Evaluate integral $int_{-2}^0 x^2+x dx$ using Riemann Sum
Consider the integral $$int_{-2}^0 x^2+x dx.$$
The question says to use Riemann Sum theorem which is $$sum_{i=1}^nf(x_i)delta x$$
I know that $delta x= frac{-2}{n}$ and that $x_i=-2+(frac{2}{n}i)$
After i plug everything in I get $$sum_{i=1}^nfrac{2}{n}left(-2-frac{2}{n}iright)^2+left(-2-frac{2}{n}iright)$$
After completing the square I have $$frac{2}{n}sum_{i=1}left(4-frac{8}{n}iright)+left(frac{4}{n^2}i^2right)+left(-2-frac{2}{n}iright)$$
I know that $i=left(frac{(n+1)}{2}right)$ and $i^2=left(frac{(n+1)(2n+1)}{6}right)$
but how do I manipulate the equation so that I can use them?
calculus riemann-sum
|
show 1 more comment
Consider the integral $$int_{-2}^0 x^2+x dx.$$
The question says to use Riemann Sum theorem which is $$sum_{i=1}^nf(x_i)delta x$$
I know that $delta x= frac{-2}{n}$ and that $x_i=-2+(frac{2}{n}i)$
After i plug everything in I get $$sum_{i=1}^nfrac{2}{n}left(-2-frac{2}{n}iright)^2+left(-2-frac{2}{n}iright)$$
After completing the square I have $$frac{2}{n}sum_{i=1}left(4-frac{8}{n}iright)+left(frac{4}{n^2}i^2right)+left(-2-frac{2}{n}iright)$$
I know that $i=left(frac{(n+1)}{2}right)$ and $i^2=left(frac{(n+1)(2n+1)}{6}right)$
but how do I manipulate the equation so that I can use them?
calculus riemann-sum
$x_i = -2 + left(frac{2}{n} iright) ;Rightarrow.$
– user2661923
Dec 9 '18 at 21:48
$x_i = -2 + left(frac{2}{n} iright) ;Rightarrow; (x_i)^2 ;=; 4 ;-; left(frac{8}{n} iright) ;+; left(frac{4}{n^2} i^2right).$
– user2661923
Dec 9 '18 at 21:54
shouldn't $(xi)^2$ =4+ $(frac{8}{n}i)+(frac{4}{n^2}i^2)$
– Eric Brown
Dec 9 '18 at 22:08
good question. No, your formula for $x_i$ is wrong.
– user2661923
Dec 9 '18 at 22:11
where does the $frac{8}{n}i$ come from? wait I got it cause of the $2ab$ in $a^2+2ab+b^2$ right?
– Eric Brown
Dec 9 '18 at 22:27
|
show 1 more comment
Consider the integral $$int_{-2}^0 x^2+x dx.$$
The question says to use Riemann Sum theorem which is $$sum_{i=1}^nf(x_i)delta x$$
I know that $delta x= frac{-2}{n}$ and that $x_i=-2+(frac{2}{n}i)$
After i plug everything in I get $$sum_{i=1}^nfrac{2}{n}left(-2-frac{2}{n}iright)^2+left(-2-frac{2}{n}iright)$$
After completing the square I have $$frac{2}{n}sum_{i=1}left(4-frac{8}{n}iright)+left(frac{4}{n^2}i^2right)+left(-2-frac{2}{n}iright)$$
I know that $i=left(frac{(n+1)}{2}right)$ and $i^2=left(frac{(n+1)(2n+1)}{6}right)$
but how do I manipulate the equation so that I can use them?
calculus riemann-sum
Consider the integral $$int_{-2}^0 x^2+x dx.$$
The question says to use Riemann Sum theorem which is $$sum_{i=1}^nf(x_i)delta x$$
I know that $delta x= frac{-2}{n}$ and that $x_i=-2+(frac{2}{n}i)$
After i plug everything in I get $$sum_{i=1}^nfrac{2}{n}left(-2-frac{2}{n}iright)^2+left(-2-frac{2}{n}iright)$$
After completing the square I have $$frac{2}{n}sum_{i=1}left(4-frac{8}{n}iright)+left(frac{4}{n^2}i^2right)+left(-2-frac{2}{n}iright)$$
I know that $i=left(frac{(n+1)}{2}right)$ and $i^2=left(frac{(n+1)(2n+1)}{6}right)$
but how do I manipulate the equation so that I can use them?
calculus riemann-sum
calculus riemann-sum
edited Dec 9 '18 at 22:23
asked Dec 9 '18 at 21:19
Eric Brown
716
716
$x_i = -2 + left(frac{2}{n} iright) ;Rightarrow.$
– user2661923
Dec 9 '18 at 21:48
$x_i = -2 + left(frac{2}{n} iright) ;Rightarrow; (x_i)^2 ;=; 4 ;-; left(frac{8}{n} iright) ;+; left(frac{4}{n^2} i^2right).$
– user2661923
Dec 9 '18 at 21:54
shouldn't $(xi)^2$ =4+ $(frac{8}{n}i)+(frac{4}{n^2}i^2)$
– Eric Brown
Dec 9 '18 at 22:08
good question. No, your formula for $x_i$ is wrong.
– user2661923
Dec 9 '18 at 22:11
where does the $frac{8}{n}i$ come from? wait I got it cause of the $2ab$ in $a^2+2ab+b^2$ right?
– Eric Brown
Dec 9 '18 at 22:27
|
show 1 more comment
$x_i = -2 + left(frac{2}{n} iright) ;Rightarrow.$
– user2661923
Dec 9 '18 at 21:48
$x_i = -2 + left(frac{2}{n} iright) ;Rightarrow; (x_i)^2 ;=; 4 ;-; left(frac{8}{n} iright) ;+; left(frac{4}{n^2} i^2right).$
– user2661923
Dec 9 '18 at 21:54
shouldn't $(xi)^2$ =4+ $(frac{8}{n}i)+(frac{4}{n^2}i^2)$
– Eric Brown
Dec 9 '18 at 22:08
good question. No, your formula for $x_i$ is wrong.
– user2661923
Dec 9 '18 at 22:11
where does the $frac{8}{n}i$ come from? wait I got it cause of the $2ab$ in $a^2+2ab+b^2$ right?
– Eric Brown
Dec 9 '18 at 22:27
$x_i = -2 + left(frac{2}{n} iright) ;Rightarrow.$
– user2661923
Dec 9 '18 at 21:48
$x_i = -2 + left(frac{2}{n} iright) ;Rightarrow.$
– user2661923
Dec 9 '18 at 21:48
$x_i = -2 + left(frac{2}{n} iright) ;Rightarrow; (x_i)^2 ;=; 4 ;-; left(frac{8}{n} iright) ;+; left(frac{4}{n^2} i^2right).$
– user2661923
Dec 9 '18 at 21:54
$x_i = -2 + left(frac{2}{n} iright) ;Rightarrow; (x_i)^2 ;=; 4 ;-; left(frac{8}{n} iright) ;+; left(frac{4}{n^2} i^2right).$
– user2661923
Dec 9 '18 at 21:54
shouldn't $(xi)^2$ =4+ $(frac{8}{n}i)+(frac{4}{n^2}i^2)$
– Eric Brown
Dec 9 '18 at 22:08
shouldn't $(xi)^2$ =4+ $(frac{8}{n}i)+(frac{4}{n^2}i^2)$
– Eric Brown
Dec 9 '18 at 22:08
good question. No, your formula for $x_i$ is wrong.
– user2661923
Dec 9 '18 at 22:11
good question. No, your formula for $x_i$ is wrong.
– user2661923
Dec 9 '18 at 22:11
where does the $frac{8}{n}i$ come from? wait I got it cause of the $2ab$ in $a^2+2ab+b^2$ right?
– Eric Brown
Dec 9 '18 at 22:27
where does the $frac{8}{n}i$ come from? wait I got it cause of the $2ab$ in $a^2+2ab+b^2$ right?
– Eric Brown
Dec 9 '18 at 22:27
|
show 1 more comment
1 Answer
1
active
oldest
votes
I know that $delta x= frac{-2}{n}$
The $delta x$ should be positive. You should think of it as the length of the corresponding rectangle. In this case it is simplest to take $x_i=-frac{2i}{n}$. So you have,
begin{align*}
&int_{-2}^0 x^2+x dx\
=&lim_{nrightarrow+infty}
sum_{i=1}^n left(left(-frac{2i}{n}right)^2+left(-frac{2i}{n}right)right)frac{2}{n}\
=&lim_{nrightarrow+infty}
sum_{i=1}^n left(frac{8i^2}{n^3}-frac{4i}{n^2}right)\
=&lim_{nrightarrow+infty}
frac{8}{n^3}left(sum_{i=1}^n i^2right)
-frac{4}{n^2}left(sum_{i=1}^n iright)\
=&lim_{nrightarrow+infty}
frac{8}{n^3}left(
frac{n^3}{3}+frac{n^2}{2}+frac{n}{6}right)
-frac{4}{n^2}left(frac{1+n}{2}right)\
=&lim_{nrightarrow+infty}
left(
frac{8}{3}+frac{8}{2n}+frac{n}{6n^2}right)
-left(frac{2}{n}+2right)\
=& frac{8}{3}-2
end{align*}
Didn't know you could write $i^2$ like that, it will be useful on my final. Thanks for you help>
– Eric Brown
Dec 9 '18 at 22:42
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033028%2fevaluate-integral-int-20-x2x-dx-using-riemann-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
I know that $delta x= frac{-2}{n}$
The $delta x$ should be positive. You should think of it as the length of the corresponding rectangle. In this case it is simplest to take $x_i=-frac{2i}{n}$. So you have,
begin{align*}
&int_{-2}^0 x^2+x dx\
=&lim_{nrightarrow+infty}
sum_{i=1}^n left(left(-frac{2i}{n}right)^2+left(-frac{2i}{n}right)right)frac{2}{n}\
=&lim_{nrightarrow+infty}
sum_{i=1}^n left(frac{8i^2}{n^3}-frac{4i}{n^2}right)\
=&lim_{nrightarrow+infty}
frac{8}{n^3}left(sum_{i=1}^n i^2right)
-frac{4}{n^2}left(sum_{i=1}^n iright)\
=&lim_{nrightarrow+infty}
frac{8}{n^3}left(
frac{n^3}{3}+frac{n^2}{2}+frac{n}{6}right)
-frac{4}{n^2}left(frac{1+n}{2}right)\
=&lim_{nrightarrow+infty}
left(
frac{8}{3}+frac{8}{2n}+frac{n}{6n^2}right)
-left(frac{2}{n}+2right)\
=& frac{8}{3}-2
end{align*}
Didn't know you could write $i^2$ like that, it will be useful on my final. Thanks for you help>
– Eric Brown
Dec 9 '18 at 22:42
add a comment |
I know that $delta x= frac{-2}{n}$
The $delta x$ should be positive. You should think of it as the length of the corresponding rectangle. In this case it is simplest to take $x_i=-frac{2i}{n}$. So you have,
begin{align*}
&int_{-2}^0 x^2+x dx\
=&lim_{nrightarrow+infty}
sum_{i=1}^n left(left(-frac{2i}{n}right)^2+left(-frac{2i}{n}right)right)frac{2}{n}\
=&lim_{nrightarrow+infty}
sum_{i=1}^n left(frac{8i^2}{n^3}-frac{4i}{n^2}right)\
=&lim_{nrightarrow+infty}
frac{8}{n^3}left(sum_{i=1}^n i^2right)
-frac{4}{n^2}left(sum_{i=1}^n iright)\
=&lim_{nrightarrow+infty}
frac{8}{n^3}left(
frac{n^3}{3}+frac{n^2}{2}+frac{n}{6}right)
-frac{4}{n^2}left(frac{1+n}{2}right)\
=&lim_{nrightarrow+infty}
left(
frac{8}{3}+frac{8}{2n}+frac{n}{6n^2}right)
-left(frac{2}{n}+2right)\
=& frac{8}{3}-2
end{align*}
Didn't know you could write $i^2$ like that, it will be useful on my final. Thanks for you help>
– Eric Brown
Dec 9 '18 at 22:42
add a comment |
I know that $delta x= frac{-2}{n}$
The $delta x$ should be positive. You should think of it as the length of the corresponding rectangle. In this case it is simplest to take $x_i=-frac{2i}{n}$. So you have,
begin{align*}
&int_{-2}^0 x^2+x dx\
=&lim_{nrightarrow+infty}
sum_{i=1}^n left(left(-frac{2i}{n}right)^2+left(-frac{2i}{n}right)right)frac{2}{n}\
=&lim_{nrightarrow+infty}
sum_{i=1}^n left(frac{8i^2}{n^3}-frac{4i}{n^2}right)\
=&lim_{nrightarrow+infty}
frac{8}{n^3}left(sum_{i=1}^n i^2right)
-frac{4}{n^2}left(sum_{i=1}^n iright)\
=&lim_{nrightarrow+infty}
frac{8}{n^3}left(
frac{n^3}{3}+frac{n^2}{2}+frac{n}{6}right)
-frac{4}{n^2}left(frac{1+n}{2}right)\
=&lim_{nrightarrow+infty}
left(
frac{8}{3}+frac{8}{2n}+frac{n}{6n^2}right)
-left(frac{2}{n}+2right)\
=& frac{8}{3}-2
end{align*}
I know that $delta x= frac{-2}{n}$
The $delta x$ should be positive. You should think of it as the length of the corresponding rectangle. In this case it is simplest to take $x_i=-frac{2i}{n}$. So you have,
begin{align*}
&int_{-2}^0 x^2+x dx\
=&lim_{nrightarrow+infty}
sum_{i=1}^n left(left(-frac{2i}{n}right)^2+left(-frac{2i}{n}right)right)frac{2}{n}\
=&lim_{nrightarrow+infty}
sum_{i=1}^n left(frac{8i^2}{n^3}-frac{4i}{n^2}right)\
=&lim_{nrightarrow+infty}
frac{8}{n^3}left(sum_{i=1}^n i^2right)
-frac{4}{n^2}left(sum_{i=1}^n iright)\
=&lim_{nrightarrow+infty}
frac{8}{n^3}left(
frac{n^3}{3}+frac{n^2}{2}+frac{n}{6}right)
-frac{4}{n^2}left(frac{1+n}{2}right)\
=&lim_{nrightarrow+infty}
left(
frac{8}{3}+frac{8}{2n}+frac{n}{6n^2}right)
-left(frac{2}{n}+2right)\
=& frac{8}{3}-2
end{align*}
answered Dec 9 '18 at 22:31
Jorge Adriano
59146
59146
Didn't know you could write $i^2$ like that, it will be useful on my final. Thanks for you help>
– Eric Brown
Dec 9 '18 at 22:42
add a comment |
Didn't know you could write $i^2$ like that, it will be useful on my final. Thanks for you help>
– Eric Brown
Dec 9 '18 at 22:42
Didn't know you could write $i^2$ like that, it will be useful on my final. Thanks for you help>
– Eric Brown
Dec 9 '18 at 22:42
Didn't know you could write $i^2$ like that, it will be useful on my final. Thanks for you help>
– Eric Brown
Dec 9 '18 at 22:42
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033028%2fevaluate-integral-int-20-x2x-dx-using-riemann-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$x_i = -2 + left(frac{2}{n} iright) ;Rightarrow.$
– user2661923
Dec 9 '18 at 21:48
$x_i = -2 + left(frac{2}{n} iright) ;Rightarrow; (x_i)^2 ;=; 4 ;-; left(frac{8}{n} iright) ;+; left(frac{4}{n^2} i^2right).$
– user2661923
Dec 9 '18 at 21:54
shouldn't $(xi)^2$ =4+ $(frac{8}{n}i)+(frac{4}{n^2}i^2)$
– Eric Brown
Dec 9 '18 at 22:08
good question. No, your formula for $x_i$ is wrong.
– user2661923
Dec 9 '18 at 22:11
where does the $frac{8}{n}i$ come from? wait I got it cause of the $2ab$ in $a^2+2ab+b^2$ right?
– Eric Brown
Dec 9 '18 at 22:27