begingroup$
    @Bernard typo check now
    $endgroup$
    – Daman deep
    Jan 13 at 11:29










  • $begingroup$
    is $W_1$ a subspace? or a particular matrix? what do you mean by dimension of a particular matrix if it is a particular matrix?
    $endgroup$
    – Siong Thye Goh
    Jan 13 at 11:32


















0












$begingroup$


Let $V(R)=M$ of order $2$



$$W_1=left{
begin{pmatrix}
a & b \
0 & 0 \
end{pmatrix}
: a ,b in Rright}$$



$$W_2=left{
begin{pmatrix}
a & 0 \
c & 0 \
end{pmatrix}
: a ,c in R right}$$



$$W_1+W_2=left{begin{pmatrix}
2a & b \
c & 0 \
end{pmatrix}
: a ,b,c in Rright}$$



I am trying to find out the dimension of $W_1+W_2$ using the definition: The number of elements in the basis for $V$ is called dimension of $V$.



Now we have vectors $v_1=(2a,c),v_2=(b,0)$



both are linearly independent and each have two elements in it so dimension is $2$. Is this the correct way to find dimension ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    For $W_i$, do you intend to type them in set notation but having difficulty displaying them?
    $endgroup$
    – Siong Thye Goh
    Jan 13 at 11:24










  • $begingroup$
    What is $W_2 $?
    $endgroup$
    – Bernard
    Jan 13 at 11:26










  • $begingroup$
    @SiongThyeGoh I didnt 't get you. I am just unable to find dimension.
    $endgroup$
    – Daman deep
    Jan 13 at 11:28










  • $begingroup$
    @Bernard typo check now
    $endgroup$
    – Daman deep
    Jan 13 at 11:29










  • $begingroup$
    is $W_1$ a subspace? or a particular matrix? what do you mean by dimension of a particular matrix if it is a particular matrix?
    $endgroup$
    – Siong Thye Goh
    Jan 13 at 11:32
















0












0








0





$begingroup$


Let $V(R)=M$ of order $2$



$$W_1=left{
begin{pmatrix}
a & b \
0 & 0 \
end{pmatrix}
: a ,b in Rright}$$



$$W_2=left{
begin{pmatrix}
a & 0 \
c & 0 \
end{pmatrix}
: a ,c in R right}$$



$$W_1+W_2=left{begin{pmatrix}
2a & b \
c & 0 \
end{pmatrix}
: a ,b,c in Rright}$$



I am trying to find out the dimension of $W_1+W_2$ using the definition: The number of elements in the basis for $V$ is called dimension of $V$.



Now we have vectors $v_1=(2a,c),v_2=(b,0)$



both are linearly independent and each have two elements in it so dimension is $2$. Is this the correct way to find dimension ?










share|cite|improve this question











$endgroup$




Let $V(R)=M$ of order $2$



$$W_1=left{
begin{pmatrix}
a & b \
0 & 0 \
end{pmatrix}
: a ,b in Rright}$$



$$W_2=left{
begin{pmatrix}
a & 0 \
c & 0 \
end{pmatrix}
: a ,c in R right}$$



$$W_1+W_2=left{begin{pmatrix}
2a & b \
c & 0 \
end{pmatrix}
: a ,b,c in Rright}$$



I am trying to find out the dimension of $W_1+W_2$ using the definition: The number of elements in the basis for $V$ is called dimension of $V$.



Now we have vectors $v_1=(2a,c),v_2=(b,0)$



both are linearly independent and each have two elements in it so dimension is $2$. Is this the correct way to find dimension ?







linear-algebra matrices vector-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 13 at 11:50









José Carlos Santos

175k24134243




175k24134243










asked Jan 13 at 11:16









Daman deepDaman deep

756420




756420












  • $begingroup$
    For $W_i$, do you intend to type them in set notation but having difficulty displaying them?
    $endgroup$
    – Siong Thye Goh
    Jan 13 at 11:24










  • $begingroup$
    What is $W_2 $?
    $endgroup$
    – Bernard
    Jan 13 at 11:26










  • $begingroup$
    @SiongThyeGoh I didnt 't get you. I am just unable to find dimension.
    $endgroup$
    – Daman deep
    Jan 13 at 11:28










  • $begingroup$
    @Bernard typo check now
    $endgroup$
    – Daman deep
    Jan 13 at 11:29










  • $begingroup$
    is $W_1$ a subspace? or a particular matrix? what do you mean by dimension of a particular matrix if it is a particular matrix?
    $endgroup$
    – Siong Thye Goh
    Jan 13 at 11:32




















  • $begingroup$
    For $W_i$, do you intend to type them in set notation but having difficulty displaying them?
    $endgroup$
    – Siong Thye Goh
    Jan 13 at 11:24










  • $begingroup$
    What is $W_2 $?
    $endgroup$
    – Bernard
    Jan 13 at 11:26










  • $begingroup$
    @SiongThyeGoh I didnt 't get you. I am just unable to find dimension.
    $endgroup$
    – Daman deep
    Jan 13 at 11:28










  • $begingroup$
    @Bernard typo check now
    $endgroup$
    – Daman deep
    Jan 13 at 11:29










  • $begingroup$
    is $W_1$ a subspace? or a particular matrix? what do you mean by dimension of a particular matrix if it is a particular matrix?
    $endgroup$
    – Siong Thye Goh
    Jan 13 at 11:32


















$begingroup$
For $W_i$, do you intend to type them in set notation but having difficulty displaying them?
$endgroup$
– Siong Thye Goh
Jan 13 at 11:24




$begingroup$
For $W_i$, do you intend to type them in set notation but having difficulty displaying them?
$endgroup$
– Siong Thye Goh
Jan 13 at 11:24












$begingroup$
What is $W_2 $?
$endgroup$
– Bernard
Jan 13 at 11:26




$begingroup$
What is $W_2 $?
$endgroup$
– Bernard
Jan 13 at 11:26












$begingroup$
@SiongThyeGoh I didnt 't get you. I am just unable to find dimension.
$endgroup$
– Daman deep
Jan 13 at 11:28




$begingroup$
@SiongThyeGoh I didnt 't get you. I am just unable to find dimension.
$endgroup$
– Daman deep
Jan 13 at 11:28












$begingroup$
@Bernard typo check now
$endgroup$
– Daman deep
Jan 13 at 11:29




$begingroup$
@Bernard typo check now
$endgroup$
– Daman deep
Jan 13 at 11:29












$begingroup$
is $W_1$ a subspace? or a particular matrix? what do you mean by dimension of a particular matrix if it is a particular matrix?
$endgroup$
– Siong Thye Goh
Jan 13 at 11:32






$begingroup$
is $W_1$ a subspace? or a particular matrix? what do you mean by dimension of a particular matrix if it is a particular matrix?
$endgroup$
– Siong Thye Goh
Jan 13 at 11:32












2 Answers
2






active

oldest

votes


















1












$begingroup$

Check that $$left{begin{pmatrix} 1 & 0 \ 0 & 0end{pmatrix}, begin{pmatrix} 0 & 1 \ 0 & 0end{pmatrix}, begin{pmatrix} 0 & 0 \ 1 & 0end{pmatrix} right}$$



is a basis for $W_1+W_2$.



Hopefully you can state the dimension correctly.



The question is not talking about column space of a particular matrix.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    oh so I was calculated column space which $2$ here.
    $endgroup$
    – Daman deep
    Jan 13 at 11:39



















2












$begingroup$

Note that$$W_1+W_2=left{begin{pmatrix}a+a'&b\c&0end{pmatrix},middle|,a,a',b,cinmathbb{R}right}.$$It's dimension is three, because$$W_1+W_2=operatorname{span}left{begin{pmatrix}1&0\0&0end{pmatrix},begin{pmatrix}0&1\0&0end{pmatrix},begin{pmatrix}0&0\1&0end{pmatrix}right}$$and the previous set is linearly independent.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    What does previous set is linearly independent means ?
    $endgroup$
    – Daman deep
    Jan 13 at 11:40










  • $begingroup$
    Why it is $a+a^{'}$ not $2a$
    $endgroup$
    – Daman deep
    Jan 13 at 11:44












  • $begingroup$
    It means that$$abegin{pmatrix}1&0\0&0end{pmatrix}+bbegin{pmatrix}0&1\0&0end{pmatrix}+cbegin{pmatrix}0&0\1&0end{pmatrix}=begin{pmatrix}0&0\0&0end{pmatrix}iff a=b=c=0.$$
    $endgroup$
    – José Carlos Santos
    Jan 13 at 11:46










  • $begingroup$
    Because the $a$ from an element of $W_1$ doesn't have to be the same $a$ that was used in an element of $W_2$.
    $endgroup$
    – José Carlos Santos
    Jan 13 at 11:49












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071892%2fbasic-linear-algebra-doubt-on-dimension-of-vector-space%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Check that $$left{begin{pmatrix} 1 & 0 \ 0 & 0end{pmatrix}, begin{pmatrix} 0 & 1 \ 0 & 0end{pmatrix}, begin{pmatrix} 0 & 0 \ 1 & 0end{pmatrix} right}$$



is a basis for $W_1+W_2$.



Hopefully you can state the dimension correctly.



The question is not talking about column space of a particular matrix.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    oh so I was calculated column space which $2$ here.
    $endgroup$
    – Daman deep
    Jan 13 at 11:39
















1












$begingroup$

Check that $$left{begin{pmatrix} 1 & 0 \ 0 & 0end{pmatrix}, begin{pmatrix} 0 & 1 \ 0 & 0end{pmatrix}, begin{pmatrix} 0 & 0 \ 1 & 0end{pmatrix} right}$$



is a basis for $W_1+W_2$.



Hopefully you can state the dimension correctly.



The question is not talking about column space of a particular matrix.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    oh so I was calculated column space which $2$ here.
    $endgroup$
    – Daman deep
    Jan 13 at 11:39














1












1








1





$begingroup$

Check that $$left{begin{pmatrix} 1 & 0 \ 0 & 0end{pmatrix}, begin{pmatrix} 0 & 1 \ 0 & 0end{pmatrix}, begin{pmatrix} 0 & 0 \ 1 & 0end{pmatrix} right}$$



is a basis for $W_1+W_2$.



Hopefully you can state the dimension correctly.



The question is not talking about column space of a particular matrix.






share|cite|improve this answer









$endgroup$



Check that $$left{begin{pmatrix} 1 & 0 \ 0 & 0end{pmatrix}, begin{pmatrix} 0 & 1 \ 0 & 0end{pmatrix}, begin{pmatrix} 0 & 0 \ 1 & 0end{pmatrix} right}$$



is a basis for $W_1+W_2$.



Hopefully you can state the dimension correctly.



The question is not talking about column space of a particular matrix.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 13 at 11:36









Siong Thye GohSiong Thye Goh

104k1468120




104k1468120












  • $begingroup$
    oh so I was calculated column space which $2$ here.
    $endgroup$
    – Daman deep
    Jan 13 at 11:39


















  • $begingroup$
    oh so I was calculated column space which $2$ here.
    $endgroup$
    – Daman deep
    Jan 13 at 11:39
















$begingroup$
oh so I was calculated column space which $2$ here.
$endgroup$
– Daman deep
Jan 13 at 11:39




$begingroup$
oh so I was calculated column space which $2$ here.
$endgroup$
– Daman deep
Jan 13 at 11:39











2












$begingroup$

Note that$$W_1+W_2=left{begin{pmatrix}a+a'&b\c&0end{pmatrix},middle|,a,a',b,cinmathbb{R}right}.$$It's dimension is three, because$$W_1+W_2=operatorname{span}left{begin{pmatrix}1&0\0&0end{pmatrix},begin{pmatrix}0&1\0&0end{pmatrix},begin{pmatrix}0&0\1&0end{pmatrix}right}$$and the previous set is linearly independent.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    What does previous set is linearly independent means ?
    $endgroup$
    – Daman deep
    Jan 13 at 11:40










  • $begingroup$
    Why it is $a+a^{'}$ not $2a$
    $endgroup$
    – Daman deep
    Jan 13 at 11:44












  • $begingroup$
    It means that$$abegin{pmatrix}1&0\0&0end{pmatrix}+bbegin{pmatrix}0&1\0&0end{pmatrix}+cbegin{pmatrix}0&0\1&0end{pmatrix}=begin{pmatrix}0&0\0&0end{pmatrix}iff a=b=c=0.$$
    $endgroup$
    – José Carlos Santos
    Jan 13 at 11:46










  • $begingroup$
    Because the $a$ from an element of $W_1$ doesn't have to be the same $a$ that was used in an element of $W_2$.
    $endgroup$
    – José Carlos Santos
    Jan 13 at 11:49
















2












$begingroup$

Note that$$W_1+W_2=left{begin{pmatrix}a+a'&b\c&0end{pmatrix},middle|,a,a',b,cinmathbb{R}right}.$$It's dimension is three, because$$W_1+W_2=operatorname{span}left{begin{pmatrix}1&0\0&0end{pmatrix},begin{pmatrix}0&1\0&0end{pmatrix},begin{pmatrix}0&0\1&0end{pmatrix}right}$$and the previous set is linearly independent.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    What does previous set is linearly independent means ?
    $endgroup$
    – Daman deep
    Jan 13 at 11:40










  • $begingroup$
    Why it is $a+a^{'}$ not $2a$
    $endgroup$
    – Daman deep
    Jan 13 at 11:44












  • $begingroup$
    It means that$$abegin{pmatrix}1&0\0&0end{pmatrix}+bbegin{pmatrix}0&1\0&0end{pmatrix}+cbegin{pmatrix}0&0\1&0end{pmatrix}=begin{pmatrix}0&0\0&0end{pmatrix}iff a=b=c=0.$$
    $endgroup$
    – José Carlos Santos
    Jan 13 at 11:46










  • $begingroup$
    Because the $a$ from an element of $W_1$ doesn't have to be the same $a$ that was used in an element of $W_2$.
    $endgroup$
    – José Carlos Santos
    Jan 13 at 11:49














2












2








2





$begingroup$

Note that$$W_1+W_2=left{begin{pmatrix}a+a'&b\c&0end{pmatrix},middle|,a,a',b,cinmathbb{R}right}.$$It's dimension is three, because$$W_1+W_2=operatorname{span}left{begin{pmatrix}1&0\0&0end{pmatrix},begin{pmatrix}0&1\0&0end{pmatrix},begin{pmatrix}0&0\1&0end{pmatrix}right}$$and the previous set is linearly independent.






share|cite|improve this answer









$endgroup$



Note that$$W_1+W_2=left{begin{pmatrix}a+a'&b\c&0end{pmatrix},middle|,a,a',b,cinmathbb{R}right}.$$It's dimension is three, because$$W_1+W_2=operatorname{span}left{begin{pmatrix}1&0\0&0end{pmatrix},begin{pmatrix}0&1\0&0end{pmatrix},begin{pmatrix}0&0\1&0end{pmatrix}right}$$and the previous set is linearly independent.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 13 at 11:38









José Carlos SantosJosé Carlos Santos

175k24134243




175k24134243












  • $begingroup$
    What does previous set is linearly independent means ?
    $endgroup$
    – Daman deep
    Jan 13 at 11:40










  • $begingroup$
    Why it is $a+a^{'}$ not $2a$
    $endgroup$
    – Daman deep
    Jan 13 at 11:44












  • $begingroup$
    It means that$$abegin{pmatrix}1&0\0&0end{pmatrix}+bbegin{pmatrix}0&1\0&0end{pmatrix}+cbegin{pmatrix}0&0\1&0end{pmatrix}=begin{pmatrix}0&0\0&0end{pmatrix}iff a=b=c=0.$$
    $endgroup$
    – José Carlos Santos
    Jan 13 at 11:46










  • $begingroup$
    Because the $a$ from an element of $W_1$ doesn't have to be the same $a$ that was used in an element of $W_2$.
    $endgroup$
    – José Carlos Santos
    Jan 13 at 11:49


















  • $begingroup$
    What does previous set is linearly independent means ?
    $endgroup$
    – Daman deep
    Jan 13 at 11:40










  • $begingroup$
    Why it is $a+a^{'}$ not $2a$
    $endgroup$
    – Daman deep
    Jan 13 at 11:44












  • $begingroup$
    It means that$$abegin{pmatrix}1&0\0&0end{pmatrix}+bbegin{pmatrix}0&1\0&0end{pmatrix}+cbegin{pmatrix}0&0\1&0end{pmatrix}=begin{pmatrix}0&0\0&0end{pmatrix}iff a=b=c=0.$$
    $endgroup$
    – José Carlos Santos
    Jan 13 at 11:46










  • $begingroup$
    Because the $a$ from an element of $W_1$ doesn't have to be the same $a$ that was used in an element of $W_2$.
    $endgroup$
    – José Carlos Santos
    Jan 13 at 11:49
















$begingroup$
What does previous set is linearly independent means ?
$endgroup$
– Daman deep
Jan 13 at 11:40




$begingroup$
What does previous set is linearly independent means ?
$endgroup$
– Daman deep
Jan 13 at 11:40












$begingroup$
Why it is $a+a^{'}$ not $2a$
$endgroup$
– Daman deep
Jan 13 at 11:44






$begingroup$
Why it is $a+a^{'}$ not $2a$
$endgroup$
– Daman deep
Jan 13 at 11:44














$begingroup$
It means that$$abegin{pmatrix}1&0\0&0end{pmatrix}+bbegin{pmatrix}0&1\0&0end{pmatrix}+cbegin{pmatrix}0&0\1&0end{pmatrix}=begin{pmatrix}0&0\0&0end{pmatrix}iff a=b=c=0.$$
$endgroup$
– José Carlos Santos
Jan 13 at 11:46




$begingroup$
It means that$$abegin{pmatrix}1&0\0&0end{pmatrix}+bbegin{pmatrix}0&1\0&0end{pmatrix}+cbegin{pmatrix}0&0\1&0end{pmatrix}=begin{pmatrix}0&0\0&0end{pmatrix}iff a=b=c=0.$$
$endgroup$
– José Carlos Santos
Jan 13 at 11:46












$begingroup$
Because the $a$ from an element of $W_1$ doesn't have to be the same $a$ that was used in an element of $W_2$.
$endgroup$
– José Carlos Santos
Jan 13 at 11:49




$begingroup$
Because the $a$ from an element of $W_1$ doesn't have to be the same $a$ that was used in an element of $W_2$.
$endgroup$
– José Carlos Santos
Jan 13 at 11:49


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071892%2fbasic-linear-algebra-doubt-on-dimension-of-vector-space%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna