Any example of equivalent norms in infinite-dimensional vector space?
$begingroup$
I have read in this paper that the number of inequivalent norms in infinit-dimensional space is exactly $2^{dim X}$, In my guess if am true this mean that there are Equivalent norms in infinit dimensional space which I want to know one example of it ? and if there is no Equivalents norms in infinit dimensional vector space just any proof for that ?
vector-spaces normed-spaces
$endgroup$
add a comment |
$begingroup$
I have read in this paper that the number of inequivalent norms in infinit-dimensional space is exactly $2^{dim X}$, In my guess if am true this mean that there are Equivalent norms in infinit dimensional space which I want to know one example of it ? and if there is no Equivalents norms in infinit dimensional vector space just any proof for that ?
vector-spaces normed-spaces
$endgroup$
$begingroup$
Take a norm $|cdot |$ and $c>0$. The norm $c|cdot |$ is equivalent to $|cdot |$.
$endgroup$
– Zachary Selk
Dec 25 '18 at 16:19
add a comment |
$begingroup$
I have read in this paper that the number of inequivalent norms in infinit-dimensional space is exactly $2^{dim X}$, In my guess if am true this mean that there are Equivalent norms in infinit dimensional space which I want to know one example of it ? and if there is no Equivalents norms in infinit dimensional vector space just any proof for that ?
vector-spaces normed-spaces
$endgroup$
I have read in this paper that the number of inequivalent norms in infinit-dimensional space is exactly $2^{dim X}$, In my guess if am true this mean that there are Equivalent norms in infinit dimensional space which I want to know one example of it ? and if there is no Equivalents norms in infinit dimensional vector space just any proof for that ?
vector-spaces normed-spaces
vector-spaces normed-spaces
edited Dec 25 '18 at 16:26
Bernard
121k740116
121k740116
asked Dec 25 '18 at 16:14
zeraoulia rafikzeraoulia rafik
2,40811030
2,40811030
$begingroup$
Take a norm $|cdot |$ and $c>0$. The norm $c|cdot |$ is equivalent to $|cdot |$.
$endgroup$
– Zachary Selk
Dec 25 '18 at 16:19
add a comment |
$begingroup$
Take a norm $|cdot |$ and $c>0$. The norm $c|cdot |$ is equivalent to $|cdot |$.
$endgroup$
– Zachary Selk
Dec 25 '18 at 16:19
$begingroup$
Take a norm $|cdot |$ and $c>0$. The norm $c|cdot |$ is equivalent to $|cdot |$.
$endgroup$
– Zachary Selk
Dec 25 '18 at 16:19
$begingroup$
Take a norm $|cdot |$ and $c>0$. The norm $c|cdot |$ is equivalent to $|cdot |$.
$endgroup$
– Zachary Selk
Dec 25 '18 at 16:19
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If $lVertcdotrVert$ is any norm on any vector space $X$, then $lVertcdotrVert$ and $2lVertcdotrVert$ are equivalent norms.
$endgroup$
add a comment |
$begingroup$
Here's a silly example: define on $X=mathcal{C}^0([a,b],mathbb{R})$ the norm $lVertcdotrVert$ given by $sup_{xin [a,b]} f(x)=lVert frVert.$ Define a second norm $lVertcdotrVert'$ by $2sup_{xin [a,b]}f(x)=lVert frVert'$. Then indeed we have that there exist constants $c$ and $C$ such that
$$ clVert frVert'le lVert frVertle ClVert frVert'.$$
For instance, take $c=frac{1}{2}$ and $C=1$. More generally, if we have a normed space over $mathbb{R}$, a norm $lVertcdotrVert$ determines a family of equivalent norms $lambda lVertcdotrVert$ for $lambdain mathbb{R}$. This fact is independent of the dimensionality of the space.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052235%2fany-example-of-equivalent-norms-in-infinite-dimensional-vector-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $lVertcdotrVert$ is any norm on any vector space $X$, then $lVertcdotrVert$ and $2lVertcdotrVert$ are equivalent norms.
$endgroup$
add a comment |
$begingroup$
If $lVertcdotrVert$ is any norm on any vector space $X$, then $lVertcdotrVert$ and $2lVertcdotrVert$ are equivalent norms.
$endgroup$
add a comment |
$begingroup$
If $lVertcdotrVert$ is any norm on any vector space $X$, then $lVertcdotrVert$ and $2lVertcdotrVert$ are equivalent norms.
$endgroup$
If $lVertcdotrVert$ is any norm on any vector space $X$, then $lVertcdotrVert$ and $2lVertcdotrVert$ are equivalent norms.
answered Dec 25 '18 at 16:17
José Carlos SantosJosé Carlos Santos
160k22127232
160k22127232
add a comment |
add a comment |
$begingroup$
Here's a silly example: define on $X=mathcal{C}^0([a,b],mathbb{R})$ the norm $lVertcdotrVert$ given by $sup_{xin [a,b]} f(x)=lVert frVert.$ Define a second norm $lVertcdotrVert'$ by $2sup_{xin [a,b]}f(x)=lVert frVert'$. Then indeed we have that there exist constants $c$ and $C$ such that
$$ clVert frVert'le lVert frVertle ClVert frVert'.$$
For instance, take $c=frac{1}{2}$ and $C=1$. More generally, if we have a normed space over $mathbb{R}$, a norm $lVertcdotrVert$ determines a family of equivalent norms $lambda lVertcdotrVert$ for $lambdain mathbb{R}$. This fact is independent of the dimensionality of the space.
$endgroup$
add a comment |
$begingroup$
Here's a silly example: define on $X=mathcal{C}^0([a,b],mathbb{R})$ the norm $lVertcdotrVert$ given by $sup_{xin [a,b]} f(x)=lVert frVert.$ Define a second norm $lVertcdotrVert'$ by $2sup_{xin [a,b]}f(x)=lVert frVert'$. Then indeed we have that there exist constants $c$ and $C$ such that
$$ clVert frVert'le lVert frVertle ClVert frVert'.$$
For instance, take $c=frac{1}{2}$ and $C=1$. More generally, if we have a normed space over $mathbb{R}$, a norm $lVertcdotrVert$ determines a family of equivalent norms $lambda lVertcdotrVert$ for $lambdain mathbb{R}$. This fact is independent of the dimensionality of the space.
$endgroup$
add a comment |
$begingroup$
Here's a silly example: define on $X=mathcal{C}^0([a,b],mathbb{R})$ the norm $lVertcdotrVert$ given by $sup_{xin [a,b]} f(x)=lVert frVert.$ Define a second norm $lVertcdotrVert'$ by $2sup_{xin [a,b]}f(x)=lVert frVert'$. Then indeed we have that there exist constants $c$ and $C$ such that
$$ clVert frVert'le lVert frVertle ClVert frVert'.$$
For instance, take $c=frac{1}{2}$ and $C=1$. More generally, if we have a normed space over $mathbb{R}$, a norm $lVertcdotrVert$ determines a family of equivalent norms $lambda lVertcdotrVert$ for $lambdain mathbb{R}$. This fact is independent of the dimensionality of the space.
$endgroup$
Here's a silly example: define on $X=mathcal{C}^0([a,b],mathbb{R})$ the norm $lVertcdotrVert$ given by $sup_{xin [a,b]} f(x)=lVert frVert.$ Define a second norm $lVertcdotrVert'$ by $2sup_{xin [a,b]}f(x)=lVert frVert'$. Then indeed we have that there exist constants $c$ and $C$ such that
$$ clVert frVert'le lVert frVertle ClVert frVert'.$$
For instance, take $c=frac{1}{2}$ and $C=1$. More generally, if we have a normed space over $mathbb{R}$, a norm $lVertcdotrVert$ determines a family of equivalent norms $lambda lVertcdotrVert$ for $lambdain mathbb{R}$. This fact is independent of the dimensionality of the space.
answered Dec 25 '18 at 16:19
Antonios-Alexandros RobotisAntonios-Alexandros Robotis
10.3k41641
10.3k41641
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052235%2fany-example-of-equivalent-norms-in-infinite-dimensional-vector-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Take a norm $|cdot |$ and $c>0$. The norm $c|cdot |$ is equivalent to $|cdot |$.
$endgroup$
– Zachary Selk
Dec 25 '18 at 16:19