Linear Stability Analysis of a System of PDEs
I want to perform a linear stability analysis of the following system of PDEs to determine if oscillations arise and - in case they arise - the conditions for them to arise:
begin{align}
frac{partial c_1}{partial t} & = D_1 frac{partial^2 c_1}{partial x^2} + a_1 frac{partial c_1}{partial x} + f_1(c_1, c_2) \ frac{partial c_2}{partial t} & = D_2 frac{partial^2 c_1}{partial x^2} + a_2 frac{partial c_1}{partial x} + f_2(c_1, c_2) \ frac{partial c_1}{partial x} Big |_{x = 0} & = A + a_1 frac{partial c_1}{partial x} Big |_{x = 0} + f_1(c_1, c_2) Big |_{x = 0}
end{align}
Hereby, $D_1$, $D_2$, $a_1$, $a_2$ are constants and $f_1(c_1, c_2)$ and $f_2(c_1, c_2)$ both are nonlinear functions.
My idea:
We make the following ansatz for a stationary state solution: $c_{1,2}^* = A_{1,2} e^{-kx}$
It holds
begin{align}
0 & = -k^2 D_1 c_1^* - k a_1 c_1^* + f_1(c_1^*, c_2^*) \ 0 & = - k^2 D_2 c_2^* - k a_2 c_2^* + f_2(c_1^*, c_2^*) \ - k c_1^*(0) & = A - k a_1 c_1^*(0) + f_1(c_1^*(0), c_2^*(0)).
end{align}
This must hold in particular for $x = 0$ which gives
begin{align}
0 & = -k^2 D_1 A_1 - k a_1 A_1 + f_1(A_1, A_2) \ 0 & = - k^2 D_2 A_2 - k a_2 A_2 + f_2(A_1, A_2) \ - k A_1 & = A - k a_1 A_1 + f_1(A_1, A_2).
end{align}
Introducing $y_{1,2} = c_{1,2} - c_{1,2}^*$ it holds
begin{align}
frac{partial y_1}{partial t} & = D_1 frac{partial^2 y_1}{partial x^2} - k^2 D_1 c_1^* + a_1 frac{partial y_1}{partial x} - k a_1 c_1^* + f_1(y_1 + c_1^*, y_2 + c_2^*) \ frac{partial y_2}{partial t} & = D_2 frac{partial^2 y_2}{partial x^2} - k^2 D_2 c_2^* + a_2 frac{partial y_2}{partial x} - k a_2 c_2^* + f_2(y_1 + c_1^*, y_2 + c_2^*) \ frac{partial y_1}{partial t} Big |_{x = 0} & = A + a_1 frac{partial y_1}{partial x} Big |_{x = 0} - k a_1 A_1 + f_1(y_1 + c_1^*, y_2 + c_2^*) Big |_{x = 0}.
end{align}
Using both a Taylor expansion of $f_1(y_1 + c_1^*, y_2 + c_2^*)$ and $f_2(y_1 + c_1^*, y_2 + c_2^*)$ around $(c_1^*, c_2^*)$ and the equations above we get
begin{align}
frac{partial y_1}{partial t} & = D_1 frac{partial^2 y_1}{partial x^2} + a_1 frac{partial y_1}{partial x} + frac{partial f_1}{partial c_1} (c_1^*, c_2^*) y_1 + frac{partial f_1}{partial c_2} (c_1^*, c_2^*) y_2 \ frac{partial y_2}{partial t} & = D_2 frac{partial^2 y_2}{partial x^2} + a_2 frac{partial y_2}{partial x} + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_1 + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 \ frac{partial y_1}{partial t} Big |_{x = 0} & = a_1 frac{partial y_1}{partial x} Big |_{x = 0} - k A_1 + frac{partial f_2}{partial c_1} (c_1^*, c_2^*) y_1 Big |_{x = 0} + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 Big |_{x = 0}.
end{align}
For $y_{1,2}$ we make the ansatz $y_{1,2} = B_{1,2} e^{-kx} e^{i omega t}$ which gives
begin{align}
i omega y_1 & = k^2 D_1 y_1 - k a_1 y_1 + frac{partial f_1}{partial c_1} (c_1^*, c_2^*) y_1 + frac{partial f_1}{partial c_2} (c_1^*, c_2^*) y_2 \ i omega y_2 & = k^2 D_2 y_2 - k a_2 y_2 + frac{partial f_2}{partial c_1} (c_1^*, c_2^*) y_1 + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 \ i omega y_1 Big |_{x = 0} & = - k a_1 y_1 Big |_{x = 0} - k A_1 + frac{partial f_2}{partial c_1} (c_1^*, c_2^*) y_1 Big |_{x = 0} + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 Big |_{x = 0}.
end{align}
We get
begin{align}
begin{pmatrix}
i omega - k^2 D_1 + k a_1 - frac{partial f_1}{partial c_1} (c_1^*, c_2^*) && - frac{partial f_1}{partial c_2} (c_1^*, c_2^*)
\
- frac{partial f_2}{partial c_1} (c_1^*, c_2^*) && i omega - k^2 D_2 + k a_2 - frac{partial f_2}{partial c_2} (c_1^*, c_2^*)
end{pmatrix}
begin{pmatrix}
y_1
\
y_2
end{pmatrix}
=
begin{pmatrix}
0
\
0
end{pmatrix}.
end{align}
This system of linear equations has non trivial solutions if and only if the determinant of the matrix vanishes:
$Big (i omega - k^2 D_1 + k a_1 - frac{partial f_1}{partial c_1} (c_1^*, c_2^*) Big ) Big (i omega - k^2 D_2 + k a_2 - frac{partial f_2}{partial c_2} (c_1^*, c_2^*) Big ) - frac{partial f_1}{partial c_2} (c_1^*, c_2^*) frac{partial f_2}{partial c_1} (c_1^*, c_2^*) = 0$
This equation must hold in particular for $x = 0$ which gives
$(i omega - k^2 D_1 + k a_1 - frac{partial f_1}{partial c_1} (A_1, A_2)) (i omega - k^2 D_2 + k a_2 - frac{partial f_2}{partial c_2} (A_1, A_2)) - frac{partial f_1}{partial c_2} (A_1, A_2) frac{partial f_2}{partial c_1} (A_1, A_2) = 0.$
In order to determine the frequency $omega$, we need to know $k$, $A_1$ and $A_2$ which are given by the equations for $c_{1,2}^*$ above, evaluated at $x = 0$.
Does this approach work or are there conceptual errors? Is there perhaps another way to determine if oscillations occur and - in case they occur - to determine the conditions for $omega$?
real-analysis linear-algebra differential-equations pde bifurcation
add a comment |
I want to perform a linear stability analysis of the following system of PDEs to determine if oscillations arise and - in case they arise - the conditions for them to arise:
begin{align}
frac{partial c_1}{partial t} & = D_1 frac{partial^2 c_1}{partial x^2} + a_1 frac{partial c_1}{partial x} + f_1(c_1, c_2) \ frac{partial c_2}{partial t} & = D_2 frac{partial^2 c_1}{partial x^2} + a_2 frac{partial c_1}{partial x} + f_2(c_1, c_2) \ frac{partial c_1}{partial x} Big |_{x = 0} & = A + a_1 frac{partial c_1}{partial x} Big |_{x = 0} + f_1(c_1, c_2) Big |_{x = 0}
end{align}
Hereby, $D_1$, $D_2$, $a_1$, $a_2$ are constants and $f_1(c_1, c_2)$ and $f_2(c_1, c_2)$ both are nonlinear functions.
My idea:
We make the following ansatz for a stationary state solution: $c_{1,2}^* = A_{1,2} e^{-kx}$
It holds
begin{align}
0 & = -k^2 D_1 c_1^* - k a_1 c_1^* + f_1(c_1^*, c_2^*) \ 0 & = - k^2 D_2 c_2^* - k a_2 c_2^* + f_2(c_1^*, c_2^*) \ - k c_1^*(0) & = A - k a_1 c_1^*(0) + f_1(c_1^*(0), c_2^*(0)).
end{align}
This must hold in particular for $x = 0$ which gives
begin{align}
0 & = -k^2 D_1 A_1 - k a_1 A_1 + f_1(A_1, A_2) \ 0 & = - k^2 D_2 A_2 - k a_2 A_2 + f_2(A_1, A_2) \ - k A_1 & = A - k a_1 A_1 + f_1(A_1, A_2).
end{align}
Introducing $y_{1,2} = c_{1,2} - c_{1,2}^*$ it holds
begin{align}
frac{partial y_1}{partial t} & = D_1 frac{partial^2 y_1}{partial x^2} - k^2 D_1 c_1^* + a_1 frac{partial y_1}{partial x} - k a_1 c_1^* + f_1(y_1 + c_1^*, y_2 + c_2^*) \ frac{partial y_2}{partial t} & = D_2 frac{partial^2 y_2}{partial x^2} - k^2 D_2 c_2^* + a_2 frac{partial y_2}{partial x} - k a_2 c_2^* + f_2(y_1 + c_1^*, y_2 + c_2^*) \ frac{partial y_1}{partial t} Big |_{x = 0} & = A + a_1 frac{partial y_1}{partial x} Big |_{x = 0} - k a_1 A_1 + f_1(y_1 + c_1^*, y_2 + c_2^*) Big |_{x = 0}.
end{align}
Using both a Taylor expansion of $f_1(y_1 + c_1^*, y_2 + c_2^*)$ and $f_2(y_1 + c_1^*, y_2 + c_2^*)$ around $(c_1^*, c_2^*)$ and the equations above we get
begin{align}
frac{partial y_1}{partial t} & = D_1 frac{partial^2 y_1}{partial x^2} + a_1 frac{partial y_1}{partial x} + frac{partial f_1}{partial c_1} (c_1^*, c_2^*) y_1 + frac{partial f_1}{partial c_2} (c_1^*, c_2^*) y_2 \ frac{partial y_2}{partial t} & = D_2 frac{partial^2 y_2}{partial x^2} + a_2 frac{partial y_2}{partial x} + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_1 + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 \ frac{partial y_1}{partial t} Big |_{x = 0} & = a_1 frac{partial y_1}{partial x} Big |_{x = 0} - k A_1 + frac{partial f_2}{partial c_1} (c_1^*, c_2^*) y_1 Big |_{x = 0} + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 Big |_{x = 0}.
end{align}
For $y_{1,2}$ we make the ansatz $y_{1,2} = B_{1,2} e^{-kx} e^{i omega t}$ which gives
begin{align}
i omega y_1 & = k^2 D_1 y_1 - k a_1 y_1 + frac{partial f_1}{partial c_1} (c_1^*, c_2^*) y_1 + frac{partial f_1}{partial c_2} (c_1^*, c_2^*) y_2 \ i omega y_2 & = k^2 D_2 y_2 - k a_2 y_2 + frac{partial f_2}{partial c_1} (c_1^*, c_2^*) y_1 + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 \ i omega y_1 Big |_{x = 0} & = - k a_1 y_1 Big |_{x = 0} - k A_1 + frac{partial f_2}{partial c_1} (c_1^*, c_2^*) y_1 Big |_{x = 0} + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 Big |_{x = 0}.
end{align}
We get
begin{align}
begin{pmatrix}
i omega - k^2 D_1 + k a_1 - frac{partial f_1}{partial c_1} (c_1^*, c_2^*) && - frac{partial f_1}{partial c_2} (c_1^*, c_2^*)
\
- frac{partial f_2}{partial c_1} (c_1^*, c_2^*) && i omega - k^2 D_2 + k a_2 - frac{partial f_2}{partial c_2} (c_1^*, c_2^*)
end{pmatrix}
begin{pmatrix}
y_1
\
y_2
end{pmatrix}
=
begin{pmatrix}
0
\
0
end{pmatrix}.
end{align}
This system of linear equations has non trivial solutions if and only if the determinant of the matrix vanishes:
$Big (i omega - k^2 D_1 + k a_1 - frac{partial f_1}{partial c_1} (c_1^*, c_2^*) Big ) Big (i omega - k^2 D_2 + k a_2 - frac{partial f_2}{partial c_2} (c_1^*, c_2^*) Big ) - frac{partial f_1}{partial c_2} (c_1^*, c_2^*) frac{partial f_2}{partial c_1} (c_1^*, c_2^*) = 0$
This equation must hold in particular for $x = 0$ which gives
$(i omega - k^2 D_1 + k a_1 - frac{partial f_1}{partial c_1} (A_1, A_2)) (i omega - k^2 D_2 + k a_2 - frac{partial f_2}{partial c_2} (A_1, A_2)) - frac{partial f_1}{partial c_2} (A_1, A_2) frac{partial f_2}{partial c_1} (A_1, A_2) = 0.$
In order to determine the frequency $omega$, we need to know $k$, $A_1$ and $A_2$ which are given by the equations for $c_{1,2}^*$ above, evaluated at $x = 0$.
Does this approach work or are there conceptual errors? Is there perhaps another way to determine if oscillations occur and - in case they occur - to determine the conditions for $omega$?
real-analysis linear-algebra differential-equations pde bifurcation
add a comment |
I want to perform a linear stability analysis of the following system of PDEs to determine if oscillations arise and - in case they arise - the conditions for them to arise:
begin{align}
frac{partial c_1}{partial t} & = D_1 frac{partial^2 c_1}{partial x^2} + a_1 frac{partial c_1}{partial x} + f_1(c_1, c_2) \ frac{partial c_2}{partial t} & = D_2 frac{partial^2 c_1}{partial x^2} + a_2 frac{partial c_1}{partial x} + f_2(c_1, c_2) \ frac{partial c_1}{partial x} Big |_{x = 0} & = A + a_1 frac{partial c_1}{partial x} Big |_{x = 0} + f_1(c_1, c_2) Big |_{x = 0}
end{align}
Hereby, $D_1$, $D_2$, $a_1$, $a_2$ are constants and $f_1(c_1, c_2)$ and $f_2(c_1, c_2)$ both are nonlinear functions.
My idea:
We make the following ansatz for a stationary state solution: $c_{1,2}^* = A_{1,2} e^{-kx}$
It holds
begin{align}
0 & = -k^2 D_1 c_1^* - k a_1 c_1^* + f_1(c_1^*, c_2^*) \ 0 & = - k^2 D_2 c_2^* - k a_2 c_2^* + f_2(c_1^*, c_2^*) \ - k c_1^*(0) & = A - k a_1 c_1^*(0) + f_1(c_1^*(0), c_2^*(0)).
end{align}
This must hold in particular for $x = 0$ which gives
begin{align}
0 & = -k^2 D_1 A_1 - k a_1 A_1 + f_1(A_1, A_2) \ 0 & = - k^2 D_2 A_2 - k a_2 A_2 + f_2(A_1, A_2) \ - k A_1 & = A - k a_1 A_1 + f_1(A_1, A_2).
end{align}
Introducing $y_{1,2} = c_{1,2} - c_{1,2}^*$ it holds
begin{align}
frac{partial y_1}{partial t} & = D_1 frac{partial^2 y_1}{partial x^2} - k^2 D_1 c_1^* + a_1 frac{partial y_1}{partial x} - k a_1 c_1^* + f_1(y_1 + c_1^*, y_2 + c_2^*) \ frac{partial y_2}{partial t} & = D_2 frac{partial^2 y_2}{partial x^2} - k^2 D_2 c_2^* + a_2 frac{partial y_2}{partial x} - k a_2 c_2^* + f_2(y_1 + c_1^*, y_2 + c_2^*) \ frac{partial y_1}{partial t} Big |_{x = 0} & = A + a_1 frac{partial y_1}{partial x} Big |_{x = 0} - k a_1 A_1 + f_1(y_1 + c_1^*, y_2 + c_2^*) Big |_{x = 0}.
end{align}
Using both a Taylor expansion of $f_1(y_1 + c_1^*, y_2 + c_2^*)$ and $f_2(y_1 + c_1^*, y_2 + c_2^*)$ around $(c_1^*, c_2^*)$ and the equations above we get
begin{align}
frac{partial y_1}{partial t} & = D_1 frac{partial^2 y_1}{partial x^2} + a_1 frac{partial y_1}{partial x} + frac{partial f_1}{partial c_1} (c_1^*, c_2^*) y_1 + frac{partial f_1}{partial c_2} (c_1^*, c_2^*) y_2 \ frac{partial y_2}{partial t} & = D_2 frac{partial^2 y_2}{partial x^2} + a_2 frac{partial y_2}{partial x} + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_1 + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 \ frac{partial y_1}{partial t} Big |_{x = 0} & = a_1 frac{partial y_1}{partial x} Big |_{x = 0} - k A_1 + frac{partial f_2}{partial c_1} (c_1^*, c_2^*) y_1 Big |_{x = 0} + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 Big |_{x = 0}.
end{align}
For $y_{1,2}$ we make the ansatz $y_{1,2} = B_{1,2} e^{-kx} e^{i omega t}$ which gives
begin{align}
i omega y_1 & = k^2 D_1 y_1 - k a_1 y_1 + frac{partial f_1}{partial c_1} (c_1^*, c_2^*) y_1 + frac{partial f_1}{partial c_2} (c_1^*, c_2^*) y_2 \ i omega y_2 & = k^2 D_2 y_2 - k a_2 y_2 + frac{partial f_2}{partial c_1} (c_1^*, c_2^*) y_1 + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 \ i omega y_1 Big |_{x = 0} & = - k a_1 y_1 Big |_{x = 0} - k A_1 + frac{partial f_2}{partial c_1} (c_1^*, c_2^*) y_1 Big |_{x = 0} + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 Big |_{x = 0}.
end{align}
We get
begin{align}
begin{pmatrix}
i omega - k^2 D_1 + k a_1 - frac{partial f_1}{partial c_1} (c_1^*, c_2^*) && - frac{partial f_1}{partial c_2} (c_1^*, c_2^*)
\
- frac{partial f_2}{partial c_1} (c_1^*, c_2^*) && i omega - k^2 D_2 + k a_2 - frac{partial f_2}{partial c_2} (c_1^*, c_2^*)
end{pmatrix}
begin{pmatrix}
y_1
\
y_2
end{pmatrix}
=
begin{pmatrix}
0
\
0
end{pmatrix}.
end{align}
This system of linear equations has non trivial solutions if and only if the determinant of the matrix vanishes:
$Big (i omega - k^2 D_1 + k a_1 - frac{partial f_1}{partial c_1} (c_1^*, c_2^*) Big ) Big (i omega - k^2 D_2 + k a_2 - frac{partial f_2}{partial c_2} (c_1^*, c_2^*) Big ) - frac{partial f_1}{partial c_2} (c_1^*, c_2^*) frac{partial f_2}{partial c_1} (c_1^*, c_2^*) = 0$
This equation must hold in particular for $x = 0$ which gives
$(i omega - k^2 D_1 + k a_1 - frac{partial f_1}{partial c_1} (A_1, A_2)) (i omega - k^2 D_2 + k a_2 - frac{partial f_2}{partial c_2} (A_1, A_2)) - frac{partial f_1}{partial c_2} (A_1, A_2) frac{partial f_2}{partial c_1} (A_1, A_2) = 0.$
In order to determine the frequency $omega$, we need to know $k$, $A_1$ and $A_2$ which are given by the equations for $c_{1,2}^*$ above, evaluated at $x = 0$.
Does this approach work or are there conceptual errors? Is there perhaps another way to determine if oscillations occur and - in case they occur - to determine the conditions for $omega$?
real-analysis linear-algebra differential-equations pde bifurcation
I want to perform a linear stability analysis of the following system of PDEs to determine if oscillations arise and - in case they arise - the conditions for them to arise:
begin{align}
frac{partial c_1}{partial t} & = D_1 frac{partial^2 c_1}{partial x^2} + a_1 frac{partial c_1}{partial x} + f_1(c_1, c_2) \ frac{partial c_2}{partial t} & = D_2 frac{partial^2 c_1}{partial x^2} + a_2 frac{partial c_1}{partial x} + f_2(c_1, c_2) \ frac{partial c_1}{partial x} Big |_{x = 0} & = A + a_1 frac{partial c_1}{partial x} Big |_{x = 0} + f_1(c_1, c_2) Big |_{x = 0}
end{align}
Hereby, $D_1$, $D_2$, $a_1$, $a_2$ are constants and $f_1(c_1, c_2)$ and $f_2(c_1, c_2)$ both are nonlinear functions.
My idea:
We make the following ansatz for a stationary state solution: $c_{1,2}^* = A_{1,2} e^{-kx}$
It holds
begin{align}
0 & = -k^2 D_1 c_1^* - k a_1 c_1^* + f_1(c_1^*, c_2^*) \ 0 & = - k^2 D_2 c_2^* - k a_2 c_2^* + f_2(c_1^*, c_2^*) \ - k c_1^*(0) & = A - k a_1 c_1^*(0) + f_1(c_1^*(0), c_2^*(0)).
end{align}
This must hold in particular for $x = 0$ which gives
begin{align}
0 & = -k^2 D_1 A_1 - k a_1 A_1 + f_1(A_1, A_2) \ 0 & = - k^2 D_2 A_2 - k a_2 A_2 + f_2(A_1, A_2) \ - k A_1 & = A - k a_1 A_1 + f_1(A_1, A_2).
end{align}
Introducing $y_{1,2} = c_{1,2} - c_{1,2}^*$ it holds
begin{align}
frac{partial y_1}{partial t} & = D_1 frac{partial^2 y_1}{partial x^2} - k^2 D_1 c_1^* + a_1 frac{partial y_1}{partial x} - k a_1 c_1^* + f_1(y_1 + c_1^*, y_2 + c_2^*) \ frac{partial y_2}{partial t} & = D_2 frac{partial^2 y_2}{partial x^2} - k^2 D_2 c_2^* + a_2 frac{partial y_2}{partial x} - k a_2 c_2^* + f_2(y_1 + c_1^*, y_2 + c_2^*) \ frac{partial y_1}{partial t} Big |_{x = 0} & = A + a_1 frac{partial y_1}{partial x} Big |_{x = 0} - k a_1 A_1 + f_1(y_1 + c_1^*, y_2 + c_2^*) Big |_{x = 0}.
end{align}
Using both a Taylor expansion of $f_1(y_1 + c_1^*, y_2 + c_2^*)$ and $f_2(y_1 + c_1^*, y_2 + c_2^*)$ around $(c_1^*, c_2^*)$ and the equations above we get
begin{align}
frac{partial y_1}{partial t} & = D_1 frac{partial^2 y_1}{partial x^2} + a_1 frac{partial y_1}{partial x} + frac{partial f_1}{partial c_1} (c_1^*, c_2^*) y_1 + frac{partial f_1}{partial c_2} (c_1^*, c_2^*) y_2 \ frac{partial y_2}{partial t} & = D_2 frac{partial^2 y_2}{partial x^2} + a_2 frac{partial y_2}{partial x} + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_1 + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 \ frac{partial y_1}{partial t} Big |_{x = 0} & = a_1 frac{partial y_1}{partial x} Big |_{x = 0} - k A_1 + frac{partial f_2}{partial c_1} (c_1^*, c_2^*) y_1 Big |_{x = 0} + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 Big |_{x = 0}.
end{align}
For $y_{1,2}$ we make the ansatz $y_{1,2} = B_{1,2} e^{-kx} e^{i omega t}$ which gives
begin{align}
i omega y_1 & = k^2 D_1 y_1 - k a_1 y_1 + frac{partial f_1}{partial c_1} (c_1^*, c_2^*) y_1 + frac{partial f_1}{partial c_2} (c_1^*, c_2^*) y_2 \ i omega y_2 & = k^2 D_2 y_2 - k a_2 y_2 + frac{partial f_2}{partial c_1} (c_1^*, c_2^*) y_1 + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 \ i omega y_1 Big |_{x = 0} & = - k a_1 y_1 Big |_{x = 0} - k A_1 + frac{partial f_2}{partial c_1} (c_1^*, c_2^*) y_1 Big |_{x = 0} + frac{partial f_2}{partial c_2} (c_1^*, c_2^*) y_2 Big |_{x = 0}.
end{align}
We get
begin{align}
begin{pmatrix}
i omega - k^2 D_1 + k a_1 - frac{partial f_1}{partial c_1} (c_1^*, c_2^*) && - frac{partial f_1}{partial c_2} (c_1^*, c_2^*)
\
- frac{partial f_2}{partial c_1} (c_1^*, c_2^*) && i omega - k^2 D_2 + k a_2 - frac{partial f_2}{partial c_2} (c_1^*, c_2^*)
end{pmatrix}
begin{pmatrix}
y_1
\
y_2
end{pmatrix}
=
begin{pmatrix}
0
\
0
end{pmatrix}.
end{align}
This system of linear equations has non trivial solutions if and only if the determinant of the matrix vanishes:
$Big (i omega - k^2 D_1 + k a_1 - frac{partial f_1}{partial c_1} (c_1^*, c_2^*) Big ) Big (i omega - k^2 D_2 + k a_2 - frac{partial f_2}{partial c_2} (c_1^*, c_2^*) Big ) - frac{partial f_1}{partial c_2} (c_1^*, c_2^*) frac{partial f_2}{partial c_1} (c_1^*, c_2^*) = 0$
This equation must hold in particular for $x = 0$ which gives
$(i omega - k^2 D_1 + k a_1 - frac{partial f_1}{partial c_1} (A_1, A_2)) (i omega - k^2 D_2 + k a_2 - frac{partial f_2}{partial c_2} (A_1, A_2)) - frac{partial f_1}{partial c_2} (A_1, A_2) frac{partial f_2}{partial c_1} (A_1, A_2) = 0.$
In order to determine the frequency $omega$, we need to know $k$, $A_1$ and $A_2$ which are given by the equations for $c_{1,2}^*$ above, evaluated at $x = 0$.
Does this approach work or are there conceptual errors? Is there perhaps another way to determine if oscillations occur and - in case they occur - to determine the conditions for $omega$?
real-analysis linear-algebra differential-equations pde bifurcation
real-analysis linear-algebra differential-equations pde bifurcation
edited Dec 14 at 15:08
asked Dec 8 at 23:33
Hermetica
62
62
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031805%2flinear-stability-analysis-of-a-system-of-pdes%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031805%2flinear-stability-analysis-of-a-system-of-pdes%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown