Is this functional non-negative for $x_igeq 0$?












1












$begingroup$


Consider
$$
Phi(x)=sum_{i=1}^n a_i^2 (1+x_i)^2sum_{j=1}^n a_j^2 (1+x_j)(x_j-x_i)(x_1-x_i(2+x_j)),quad a_iinmathbb R.
$$

My conjecture is that this functional is non-negative for all $n$ and $x_igeq 0$. Is it true?



My approach is to put $x=t y$, where $yinmathbb R^n$ is a unit non-negative vector and then rewrite $Phi$ as a 6th-degree polynomial of $t$. Then I try to show that all its coefficients are positive (which is of course not a necessary condition). So far I think I have shown that the coefficients of $t^6$ and $t^5$ are always positive (using induction on $n$). The other coefficients are a bit clumsier and I wonder if there's a simpler way to prove the conjecture.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Consider
    $$
    Phi(x)=sum_{i=1}^n a_i^2 (1+x_i)^2sum_{j=1}^n a_j^2 (1+x_j)(x_j-x_i)(x_1-x_i(2+x_j)),quad a_iinmathbb R.
    $$

    My conjecture is that this functional is non-negative for all $n$ and $x_igeq 0$. Is it true?



    My approach is to put $x=t y$, where $yinmathbb R^n$ is a unit non-negative vector and then rewrite $Phi$ as a 6th-degree polynomial of $t$. Then I try to show that all its coefficients are positive (which is of course not a necessary condition). So far I think I have shown that the coefficients of $t^6$ and $t^5$ are always positive (using induction on $n$). The other coefficients are a bit clumsier and I wonder if there's a simpler way to prove the conjecture.










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      0



      $begingroup$


      Consider
      $$
      Phi(x)=sum_{i=1}^n a_i^2 (1+x_i)^2sum_{j=1}^n a_j^2 (1+x_j)(x_j-x_i)(x_1-x_i(2+x_j)),quad a_iinmathbb R.
      $$

      My conjecture is that this functional is non-negative for all $n$ and $x_igeq 0$. Is it true?



      My approach is to put $x=t y$, where $yinmathbb R^n$ is a unit non-negative vector and then rewrite $Phi$ as a 6th-degree polynomial of $t$. Then I try to show that all its coefficients are positive (which is of course not a necessary condition). So far I think I have shown that the coefficients of $t^6$ and $t^5$ are always positive (using induction on $n$). The other coefficients are a bit clumsier and I wonder if there's a simpler way to prove the conjecture.










      share|cite|improve this question











      $endgroup$




      Consider
      $$
      Phi(x)=sum_{i=1}^n a_i^2 (1+x_i)^2sum_{j=1}^n a_j^2 (1+x_j)(x_j-x_i)(x_1-x_i(2+x_j)),quad a_iinmathbb R.
      $$

      My conjecture is that this functional is non-negative for all $n$ and $x_igeq 0$. Is it true?



      My approach is to put $x=t y$, where $yinmathbb R^n$ is a unit non-negative vector and then rewrite $Phi$ as a 6th-degree polynomial of $t$. Then I try to show that all its coefficients are positive (which is of course not a necessary condition). So far I think I have shown that the coefficients of $t^6$ and $t^5$ are always positive (using induction on $n$). The other coefficients are a bit clumsier and I wonder if there's a simpler way to prove the conjecture.







      inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 15 at 22:29







      Nasa Momdele

















      asked Jan 15 at 22:10









      Nasa MomdeleNasa Momdele

      254




      254






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Random counterexample: $Phi(x)=-288$ when $n=3,,(a_1,a_2,a_3)=(0,4,3)$ and $x=(5,0,1)$.






          share|cite|improve this answer









          $endgroup$














            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075042%2fis-this-functional-non-negative-for-x-i-geq-0%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Random counterexample: $Phi(x)=-288$ when $n=3,,(a_1,a_2,a_3)=(0,4,3)$ and $x=(5,0,1)$.






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              Random counterexample: $Phi(x)=-288$ when $n=3,,(a_1,a_2,a_3)=(0,4,3)$ and $x=(5,0,1)$.






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                Random counterexample: $Phi(x)=-288$ when $n=3,,(a_1,a_2,a_3)=(0,4,3)$ and $x=(5,0,1)$.






                share|cite|improve this answer









                $endgroup$



                Random counterexample: $Phi(x)=-288$ when $n=3,,(a_1,a_2,a_3)=(0,4,3)$ and $x=(5,0,1)$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 16 at 17:04









                user1551user1551

                74.7k566129




                74.7k566129






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075042%2fis-this-functional-non-negative-for-x-i-geq-0%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna