How to divide ${2k^3+3k^2+k-2j^3+3j^2-j}$ with $(k+1-j)$?












1












$begingroup$


The question I had was calculating $$displaystylefrac{1}{k+1-j}sum_{i=j}^k i^2$$



Because I didn't know how to do a variable change, I did
$$frac{1}{k+1-j}sum_{i=j}^k i^2 = frac{1}{k+1-j}left(sum_{i=1}^k i^2 - sum_{i=1}^{j-1} i^2right) = frac{2k^3+3k^2+k-2j^3+3j^2-j}{6(k+1-j)}$$



The solution given used variable change and was able to cancel out $(k+1-j)$ very easily. Finally the answer was $$frac{2k^2 + 2j^2 + 2kj - j + k}{6}$$ I have verified that these two solutions are the same by multiplying the second one with $(k+1-j).$



My question is:




How do you divide an expression like ${(2k^3+3k^2+k-2j^3+3j^2-j)}$ with $(k+1-j)$? Is it even worth it in this case to get the most simplified solution?











share|cite|improve this question











$endgroup$












  • $begingroup$
    you can do long division: en.wikipedia.org/wiki/Long_division
    $endgroup$
    – Pink Panther
    Jan 5 at 13:26
















1












$begingroup$


The question I had was calculating $$displaystylefrac{1}{k+1-j}sum_{i=j}^k i^2$$



Because I didn't know how to do a variable change, I did
$$frac{1}{k+1-j}sum_{i=j}^k i^2 = frac{1}{k+1-j}left(sum_{i=1}^k i^2 - sum_{i=1}^{j-1} i^2right) = frac{2k^3+3k^2+k-2j^3+3j^2-j}{6(k+1-j)}$$



The solution given used variable change and was able to cancel out $(k+1-j)$ very easily. Finally the answer was $$frac{2k^2 + 2j^2 + 2kj - j + k}{6}$$ I have verified that these two solutions are the same by multiplying the second one with $(k+1-j).$



My question is:




How do you divide an expression like ${(2k^3+3k^2+k-2j^3+3j^2-j)}$ with $(k+1-j)$? Is it even worth it in this case to get the most simplified solution?











share|cite|improve this question











$endgroup$












  • $begingroup$
    you can do long division: en.wikipedia.org/wiki/Long_division
    $endgroup$
    – Pink Panther
    Jan 5 at 13:26














1












1








1





$begingroup$


The question I had was calculating $$displaystylefrac{1}{k+1-j}sum_{i=j}^k i^2$$



Because I didn't know how to do a variable change, I did
$$frac{1}{k+1-j}sum_{i=j}^k i^2 = frac{1}{k+1-j}left(sum_{i=1}^k i^2 - sum_{i=1}^{j-1} i^2right) = frac{2k^3+3k^2+k-2j^3+3j^2-j}{6(k+1-j)}$$



The solution given used variable change and was able to cancel out $(k+1-j)$ very easily. Finally the answer was $$frac{2k^2 + 2j^2 + 2kj - j + k}{6}$$ I have verified that these two solutions are the same by multiplying the second one with $(k+1-j).$



My question is:




How do you divide an expression like ${(2k^3+3k^2+k-2j^3+3j^2-j)}$ with $(k+1-j)$? Is it even worth it in this case to get the most simplified solution?











share|cite|improve this question











$endgroup$




The question I had was calculating $$displaystylefrac{1}{k+1-j}sum_{i=j}^k i^2$$



Because I didn't know how to do a variable change, I did
$$frac{1}{k+1-j}sum_{i=j}^k i^2 = frac{1}{k+1-j}left(sum_{i=1}^k i^2 - sum_{i=1}^{j-1} i^2right) = frac{2k^3+3k^2+k-2j^3+3j^2-j}{6(k+1-j)}$$



The solution given used variable change and was able to cancel out $(k+1-j)$ very easily. Finally the answer was $$frac{2k^2 + 2j^2 + 2kj - j + k}{6}$$ I have verified that these two solutions are the same by multiplying the second one with $(k+1-j).$



My question is:




How do you divide an expression like ${(2k^3+3k^2+k-2j^3+3j^2-j)}$ with $(k+1-j)$? Is it even worth it in this case to get the most simplified solution?








algebra-precalculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 5 at 13:40









Shubham Johri

5,262718




5,262718










asked Jan 5 at 13:24









JJChaiJJChai

304




304












  • $begingroup$
    you can do long division: en.wikipedia.org/wiki/Long_division
    $endgroup$
    – Pink Panther
    Jan 5 at 13:26


















  • $begingroup$
    you can do long division: en.wikipedia.org/wiki/Long_division
    $endgroup$
    – Pink Panther
    Jan 5 at 13:26
















$begingroup$
you can do long division: en.wikipedia.org/wiki/Long_division
$endgroup$
– Pink Panther
Jan 5 at 13:26




$begingroup$
you can do long division: en.wikipedia.org/wiki/Long_division
$endgroup$
– Pink Panther
Jan 5 at 13:26










3 Answers
3






active

oldest

votes


















1












$begingroup$

You could use synthetic division fairly easily here.



First, we consider $2k^3+3k^2+k-2j^3+3j^2-j$ as a polynomial in $k,$ and write the $4$ coefficients $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\ & & & &\hline & & & &end{array}$$ Next, we invert the coefficients of the divisor $k+1-j$ to get $-1k+j-1,$ and write the constant term in as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & & & &end{array}$$ We bring down the first term to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & 2 & & &end{array}$$ Now, we multiply what we've just brought down by $j-1$ and write in the result as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & & &end{array}$$ Now, adding the numbers in that column gets us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & 2j+1 & &end{array}$$ Multiply that result by $j-1$ and write it in to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & &end{array}$$ Adding again gives us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & 2j^2-j &end{array}$$ Multiplying again by $j-1$ and then adding once more, we get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 & 2j^3-3j^2+j\hline & 2 & 2j+1 & 2j^2-j &0end{array}$$ Translating back into terms of a polynomial in $k,$ this means that $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+(2j+1)k+2j^2-j+frac{0}{k+1-j},$$ or more simply, $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+2j^2+2jk-j+k,$$ as desired.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Try to write the polynomial in $k$ as a polynomial in $m=k+1$.



    $2k^3+3k^2+k=big[2(k+1)^3-2-6k-6k^2big]+big[3(k+1)^2-3-6kbig]+(k+1)-1\=2(k+1)^3+3(k+1)^2+(k+1)-6(1+2k+k^2)\=2m^3-3m^2+m$



    Therefore, $2m^3-3m^2+m-2j^3+3j^2-j=2(m^3-j^3)-3(m^2-j^2)+m-j\=(m-j)big[2(m^2+j^2+mj)-3(m+j)+1big]$



    Divide by $k+1-j=m-j$ and back-substitute $m$ to get,



    $$2(m^2+j^2+mj)-3(m+j)+1=2k^2+2j^2+2kj+k-j$$






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      making $k-j+1=mto j=k-m+1$



      and after substitution into



      $$
      2 k^3 + 3 k^2 + k - 2 j^3 + 3 j^2 - j =m + 6 k m + 6 k^2 m - 3 m^2 - 6 k m^2 + 2 m^3
      $$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        The OP already knows that. His question is how do you get at it
        $endgroup$
        – Shubham Johri
        Jan 5 at 14:03










      • $begingroup$
        @ShubhamJohri Is it OK now?
        $endgroup$
        – Cesareo
        Jan 5 at 14:35










      • $begingroup$
        It looks good now
        $endgroup$
        – Shubham Johri
        Jan 5 at 14:37











      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062708%2fhow-to-divide-2k33k2k-2j33j2-j-with-k1-j%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      You could use synthetic division fairly easily here.



      First, we consider $2k^3+3k^2+k-2j^3+3j^2-j$ as a polynomial in $k,$ and write the $4$ coefficients $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\ & & & &\hline & & & &end{array}$$ Next, we invert the coefficients of the divisor $k+1-j$ to get $-1k+j-1,$ and write the constant term in as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & & & &end{array}$$ We bring down the first term to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & 2 & & &end{array}$$ Now, we multiply what we've just brought down by $j-1$ and write in the result as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & & &end{array}$$ Now, adding the numbers in that column gets us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & 2j+1 & &end{array}$$ Multiply that result by $j-1$ and write it in to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & &end{array}$$ Adding again gives us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & 2j^2-j &end{array}$$ Multiplying again by $j-1$ and then adding once more, we get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 & 2j^3-3j^2+j\hline & 2 & 2j+1 & 2j^2-j &0end{array}$$ Translating back into terms of a polynomial in $k,$ this means that $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+(2j+1)k+2j^2-j+frac{0}{k+1-j},$$ or more simply, $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+2j^2+2jk-j+k,$$ as desired.






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        You could use synthetic division fairly easily here.



        First, we consider $2k^3+3k^2+k-2j^3+3j^2-j$ as a polynomial in $k,$ and write the $4$ coefficients $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\ & & & &\hline & & & &end{array}$$ Next, we invert the coefficients of the divisor $k+1-j$ to get $-1k+j-1,$ and write the constant term in as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & & & &end{array}$$ We bring down the first term to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & 2 & & &end{array}$$ Now, we multiply what we've just brought down by $j-1$ and write in the result as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & & &end{array}$$ Now, adding the numbers in that column gets us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & 2j+1 & &end{array}$$ Multiply that result by $j-1$ and write it in to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & &end{array}$$ Adding again gives us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & 2j^2-j &end{array}$$ Multiplying again by $j-1$ and then adding once more, we get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 & 2j^3-3j^2+j\hline & 2 & 2j+1 & 2j^2-j &0end{array}$$ Translating back into terms of a polynomial in $k,$ this means that $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+(2j+1)k+2j^2-j+frac{0}{k+1-j},$$ or more simply, $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+2j^2+2jk-j+k,$$ as desired.






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          You could use synthetic division fairly easily here.



          First, we consider $2k^3+3k^2+k-2j^3+3j^2-j$ as a polynomial in $k,$ and write the $4$ coefficients $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\ & & & &\hline & & & &end{array}$$ Next, we invert the coefficients of the divisor $k+1-j$ to get $-1k+j-1,$ and write the constant term in as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & & & &end{array}$$ We bring down the first term to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & 2 & & &end{array}$$ Now, we multiply what we've just brought down by $j-1$ and write in the result as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & & &end{array}$$ Now, adding the numbers in that column gets us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & 2j+1 & &end{array}$$ Multiply that result by $j-1$ and write it in to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & &end{array}$$ Adding again gives us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & 2j^2-j &end{array}$$ Multiplying again by $j-1$ and then adding once more, we get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 & 2j^3-3j^2+j\hline & 2 & 2j+1 & 2j^2-j &0end{array}$$ Translating back into terms of a polynomial in $k,$ this means that $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+(2j+1)k+2j^2-j+frac{0}{k+1-j},$$ or more simply, $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+2j^2+2jk-j+k,$$ as desired.






          share|cite|improve this answer









          $endgroup$



          You could use synthetic division fairly easily here.



          First, we consider $2k^3+3k^2+k-2j^3+3j^2-j$ as a polynomial in $k,$ and write the $4$ coefficients $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\ & & & &\hline & & & &end{array}$$ Next, we invert the coefficients of the divisor $k+1-j$ to get $-1k+j-1,$ and write the constant term in as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & & & &end{array}$$ We bring down the first term to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & 2 & & &end{array}$$ Now, we multiply what we've just brought down by $j-1$ and write in the result as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & & &end{array}$$ Now, adding the numbers in that column gets us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & 2j+1 & &end{array}$$ Multiply that result by $j-1$ and write it in to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & &end{array}$$ Adding again gives us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & 2j^2-j &end{array}$$ Multiplying again by $j-1$ and then adding once more, we get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 & 2j^3-3j^2+j\hline & 2 & 2j+1 & 2j^2-j &0end{array}$$ Translating back into terms of a polynomial in $k,$ this means that $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+(2j+1)k+2j^2-j+frac{0}{k+1-j},$$ or more simply, $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+2j^2+2jk-j+k,$$ as desired.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 5 at 15:06









          Cameron BuieCameron Buie

          85.8k772161




          85.8k772161























              2












              $begingroup$

              Try to write the polynomial in $k$ as a polynomial in $m=k+1$.



              $2k^3+3k^2+k=big[2(k+1)^3-2-6k-6k^2big]+big[3(k+1)^2-3-6kbig]+(k+1)-1\=2(k+1)^3+3(k+1)^2+(k+1)-6(1+2k+k^2)\=2m^3-3m^2+m$



              Therefore, $2m^3-3m^2+m-2j^3+3j^2-j=2(m^3-j^3)-3(m^2-j^2)+m-j\=(m-j)big[2(m^2+j^2+mj)-3(m+j)+1big]$



              Divide by $k+1-j=m-j$ and back-substitute $m$ to get,



              $$2(m^2+j^2+mj)-3(m+j)+1=2k^2+2j^2+2kj+k-j$$






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                Try to write the polynomial in $k$ as a polynomial in $m=k+1$.



                $2k^3+3k^2+k=big[2(k+1)^3-2-6k-6k^2big]+big[3(k+1)^2-3-6kbig]+(k+1)-1\=2(k+1)^3+3(k+1)^2+(k+1)-6(1+2k+k^2)\=2m^3-3m^2+m$



                Therefore, $2m^3-3m^2+m-2j^3+3j^2-j=2(m^3-j^3)-3(m^2-j^2)+m-j\=(m-j)big[2(m^2+j^2+mj)-3(m+j)+1big]$



                Divide by $k+1-j=m-j$ and back-substitute $m$ to get,



                $$2(m^2+j^2+mj)-3(m+j)+1=2k^2+2j^2+2kj+k-j$$






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Try to write the polynomial in $k$ as a polynomial in $m=k+1$.



                  $2k^3+3k^2+k=big[2(k+1)^3-2-6k-6k^2big]+big[3(k+1)^2-3-6kbig]+(k+1)-1\=2(k+1)^3+3(k+1)^2+(k+1)-6(1+2k+k^2)\=2m^3-3m^2+m$



                  Therefore, $2m^3-3m^2+m-2j^3+3j^2-j=2(m^3-j^3)-3(m^2-j^2)+m-j\=(m-j)big[2(m^2+j^2+mj)-3(m+j)+1big]$



                  Divide by $k+1-j=m-j$ and back-substitute $m$ to get,



                  $$2(m^2+j^2+mj)-3(m+j)+1=2k^2+2j^2+2kj+k-j$$






                  share|cite|improve this answer









                  $endgroup$



                  Try to write the polynomial in $k$ as a polynomial in $m=k+1$.



                  $2k^3+3k^2+k=big[2(k+1)^3-2-6k-6k^2big]+big[3(k+1)^2-3-6kbig]+(k+1)-1\=2(k+1)^3+3(k+1)^2+(k+1)-6(1+2k+k^2)\=2m^3-3m^2+m$



                  Therefore, $2m^3-3m^2+m-2j^3+3j^2-j=2(m^3-j^3)-3(m^2-j^2)+m-j\=(m-j)big[2(m^2+j^2+mj)-3(m+j)+1big]$



                  Divide by $k+1-j=m-j$ and back-substitute $m$ to get,



                  $$2(m^2+j^2+mj)-3(m+j)+1=2k^2+2j^2+2kj+k-j$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 5 at 14:00









                  Shubham JohriShubham Johri

                  5,262718




                  5,262718























                      1












                      $begingroup$

                      making $k-j+1=mto j=k-m+1$



                      and after substitution into



                      $$
                      2 k^3 + 3 k^2 + k - 2 j^3 + 3 j^2 - j =m + 6 k m + 6 k^2 m - 3 m^2 - 6 k m^2 + 2 m^3
                      $$






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        The OP already knows that. His question is how do you get at it
                        $endgroup$
                        – Shubham Johri
                        Jan 5 at 14:03










                      • $begingroup$
                        @ShubhamJohri Is it OK now?
                        $endgroup$
                        – Cesareo
                        Jan 5 at 14:35










                      • $begingroup$
                        It looks good now
                        $endgroup$
                        – Shubham Johri
                        Jan 5 at 14:37
















                      1












                      $begingroup$

                      making $k-j+1=mto j=k-m+1$



                      and after substitution into



                      $$
                      2 k^3 + 3 k^2 + k - 2 j^3 + 3 j^2 - j =m + 6 k m + 6 k^2 m - 3 m^2 - 6 k m^2 + 2 m^3
                      $$






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        The OP already knows that. His question is how do you get at it
                        $endgroup$
                        – Shubham Johri
                        Jan 5 at 14:03










                      • $begingroup$
                        @ShubhamJohri Is it OK now?
                        $endgroup$
                        – Cesareo
                        Jan 5 at 14:35










                      • $begingroup$
                        It looks good now
                        $endgroup$
                        – Shubham Johri
                        Jan 5 at 14:37














                      1












                      1








                      1





                      $begingroup$

                      making $k-j+1=mto j=k-m+1$



                      and after substitution into



                      $$
                      2 k^3 + 3 k^2 + k - 2 j^3 + 3 j^2 - j =m + 6 k m + 6 k^2 m - 3 m^2 - 6 k m^2 + 2 m^3
                      $$






                      share|cite|improve this answer











                      $endgroup$



                      making $k-j+1=mto j=k-m+1$



                      and after substitution into



                      $$
                      2 k^3 + 3 k^2 + k - 2 j^3 + 3 j^2 - j =m + 6 k m + 6 k^2 m - 3 m^2 - 6 k m^2 + 2 m^3
                      $$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jan 5 at 14:33

























                      answered Jan 5 at 14:01









                      CesareoCesareo

                      9,3963517




                      9,3963517












                      • $begingroup$
                        The OP already knows that. His question is how do you get at it
                        $endgroup$
                        – Shubham Johri
                        Jan 5 at 14:03










                      • $begingroup$
                        @ShubhamJohri Is it OK now?
                        $endgroup$
                        – Cesareo
                        Jan 5 at 14:35










                      • $begingroup$
                        It looks good now
                        $endgroup$
                        – Shubham Johri
                        Jan 5 at 14:37


















                      • $begingroup$
                        The OP already knows that. His question is how do you get at it
                        $endgroup$
                        – Shubham Johri
                        Jan 5 at 14:03










                      • $begingroup$
                        @ShubhamJohri Is it OK now?
                        $endgroup$
                        – Cesareo
                        Jan 5 at 14:35










                      • $begingroup$
                        It looks good now
                        $endgroup$
                        – Shubham Johri
                        Jan 5 at 14:37
















                      $begingroup$
                      The OP already knows that. His question is how do you get at it
                      $endgroup$
                      – Shubham Johri
                      Jan 5 at 14:03




                      $begingroup$
                      The OP already knows that. His question is how do you get at it
                      $endgroup$
                      – Shubham Johri
                      Jan 5 at 14:03












                      $begingroup$
                      @ShubhamJohri Is it OK now?
                      $endgroup$
                      – Cesareo
                      Jan 5 at 14:35




                      $begingroup$
                      @ShubhamJohri Is it OK now?
                      $endgroup$
                      – Cesareo
                      Jan 5 at 14:35












                      $begingroup$
                      It looks good now
                      $endgroup$
                      – Shubham Johri
                      Jan 5 at 14:37




                      $begingroup$
                      It looks good now
                      $endgroup$
                      – Shubham Johri
                      Jan 5 at 14:37


















                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062708%2fhow-to-divide-2k33k2k-2j33j2-j-with-k1-j%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bressuire

                      Cabo Verde

                      Gyllenstierna