How do I find an equation from vectors of a certain form?












-3












$begingroup$


Consider the plane $P$ in $mathbb{R}^3$ containing all the vectors of the form:
$r begin{bmatrix} 1 \ 2 \ 3 end{bmatrix} + s begin{bmatrix} 3 \ 2 \ 1 end{bmatrix}
$



Find an equation which describes the plane and show the point $(5,6,5)$ is not on the plane $P$.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    What have you tried so far?
    $endgroup$
    – jwc845
    Jan 15 at 22:11
















-3












$begingroup$


Consider the plane $P$ in $mathbb{R}^3$ containing all the vectors of the form:
$r begin{bmatrix} 1 \ 2 \ 3 end{bmatrix} + s begin{bmatrix} 3 \ 2 \ 1 end{bmatrix}
$



Find an equation which describes the plane and show the point $(5,6,5)$ is not on the plane $P$.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    What have you tried so far?
    $endgroup$
    – jwc845
    Jan 15 at 22:11














-3












-3








-3





$begingroup$


Consider the plane $P$ in $mathbb{R}^3$ containing all the vectors of the form:
$r begin{bmatrix} 1 \ 2 \ 3 end{bmatrix} + s begin{bmatrix} 3 \ 2 \ 1 end{bmatrix}
$



Find an equation which describes the plane and show the point $(5,6,5)$ is not on the plane $P$.










share|cite|improve this question











$endgroup$




Consider the plane $P$ in $mathbb{R}^3$ containing all the vectors of the form:
$r begin{bmatrix} 1 \ 2 \ 3 end{bmatrix} + s begin{bmatrix} 3 \ 2 \ 1 end{bmatrix}
$



Find an equation which describes the plane and show the point $(5,6,5)$ is not on the plane $P$.







linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 15 at 23:04









jwc845

382215




382215










asked Jan 15 at 22:01









Brooklyn Van HellBrooklyn Van Hell

31




31








  • 2




    $begingroup$
    What have you tried so far?
    $endgroup$
    – jwc845
    Jan 15 at 22:11














  • 2




    $begingroup$
    What have you tried so far?
    $endgroup$
    – jwc845
    Jan 15 at 22:11








2




2




$begingroup$
What have you tried so far?
$endgroup$
– jwc845
Jan 15 at 22:11




$begingroup$
What have you tried so far?
$endgroup$
– jwc845
Jan 15 at 22:11










1 Answer
1






active

oldest

votes


















-1












$begingroup$

You can take the cross-product to get the normal: $(1,2,3)×(3,2,1)=begin{vmatrix}i&j&k\1&2&3\3&2&1end{vmatrix}=-4i+8j-4k$.



Then use the point $(1,2,3)$: $4x-8y+4z=dimplies 4(1)-8(2)+3(4)=0=d$. $d$ should be zero, because the plane goes through the origin.



So, $4x-8y+4z=0$ would be an equation of the plane.



Lastly, $4(5)-8(6)+4(5)=-8neq0$. So $(5,6,5)$ is not on the plane.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    This helped a lot! Thanks so much!
    $endgroup$
    – Brooklyn Van Hell
    Jan 15 at 22:25










  • $begingroup$
    You're welcome.
    $endgroup$
    – Chris Custer
    Jan 15 at 23:08












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075036%2fhow-do-i-find-an-equation-from-vectors-of-a-certain-form%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









-1












$begingroup$

You can take the cross-product to get the normal: $(1,2,3)×(3,2,1)=begin{vmatrix}i&j&k\1&2&3\3&2&1end{vmatrix}=-4i+8j-4k$.



Then use the point $(1,2,3)$: $4x-8y+4z=dimplies 4(1)-8(2)+3(4)=0=d$. $d$ should be zero, because the plane goes through the origin.



So, $4x-8y+4z=0$ would be an equation of the plane.



Lastly, $4(5)-8(6)+4(5)=-8neq0$. So $(5,6,5)$ is not on the plane.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    This helped a lot! Thanks so much!
    $endgroup$
    – Brooklyn Van Hell
    Jan 15 at 22:25










  • $begingroup$
    You're welcome.
    $endgroup$
    – Chris Custer
    Jan 15 at 23:08
















-1












$begingroup$

You can take the cross-product to get the normal: $(1,2,3)×(3,2,1)=begin{vmatrix}i&j&k\1&2&3\3&2&1end{vmatrix}=-4i+8j-4k$.



Then use the point $(1,2,3)$: $4x-8y+4z=dimplies 4(1)-8(2)+3(4)=0=d$. $d$ should be zero, because the plane goes through the origin.



So, $4x-8y+4z=0$ would be an equation of the plane.



Lastly, $4(5)-8(6)+4(5)=-8neq0$. So $(5,6,5)$ is not on the plane.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    This helped a lot! Thanks so much!
    $endgroup$
    – Brooklyn Van Hell
    Jan 15 at 22:25










  • $begingroup$
    You're welcome.
    $endgroup$
    – Chris Custer
    Jan 15 at 23:08














-1












-1








-1





$begingroup$

You can take the cross-product to get the normal: $(1,2,3)×(3,2,1)=begin{vmatrix}i&j&k\1&2&3\3&2&1end{vmatrix}=-4i+8j-4k$.



Then use the point $(1,2,3)$: $4x-8y+4z=dimplies 4(1)-8(2)+3(4)=0=d$. $d$ should be zero, because the plane goes through the origin.



So, $4x-8y+4z=0$ would be an equation of the plane.



Lastly, $4(5)-8(6)+4(5)=-8neq0$. So $(5,6,5)$ is not on the plane.






share|cite|improve this answer











$endgroup$



You can take the cross-product to get the normal: $(1,2,3)×(3,2,1)=begin{vmatrix}i&j&k\1&2&3\3&2&1end{vmatrix}=-4i+8j-4k$.



Then use the point $(1,2,3)$: $4x-8y+4z=dimplies 4(1)-8(2)+3(4)=0=d$. $d$ should be zero, because the plane goes through the origin.



So, $4x-8y+4z=0$ would be an equation of the plane.



Lastly, $4(5)-8(6)+4(5)=-8neq0$. So $(5,6,5)$ is not on the plane.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 15 at 22:37

























answered Jan 15 at 22:13









Chris CusterChris Custer

14.6k3827




14.6k3827












  • $begingroup$
    This helped a lot! Thanks so much!
    $endgroup$
    – Brooklyn Van Hell
    Jan 15 at 22:25










  • $begingroup$
    You're welcome.
    $endgroup$
    – Chris Custer
    Jan 15 at 23:08


















  • $begingroup$
    This helped a lot! Thanks so much!
    $endgroup$
    – Brooklyn Van Hell
    Jan 15 at 22:25










  • $begingroup$
    You're welcome.
    $endgroup$
    – Chris Custer
    Jan 15 at 23:08
















$begingroup$
This helped a lot! Thanks so much!
$endgroup$
– Brooklyn Van Hell
Jan 15 at 22:25




$begingroup$
This helped a lot! Thanks so much!
$endgroup$
– Brooklyn Van Hell
Jan 15 at 22:25












$begingroup$
You're welcome.
$endgroup$
– Chris Custer
Jan 15 at 23:08




$begingroup$
You're welcome.
$endgroup$
– Chris Custer
Jan 15 at 23:08


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075036%2fhow-do-i-find-an-equation-from-vectors-of-a-certain-form%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna