Show that ${Z(p):pin mathscr P}$ is a basis for the closed sets of some topology (Called the Zariski...












0












$begingroup$


Let $nin mathbb N$, and let $mathscr P$ denote the collection of all polynomials in $n$ variables. For $pin mathscr P$, let $Z(p)={(x_1,x_2,...,x_n)|p(x_1,x_2,...,x_n)=0}$.
Show that ${Z(p):pin mathscr P}$ is a basis for the closed sets of some topology (Called the Zariski topology) on $mathbb R^n$.



My attempt:-



I used the result for Basis for the closed sets of topology on X.



(I) We need to prove that $bigcap_{pin mathscr P}Z(p)=emptyset.$ $Z(p(x_1,x_2,...,x_n)=1)={(x_1,x_2,...,x_n)|p(x_1,x_2,...,x_n)=0}=emptyset$. Which implies $bigcap_{pin mathscr P}Z(p) subset Z(p(x_1,x_2,...,x_n)=1)=emptyset implies bigcap_{pin mathscr P}Z(p)=emptyset.$



(II) if $Z(p_0),Z(p_1)inmathscr X$ and $(x_1,x_2,...,x_n) notin Z(p_0)cup Z(p_1)$, then there is a $Z(p_2)inmathscr X$ such that $(x_1,x_2,...,x_n) notin Z(p_2)supseteq Z(p_0)cup Z(p_1)$.



$(x_1,x_2,...,x_n) notin Z(p_0)cup Z(p_1)implies p_0(x_1,x_2,...,x_n)neq0$ and $p_1(x_1,x_2,...,x_n)neq 0.$ We can choose $p_2=p_0 p_1$ such that $(x_1,x_2,...,x_n)notin Z(p_2)$. We know that $Z(p_0)cup Z(p_1) subset Z(p_2)$.



Have I done the proof correctly?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Define: Z(p = 1).
    $endgroup$
    – William Elliot
    Jan 13 at 12:28










  • $begingroup$
    $Z(p)={(x_1,x_2,...,x_n)|p(x_1,x_2,...,x_n)=0}$
    $endgroup$
    – Math geek
    Jan 13 at 12:33










  • $begingroup$
    When we substitute $p(x_1,x_2,...,x_n)=1$ we get $Z(p=1)$. which is an empty set.
    $endgroup$
    – Math geek
    Jan 13 at 12:34










  • $begingroup$
    If I define like this, is my proof correct?
    $endgroup$
    – Math geek
    Jan 13 at 12:48










  • $begingroup$
    No, Z is defined for polynomials, it is not defined for statements like p = 1. Thus Z(p = 1) is meaningless.
    $endgroup$
    – William Elliot
    Jan 13 at 23:21
















0












$begingroup$


Let $nin mathbb N$, and let $mathscr P$ denote the collection of all polynomials in $n$ variables. For $pin mathscr P$, let $Z(p)={(x_1,x_2,...,x_n)|p(x_1,x_2,...,x_n)=0}$.
Show that ${Z(p):pin mathscr P}$ is a basis for the closed sets of some topology (Called the Zariski topology) on $mathbb R^n$.



My attempt:-



I used the result for Basis for the closed sets of topology on X.



(I) We need to prove that $bigcap_{pin mathscr P}Z(p)=emptyset.$ $Z(p(x_1,x_2,...,x_n)=1)={(x_1,x_2,...,x_n)|p(x_1,x_2,...,x_n)=0}=emptyset$. Which implies $bigcap_{pin mathscr P}Z(p) subset Z(p(x_1,x_2,...,x_n)=1)=emptyset implies bigcap_{pin mathscr P}Z(p)=emptyset.$



(II) if $Z(p_0),Z(p_1)inmathscr X$ and $(x_1,x_2,...,x_n) notin Z(p_0)cup Z(p_1)$, then there is a $Z(p_2)inmathscr X$ such that $(x_1,x_2,...,x_n) notin Z(p_2)supseteq Z(p_0)cup Z(p_1)$.



$(x_1,x_2,...,x_n) notin Z(p_0)cup Z(p_1)implies p_0(x_1,x_2,...,x_n)neq0$ and $p_1(x_1,x_2,...,x_n)neq 0.$ We can choose $p_2=p_0 p_1$ such that $(x_1,x_2,...,x_n)notin Z(p_2)$. We know that $Z(p_0)cup Z(p_1) subset Z(p_2)$.



Have I done the proof correctly?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Define: Z(p = 1).
    $endgroup$
    – William Elliot
    Jan 13 at 12:28










  • $begingroup$
    $Z(p)={(x_1,x_2,...,x_n)|p(x_1,x_2,...,x_n)=0}$
    $endgroup$
    – Math geek
    Jan 13 at 12:33










  • $begingroup$
    When we substitute $p(x_1,x_2,...,x_n)=1$ we get $Z(p=1)$. which is an empty set.
    $endgroup$
    – Math geek
    Jan 13 at 12:34










  • $begingroup$
    If I define like this, is my proof correct?
    $endgroup$
    – Math geek
    Jan 13 at 12:48










  • $begingroup$
    No, Z is defined for polynomials, it is not defined for statements like p = 1. Thus Z(p = 1) is meaningless.
    $endgroup$
    – William Elliot
    Jan 13 at 23:21














0












0








0





$begingroup$


Let $nin mathbb N$, and let $mathscr P$ denote the collection of all polynomials in $n$ variables. For $pin mathscr P$, let $Z(p)={(x_1,x_2,...,x_n)|p(x_1,x_2,...,x_n)=0}$.
Show that ${Z(p):pin mathscr P}$ is a basis for the closed sets of some topology (Called the Zariski topology) on $mathbb R^n$.



My attempt:-



I used the result for Basis for the closed sets of topology on X.



(I) We need to prove that $bigcap_{pin mathscr P}Z(p)=emptyset.$ $Z(p(x_1,x_2,...,x_n)=1)={(x_1,x_2,...,x_n)|p(x_1,x_2,...,x_n)=0}=emptyset$. Which implies $bigcap_{pin mathscr P}Z(p) subset Z(p(x_1,x_2,...,x_n)=1)=emptyset implies bigcap_{pin mathscr P}Z(p)=emptyset.$



(II) if $Z(p_0),Z(p_1)inmathscr X$ and $(x_1,x_2,...,x_n) notin Z(p_0)cup Z(p_1)$, then there is a $Z(p_2)inmathscr X$ such that $(x_1,x_2,...,x_n) notin Z(p_2)supseteq Z(p_0)cup Z(p_1)$.



$(x_1,x_2,...,x_n) notin Z(p_0)cup Z(p_1)implies p_0(x_1,x_2,...,x_n)neq0$ and $p_1(x_1,x_2,...,x_n)neq 0.$ We can choose $p_2=p_0 p_1$ such that $(x_1,x_2,...,x_n)notin Z(p_2)$. We know that $Z(p_0)cup Z(p_1) subset Z(p_2)$.



Have I done the proof correctly?










share|cite|improve this question











$endgroup$




Let $nin mathbb N$, and let $mathscr P$ denote the collection of all polynomials in $n$ variables. For $pin mathscr P$, let $Z(p)={(x_1,x_2,...,x_n)|p(x_1,x_2,...,x_n)=0}$.
Show that ${Z(p):pin mathscr P}$ is a basis for the closed sets of some topology (Called the Zariski topology) on $mathbb R^n$.



My attempt:-



I used the result for Basis for the closed sets of topology on X.



(I) We need to prove that $bigcap_{pin mathscr P}Z(p)=emptyset.$ $Z(p(x_1,x_2,...,x_n)=1)={(x_1,x_2,...,x_n)|p(x_1,x_2,...,x_n)=0}=emptyset$. Which implies $bigcap_{pin mathscr P}Z(p) subset Z(p(x_1,x_2,...,x_n)=1)=emptyset implies bigcap_{pin mathscr P}Z(p)=emptyset.$



(II) if $Z(p_0),Z(p_1)inmathscr X$ and $(x_1,x_2,...,x_n) notin Z(p_0)cup Z(p_1)$, then there is a $Z(p_2)inmathscr X$ such that $(x_1,x_2,...,x_n) notin Z(p_2)supseteq Z(p_0)cup Z(p_1)$.



$(x_1,x_2,...,x_n) notin Z(p_0)cup Z(p_1)implies p_0(x_1,x_2,...,x_n)neq0$ and $p_1(x_1,x_2,...,x_n)neq 0.$ We can choose $p_2=p_0 p_1$ such that $(x_1,x_2,...,x_n)notin Z(p_2)$. We know that $Z(p_0)cup Z(p_1) subset Z(p_2)$.



Have I done the proof correctly?







general-topology zariski-topology






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 13 at 14:48









Martin Sleziak

45k10123277




45k10123277










asked Jan 13 at 11:07









Math geekMath geek

69111




69111












  • $begingroup$
    Define: Z(p = 1).
    $endgroup$
    – William Elliot
    Jan 13 at 12:28










  • $begingroup$
    $Z(p)={(x_1,x_2,...,x_n)|p(x_1,x_2,...,x_n)=0}$
    $endgroup$
    – Math geek
    Jan 13 at 12:33










  • $begingroup$
    When we substitute $p(x_1,x_2,...,x_n)=1$ we get $Z(p=1)$. which is an empty set.
    $endgroup$
    – Math geek
    Jan 13 at 12:34










  • $begingroup$
    If I define like this, is my proof correct?
    $endgroup$
    – Math geek
    Jan 13 at 12:48










  • $begingroup$
    No, Z is defined for polynomials, it is not defined for statements like p = 1. Thus Z(p = 1) is meaningless.
    $endgroup$
    – William Elliot
    Jan 13 at 23:21


















  • $begingroup$
    Define: Z(p = 1).
    $endgroup$
    – William Elliot
    Jan 13 at 12:28










  • $begingroup$
    $Z(p)={(x_1,x_2,...,x_n)|p(x_1,x_2,...,x_n)=0}$
    $endgroup$
    – Math geek
    Jan 13 at 12:33










  • $begingroup$
    When we substitute $p(x_1,x_2,...,x_n)=1$ we get $Z(p=1)$. which is an empty set.
    $endgroup$
    – Math geek
    Jan 13 at 12:34










  • $begingroup$
    If I define like this, is my proof correct?
    $endgroup$
    – Math geek
    Jan 13 at 12:48










  • $begingroup$
    No, Z is defined for polynomials, it is not defined for statements like p = 1. Thus Z(p = 1) is meaningless.
    $endgroup$
    – William Elliot
    Jan 13 at 23:21
















$begingroup$
Define: Z(p = 1).
$endgroup$
– William Elliot
Jan 13 at 12:28




$begingroup$
Define: Z(p = 1).
$endgroup$
– William Elliot
Jan 13 at 12:28












$begingroup$
$Z(p)={(x_1,x_2,...,x_n)|p(x_1,x_2,...,x_n)=0}$
$endgroup$
– Math geek
Jan 13 at 12:33




$begingroup$
$Z(p)={(x_1,x_2,...,x_n)|p(x_1,x_2,...,x_n)=0}$
$endgroup$
– Math geek
Jan 13 at 12:33












$begingroup$
When we substitute $p(x_1,x_2,...,x_n)=1$ we get $Z(p=1)$. which is an empty set.
$endgroup$
– Math geek
Jan 13 at 12:34




$begingroup$
When we substitute $p(x_1,x_2,...,x_n)=1$ we get $Z(p=1)$. which is an empty set.
$endgroup$
– Math geek
Jan 13 at 12:34












$begingroup$
If I define like this, is my proof correct?
$endgroup$
– Math geek
Jan 13 at 12:48




$begingroup$
If I define like this, is my proof correct?
$endgroup$
– Math geek
Jan 13 at 12:48












$begingroup$
No, Z is defined for polynomials, it is not defined for statements like p = 1. Thus Z(p = 1) is meaningless.
$endgroup$
– William Elliot
Jan 13 at 23:21




$begingroup$
No, Z is defined for polynomials, it is not defined for statements like p = 1. Thus Z(p = 1) is meaningless.
$endgroup$
– William Elliot
Jan 13 at 23:21










2 Answers
2






active

oldest

votes


















0












$begingroup$

The set of ${Z(I): I subseteq mathcal{P}}$, where $Z(I)=bigcap_{p in I} Z(p)$ is in fact the whole topology, not just a closed base for it, as I showed here.
The basis fact immediately follows, by the definition of a closed base (you can write all closed sets as intersection of base elements).






share|cite|improve this answer











$endgroup$













  • $begingroup$
    No, We want to prove ${Z(p_1),Z(p_2),...,Z(p_n),....}$ is a basic set.
    $endgroup$
    – Math geek
    Jan 14 at 0:46










  • $begingroup$
    @Mathgeek if $C$ is closed, then $C = Z(I)= bigcap {Z(p): p in I}$. BTW, don’t think the base is countable, it is not, though you seem to suggest so.
    $endgroup$
    – Henno Brandsma
    Jan 14 at 5:56



















0












$begingroup$

$Z(p) cup Z(q) = Z(pq)$.

Let 1 be the polynomial of $n$ variables with constant value 1.
$Z(1)$ is empty.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    what about the second property?
    $endgroup$
    – Math geek
    Jan 13 at 16:02










  • $begingroup$
    The first line proves it.
    $endgroup$
    – William Elliot
    Jan 13 at 23:16










  • $begingroup$
    @Mathgeek the product of two polynomials is a polynomial. So define $p_2=p_1 p_2$ in your proof attempt.
    $endgroup$
    – Henno Brandsma
    Jan 14 at 6:01










  • $begingroup$
    That is how I defined @HennoBrandsma. I defined $p_2=p_1p_0$.
    $endgroup$
    – Math geek
    Jan 14 at 6:20










  • $begingroup$
    In the second part of the proof.
    $endgroup$
    – Math geek
    Jan 14 at 6:20












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071884%2fshow-that-zpp-in-mathscr-p-is-a-basis-for-the-closed-sets-of-some-topo%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

The set of ${Z(I): I subseteq mathcal{P}}$, where $Z(I)=bigcap_{p in I} Z(p)$ is in fact the whole topology, not just a closed base for it, as I showed here.
The basis fact immediately follows, by the definition of a closed base (you can write all closed sets as intersection of base elements).






share|cite|improve this answer











$endgroup$













  • $begingroup$
    No, We want to prove ${Z(p_1),Z(p_2),...,Z(p_n),....}$ is a basic set.
    $endgroup$
    – Math geek
    Jan 14 at 0:46










  • $begingroup$
    @Mathgeek if $C$ is closed, then $C = Z(I)= bigcap {Z(p): p in I}$. BTW, don’t think the base is countable, it is not, though you seem to suggest so.
    $endgroup$
    – Henno Brandsma
    Jan 14 at 5:56
















0












$begingroup$

The set of ${Z(I): I subseteq mathcal{P}}$, where $Z(I)=bigcap_{p in I} Z(p)$ is in fact the whole topology, not just a closed base for it, as I showed here.
The basis fact immediately follows, by the definition of a closed base (you can write all closed sets as intersection of base elements).






share|cite|improve this answer











$endgroup$













  • $begingroup$
    No, We want to prove ${Z(p_1),Z(p_2),...,Z(p_n),....}$ is a basic set.
    $endgroup$
    – Math geek
    Jan 14 at 0:46










  • $begingroup$
    @Mathgeek if $C$ is closed, then $C = Z(I)= bigcap {Z(p): p in I}$. BTW, don’t think the base is countable, it is not, though you seem to suggest so.
    $endgroup$
    – Henno Brandsma
    Jan 14 at 5:56














0












0








0





$begingroup$

The set of ${Z(I): I subseteq mathcal{P}}$, where $Z(I)=bigcap_{p in I} Z(p)$ is in fact the whole topology, not just a closed base for it, as I showed here.
The basis fact immediately follows, by the definition of a closed base (you can write all closed sets as intersection of base elements).






share|cite|improve this answer











$endgroup$



The set of ${Z(I): I subseteq mathcal{P}}$, where $Z(I)=bigcap_{p in I} Z(p)$ is in fact the whole topology, not just a closed base for it, as I showed here.
The basis fact immediately follows, by the definition of a closed base (you can write all closed sets as intersection of base elements).







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 13 at 15:30

























answered Jan 13 at 14:55









Henno BrandsmaHenno Brandsma

117k349127




117k349127












  • $begingroup$
    No, We want to prove ${Z(p_1),Z(p_2),...,Z(p_n),....}$ is a basic set.
    $endgroup$
    – Math geek
    Jan 14 at 0:46










  • $begingroup$
    @Mathgeek if $C$ is closed, then $C = Z(I)= bigcap {Z(p): p in I}$. BTW, don’t think the base is countable, it is not, though you seem to suggest so.
    $endgroup$
    – Henno Brandsma
    Jan 14 at 5:56


















  • $begingroup$
    No, We want to prove ${Z(p_1),Z(p_2),...,Z(p_n),....}$ is a basic set.
    $endgroup$
    – Math geek
    Jan 14 at 0:46










  • $begingroup$
    @Mathgeek if $C$ is closed, then $C = Z(I)= bigcap {Z(p): p in I}$. BTW, don’t think the base is countable, it is not, though you seem to suggest so.
    $endgroup$
    – Henno Brandsma
    Jan 14 at 5:56
















$begingroup$
No, We want to prove ${Z(p_1),Z(p_2),...,Z(p_n),....}$ is a basic set.
$endgroup$
– Math geek
Jan 14 at 0:46




$begingroup$
No, We want to prove ${Z(p_1),Z(p_2),...,Z(p_n),....}$ is a basic set.
$endgroup$
– Math geek
Jan 14 at 0:46












$begingroup$
@Mathgeek if $C$ is closed, then $C = Z(I)= bigcap {Z(p): p in I}$. BTW, don’t think the base is countable, it is not, though you seem to suggest so.
$endgroup$
– Henno Brandsma
Jan 14 at 5:56




$begingroup$
@Mathgeek if $C$ is closed, then $C = Z(I)= bigcap {Z(p): p in I}$. BTW, don’t think the base is countable, it is not, though you seem to suggest so.
$endgroup$
– Henno Brandsma
Jan 14 at 5:56











0












$begingroup$

$Z(p) cup Z(q) = Z(pq)$.

Let 1 be the polynomial of $n$ variables with constant value 1.
$Z(1)$ is empty.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    what about the second property?
    $endgroup$
    – Math geek
    Jan 13 at 16:02










  • $begingroup$
    The first line proves it.
    $endgroup$
    – William Elliot
    Jan 13 at 23:16










  • $begingroup$
    @Mathgeek the product of two polynomials is a polynomial. So define $p_2=p_1 p_2$ in your proof attempt.
    $endgroup$
    – Henno Brandsma
    Jan 14 at 6:01










  • $begingroup$
    That is how I defined @HennoBrandsma. I defined $p_2=p_1p_0$.
    $endgroup$
    – Math geek
    Jan 14 at 6:20










  • $begingroup$
    In the second part of the proof.
    $endgroup$
    – Math geek
    Jan 14 at 6:20
















0












$begingroup$

$Z(p) cup Z(q) = Z(pq)$.

Let 1 be the polynomial of $n$ variables with constant value 1.
$Z(1)$ is empty.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    what about the second property?
    $endgroup$
    – Math geek
    Jan 13 at 16:02










  • $begingroup$
    The first line proves it.
    $endgroup$
    – William Elliot
    Jan 13 at 23:16










  • $begingroup$
    @Mathgeek the product of two polynomials is a polynomial. So define $p_2=p_1 p_2$ in your proof attempt.
    $endgroup$
    – Henno Brandsma
    Jan 14 at 6:01










  • $begingroup$
    That is how I defined @HennoBrandsma. I defined $p_2=p_1p_0$.
    $endgroup$
    – Math geek
    Jan 14 at 6:20










  • $begingroup$
    In the second part of the proof.
    $endgroup$
    – Math geek
    Jan 14 at 6:20














0












0








0





$begingroup$

$Z(p) cup Z(q) = Z(pq)$.

Let 1 be the polynomial of $n$ variables with constant value 1.
$Z(1)$ is empty.






share|cite|improve this answer











$endgroup$



$Z(p) cup Z(q) = Z(pq)$.

Let 1 be the polynomial of $n$ variables with constant value 1.
$Z(1)$ is empty.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 14 at 5:58









Henno Brandsma

117k349127




117k349127










answered Jan 13 at 12:41









William ElliotWilliam Elliot

9,1962820




9,1962820












  • $begingroup$
    what about the second property?
    $endgroup$
    – Math geek
    Jan 13 at 16:02










  • $begingroup$
    The first line proves it.
    $endgroup$
    – William Elliot
    Jan 13 at 23:16










  • $begingroup$
    @Mathgeek the product of two polynomials is a polynomial. So define $p_2=p_1 p_2$ in your proof attempt.
    $endgroup$
    – Henno Brandsma
    Jan 14 at 6:01










  • $begingroup$
    That is how I defined @HennoBrandsma. I defined $p_2=p_1p_0$.
    $endgroup$
    – Math geek
    Jan 14 at 6:20










  • $begingroup$
    In the second part of the proof.
    $endgroup$
    – Math geek
    Jan 14 at 6:20


















  • $begingroup$
    what about the second property?
    $endgroup$
    – Math geek
    Jan 13 at 16:02










  • $begingroup$
    The first line proves it.
    $endgroup$
    – William Elliot
    Jan 13 at 23:16










  • $begingroup$
    @Mathgeek the product of two polynomials is a polynomial. So define $p_2=p_1 p_2$ in your proof attempt.
    $endgroup$
    – Henno Brandsma
    Jan 14 at 6:01










  • $begingroup$
    That is how I defined @HennoBrandsma. I defined $p_2=p_1p_0$.
    $endgroup$
    – Math geek
    Jan 14 at 6:20










  • $begingroup$
    In the second part of the proof.
    $endgroup$
    – Math geek
    Jan 14 at 6:20
















$begingroup$
what about the second property?
$endgroup$
– Math geek
Jan 13 at 16:02




$begingroup$
what about the second property?
$endgroup$
– Math geek
Jan 13 at 16:02












$begingroup$
The first line proves it.
$endgroup$
– William Elliot
Jan 13 at 23:16




$begingroup$
The first line proves it.
$endgroup$
– William Elliot
Jan 13 at 23:16












$begingroup$
@Mathgeek the product of two polynomials is a polynomial. So define $p_2=p_1 p_2$ in your proof attempt.
$endgroup$
– Henno Brandsma
Jan 14 at 6:01




$begingroup$
@Mathgeek the product of two polynomials is a polynomial. So define $p_2=p_1 p_2$ in your proof attempt.
$endgroup$
– Henno Brandsma
Jan 14 at 6:01












$begingroup$
That is how I defined @HennoBrandsma. I defined $p_2=p_1p_0$.
$endgroup$
– Math geek
Jan 14 at 6:20




$begingroup$
That is how I defined @HennoBrandsma. I defined $p_2=p_1p_0$.
$endgroup$
– Math geek
Jan 14 at 6:20












$begingroup$
In the second part of the proof.
$endgroup$
– Math geek
Jan 14 at 6:20




$begingroup$
In the second part of the proof.
$endgroup$
– Math geek
Jan 14 at 6:20


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071884%2fshow-that-zpp-in-mathscr-p-is-a-basis-for-the-closed-sets-of-some-topo%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna