How to divide ${2k^3+3k^2+k-2j^3+3j^2-j}$ with $(k+1-j)$?
$begingroup$
The question I had was calculating $$displaystylefrac{1}{k+1-j}sum_{i=j}^k i^2$$
Because I didn't know how to do a variable change, I did
$$frac{1}{k+1-j}sum_{i=j}^k i^2 = frac{1}{k+1-j}left(sum_{i=1}^k i^2 - sum_{i=1}^{j-1} i^2right) = frac{2k^3+3k^2+k-2j^3+3j^2-j}{6(k+1-j)}$$
The solution given used variable change and was able to cancel out $(k+1-j)$ very easily. Finally the answer was $$frac{2k^2 + 2j^2 + 2kj - j + k}{6}$$ I have verified that these two solutions are the same by multiplying the second one with $(k+1-j).$
My question is:
How do you divide an expression like ${(2k^3+3k^2+k-2j^3+3j^2-j)}$ with $(k+1-j)$? Is it even worth it in this case to get the most simplified solution?
algebra-precalculus
$endgroup$
add a comment |
$begingroup$
The question I had was calculating $$displaystylefrac{1}{k+1-j}sum_{i=j}^k i^2$$
Because I didn't know how to do a variable change, I did
$$frac{1}{k+1-j}sum_{i=j}^k i^2 = frac{1}{k+1-j}left(sum_{i=1}^k i^2 - sum_{i=1}^{j-1} i^2right) = frac{2k^3+3k^2+k-2j^3+3j^2-j}{6(k+1-j)}$$
The solution given used variable change and was able to cancel out $(k+1-j)$ very easily. Finally the answer was $$frac{2k^2 + 2j^2 + 2kj - j + k}{6}$$ I have verified that these two solutions are the same by multiplying the second one with $(k+1-j).$
My question is:
How do you divide an expression like ${(2k^3+3k^2+k-2j^3+3j^2-j)}$ with $(k+1-j)$? Is it even worth it in this case to get the most simplified solution?
algebra-precalculus
$endgroup$
$begingroup$
you can do long division: en.wikipedia.org/wiki/Long_division
$endgroup$
– Pink Panther
Jan 5 at 13:26
add a comment |
$begingroup$
The question I had was calculating $$displaystylefrac{1}{k+1-j}sum_{i=j}^k i^2$$
Because I didn't know how to do a variable change, I did
$$frac{1}{k+1-j}sum_{i=j}^k i^2 = frac{1}{k+1-j}left(sum_{i=1}^k i^2 - sum_{i=1}^{j-1} i^2right) = frac{2k^3+3k^2+k-2j^3+3j^2-j}{6(k+1-j)}$$
The solution given used variable change and was able to cancel out $(k+1-j)$ very easily. Finally the answer was $$frac{2k^2 + 2j^2 + 2kj - j + k}{6}$$ I have verified that these two solutions are the same by multiplying the second one with $(k+1-j).$
My question is:
How do you divide an expression like ${(2k^3+3k^2+k-2j^3+3j^2-j)}$ with $(k+1-j)$? Is it even worth it in this case to get the most simplified solution?
algebra-precalculus
$endgroup$
The question I had was calculating $$displaystylefrac{1}{k+1-j}sum_{i=j}^k i^2$$
Because I didn't know how to do a variable change, I did
$$frac{1}{k+1-j}sum_{i=j}^k i^2 = frac{1}{k+1-j}left(sum_{i=1}^k i^2 - sum_{i=1}^{j-1} i^2right) = frac{2k^3+3k^2+k-2j^3+3j^2-j}{6(k+1-j)}$$
The solution given used variable change and was able to cancel out $(k+1-j)$ very easily. Finally the answer was $$frac{2k^2 + 2j^2 + 2kj - j + k}{6}$$ I have verified that these two solutions are the same by multiplying the second one with $(k+1-j).$
My question is:
How do you divide an expression like ${(2k^3+3k^2+k-2j^3+3j^2-j)}$ with $(k+1-j)$? Is it even worth it in this case to get the most simplified solution?
algebra-precalculus
algebra-precalculus
edited Jan 5 at 13:40
Shubham Johri
5,262718
5,262718
asked Jan 5 at 13:24
JJChaiJJChai
304
304
$begingroup$
you can do long division: en.wikipedia.org/wiki/Long_division
$endgroup$
– Pink Panther
Jan 5 at 13:26
add a comment |
$begingroup$
you can do long division: en.wikipedia.org/wiki/Long_division
$endgroup$
– Pink Panther
Jan 5 at 13:26
$begingroup$
you can do long division: en.wikipedia.org/wiki/Long_division
$endgroup$
– Pink Panther
Jan 5 at 13:26
$begingroup$
you can do long division: en.wikipedia.org/wiki/Long_division
$endgroup$
– Pink Panther
Jan 5 at 13:26
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
You could use synthetic division fairly easily here.
First, we consider $2k^3+3k^2+k-2j^3+3j^2-j$ as a polynomial in $k,$ and write the $4$ coefficients $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\ & & & &\hline & & & &end{array}$$ Next, we invert the coefficients of the divisor $k+1-j$ to get $-1k+j-1,$ and write the constant term in as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & & & &end{array}$$ We bring down the first term to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & 2 & & &end{array}$$ Now, we multiply what we've just brought down by $j-1$ and write in the result as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & & &end{array}$$ Now, adding the numbers in that column gets us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & 2j+1 & &end{array}$$ Multiply that result by $j-1$ and write it in to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & &end{array}$$ Adding again gives us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & 2j^2-j &end{array}$$ Multiplying again by $j-1$ and then adding once more, we get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 & 2j^3-3j^2+j\hline & 2 & 2j+1 & 2j^2-j &0end{array}$$ Translating back into terms of a polynomial in $k,$ this means that $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+(2j+1)k+2j^2-j+frac{0}{k+1-j},$$ or more simply, $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+2j^2+2jk-j+k,$$ as desired.
$endgroup$
add a comment |
$begingroup$
Try to write the polynomial in $k$ as a polynomial in $m=k+1$.
$2k^3+3k^2+k=big[2(k+1)^3-2-6k-6k^2big]+big[3(k+1)^2-3-6kbig]+(k+1)-1\=2(k+1)^3+3(k+1)^2+(k+1)-6(1+2k+k^2)\=2m^3-3m^2+m$
Therefore, $2m^3-3m^2+m-2j^3+3j^2-j=2(m^3-j^3)-3(m^2-j^2)+m-j\=(m-j)big[2(m^2+j^2+mj)-3(m+j)+1big]$
Divide by $k+1-j=m-j$ and back-substitute $m$ to get,
$$2(m^2+j^2+mj)-3(m+j)+1=2k^2+2j^2+2kj+k-j$$
$endgroup$
add a comment |
$begingroup$
making $k-j+1=mto j=k-m+1$
and after substitution into
$$
2 k^3 + 3 k^2 + k - 2 j^3 + 3 j^2 - j =m + 6 k m + 6 k^2 m - 3 m^2 - 6 k m^2 + 2 m^3
$$
$endgroup$
$begingroup$
The OP already knows that. His question is how do you get at it
$endgroup$
– Shubham Johri
Jan 5 at 14:03
$begingroup$
@ShubhamJohri Is it OK now?
$endgroup$
– Cesareo
Jan 5 at 14:35
$begingroup$
It looks good now
$endgroup$
– Shubham Johri
Jan 5 at 14:37
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062708%2fhow-to-divide-2k33k2k-2j33j2-j-with-k1-j%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You could use synthetic division fairly easily here.
First, we consider $2k^3+3k^2+k-2j^3+3j^2-j$ as a polynomial in $k,$ and write the $4$ coefficients $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\ & & & &\hline & & & &end{array}$$ Next, we invert the coefficients of the divisor $k+1-j$ to get $-1k+j-1,$ and write the constant term in as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & & & &end{array}$$ We bring down the first term to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & 2 & & &end{array}$$ Now, we multiply what we've just brought down by $j-1$ and write in the result as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & & &end{array}$$ Now, adding the numbers in that column gets us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & 2j+1 & &end{array}$$ Multiply that result by $j-1$ and write it in to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & &end{array}$$ Adding again gives us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & 2j^2-j &end{array}$$ Multiplying again by $j-1$ and then adding once more, we get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 & 2j^3-3j^2+j\hline & 2 & 2j+1 & 2j^2-j &0end{array}$$ Translating back into terms of a polynomial in $k,$ this means that $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+(2j+1)k+2j^2-j+frac{0}{k+1-j},$$ or more simply, $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+2j^2+2jk-j+k,$$ as desired.
$endgroup$
add a comment |
$begingroup$
You could use synthetic division fairly easily here.
First, we consider $2k^3+3k^2+k-2j^3+3j^2-j$ as a polynomial in $k,$ and write the $4$ coefficients $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\ & & & &\hline & & & &end{array}$$ Next, we invert the coefficients of the divisor $k+1-j$ to get $-1k+j-1,$ and write the constant term in as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & & & &end{array}$$ We bring down the first term to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & 2 & & &end{array}$$ Now, we multiply what we've just brought down by $j-1$ and write in the result as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & & &end{array}$$ Now, adding the numbers in that column gets us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & 2j+1 & &end{array}$$ Multiply that result by $j-1$ and write it in to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & &end{array}$$ Adding again gives us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & 2j^2-j &end{array}$$ Multiplying again by $j-1$ and then adding once more, we get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 & 2j^3-3j^2+j\hline & 2 & 2j+1 & 2j^2-j &0end{array}$$ Translating back into terms of a polynomial in $k,$ this means that $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+(2j+1)k+2j^2-j+frac{0}{k+1-j},$$ or more simply, $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+2j^2+2jk-j+k,$$ as desired.
$endgroup$
add a comment |
$begingroup$
You could use synthetic division fairly easily here.
First, we consider $2k^3+3k^2+k-2j^3+3j^2-j$ as a polynomial in $k,$ and write the $4$ coefficients $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\ & & & &\hline & & & &end{array}$$ Next, we invert the coefficients of the divisor $k+1-j$ to get $-1k+j-1,$ and write the constant term in as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & & & &end{array}$$ We bring down the first term to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & 2 & & &end{array}$$ Now, we multiply what we've just brought down by $j-1$ and write in the result as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & & &end{array}$$ Now, adding the numbers in that column gets us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & 2j+1 & &end{array}$$ Multiply that result by $j-1$ and write it in to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & &end{array}$$ Adding again gives us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & 2j^2-j &end{array}$$ Multiplying again by $j-1$ and then adding once more, we get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 & 2j^3-3j^2+j\hline & 2 & 2j+1 & 2j^2-j &0end{array}$$ Translating back into terms of a polynomial in $k,$ this means that $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+(2j+1)k+2j^2-j+frac{0}{k+1-j},$$ or more simply, $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+2j^2+2jk-j+k,$$ as desired.
$endgroup$
You could use synthetic division fairly easily here.
First, we consider $2k^3+3k^2+k-2j^3+3j^2-j$ as a polynomial in $k,$ and write the $4$ coefficients $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\ & & & &\hline & & & &end{array}$$ Next, we invert the coefficients of the divisor $k+1-j$ to get $-1k+j-1,$ and write the constant term in as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & & & &end{array}$$ We bring down the first term to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & & &\hline & 2 & & &end{array}$$ Now, we multiply what we've just brought down by $j-1$ and write in the result as $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & & &end{array}$$ Now, adding the numbers in that column gets us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & &\hline & 2 & 2j+1 & &end{array}$$ Multiply that result by $j-1$ and write it in to get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & &end{array}$$ Adding again gives us $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 &\hline & 2 & 2j+1 & 2j^2-j &end{array}$$ Multiplying again by $j-1$ and then adding once more, we get $$begin{array}{c|cccc} & 2 & 3 & 1 &-2j^3+3j^2-j\j-1 & & 2j-2 & 2j^2-j-1 & 2j^3-3j^2+j\hline & 2 & 2j+1 & 2j^2-j &0end{array}$$ Translating back into terms of a polynomial in $k,$ this means that $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+(2j+1)k+2j^2-j+frac{0}{k+1-j},$$ or more simply, $$frac{2k^3+3k^2+k-2j^3+3j^2-j}{k+1-j}=2k^2+2j^2+2jk-j+k,$$ as desired.
answered Jan 5 at 15:06
Cameron BuieCameron Buie
85.8k772161
85.8k772161
add a comment |
add a comment |
$begingroup$
Try to write the polynomial in $k$ as a polynomial in $m=k+1$.
$2k^3+3k^2+k=big[2(k+1)^3-2-6k-6k^2big]+big[3(k+1)^2-3-6kbig]+(k+1)-1\=2(k+1)^3+3(k+1)^2+(k+1)-6(1+2k+k^2)\=2m^3-3m^2+m$
Therefore, $2m^3-3m^2+m-2j^3+3j^2-j=2(m^3-j^3)-3(m^2-j^2)+m-j\=(m-j)big[2(m^2+j^2+mj)-3(m+j)+1big]$
Divide by $k+1-j=m-j$ and back-substitute $m$ to get,
$$2(m^2+j^2+mj)-3(m+j)+1=2k^2+2j^2+2kj+k-j$$
$endgroup$
add a comment |
$begingroup$
Try to write the polynomial in $k$ as a polynomial in $m=k+1$.
$2k^3+3k^2+k=big[2(k+1)^3-2-6k-6k^2big]+big[3(k+1)^2-3-6kbig]+(k+1)-1\=2(k+1)^3+3(k+1)^2+(k+1)-6(1+2k+k^2)\=2m^3-3m^2+m$
Therefore, $2m^3-3m^2+m-2j^3+3j^2-j=2(m^3-j^3)-3(m^2-j^2)+m-j\=(m-j)big[2(m^2+j^2+mj)-3(m+j)+1big]$
Divide by $k+1-j=m-j$ and back-substitute $m$ to get,
$$2(m^2+j^2+mj)-3(m+j)+1=2k^2+2j^2+2kj+k-j$$
$endgroup$
add a comment |
$begingroup$
Try to write the polynomial in $k$ as a polynomial in $m=k+1$.
$2k^3+3k^2+k=big[2(k+1)^3-2-6k-6k^2big]+big[3(k+1)^2-3-6kbig]+(k+1)-1\=2(k+1)^3+3(k+1)^2+(k+1)-6(1+2k+k^2)\=2m^3-3m^2+m$
Therefore, $2m^3-3m^2+m-2j^3+3j^2-j=2(m^3-j^3)-3(m^2-j^2)+m-j\=(m-j)big[2(m^2+j^2+mj)-3(m+j)+1big]$
Divide by $k+1-j=m-j$ and back-substitute $m$ to get,
$$2(m^2+j^2+mj)-3(m+j)+1=2k^2+2j^2+2kj+k-j$$
$endgroup$
Try to write the polynomial in $k$ as a polynomial in $m=k+1$.
$2k^3+3k^2+k=big[2(k+1)^3-2-6k-6k^2big]+big[3(k+1)^2-3-6kbig]+(k+1)-1\=2(k+1)^3+3(k+1)^2+(k+1)-6(1+2k+k^2)\=2m^3-3m^2+m$
Therefore, $2m^3-3m^2+m-2j^3+3j^2-j=2(m^3-j^3)-3(m^2-j^2)+m-j\=(m-j)big[2(m^2+j^2+mj)-3(m+j)+1big]$
Divide by $k+1-j=m-j$ and back-substitute $m$ to get,
$$2(m^2+j^2+mj)-3(m+j)+1=2k^2+2j^2+2kj+k-j$$
answered Jan 5 at 14:00
Shubham JohriShubham Johri
5,262718
5,262718
add a comment |
add a comment |
$begingroup$
making $k-j+1=mto j=k-m+1$
and after substitution into
$$
2 k^3 + 3 k^2 + k - 2 j^3 + 3 j^2 - j =m + 6 k m + 6 k^2 m - 3 m^2 - 6 k m^2 + 2 m^3
$$
$endgroup$
$begingroup$
The OP already knows that. His question is how do you get at it
$endgroup$
– Shubham Johri
Jan 5 at 14:03
$begingroup$
@ShubhamJohri Is it OK now?
$endgroup$
– Cesareo
Jan 5 at 14:35
$begingroup$
It looks good now
$endgroup$
– Shubham Johri
Jan 5 at 14:37
add a comment |
$begingroup$
making $k-j+1=mto j=k-m+1$
and after substitution into
$$
2 k^3 + 3 k^2 + k - 2 j^3 + 3 j^2 - j =m + 6 k m + 6 k^2 m - 3 m^2 - 6 k m^2 + 2 m^3
$$
$endgroup$
$begingroup$
The OP already knows that. His question is how do you get at it
$endgroup$
– Shubham Johri
Jan 5 at 14:03
$begingroup$
@ShubhamJohri Is it OK now?
$endgroup$
– Cesareo
Jan 5 at 14:35
$begingroup$
It looks good now
$endgroup$
– Shubham Johri
Jan 5 at 14:37
add a comment |
$begingroup$
making $k-j+1=mto j=k-m+1$
and after substitution into
$$
2 k^3 + 3 k^2 + k - 2 j^3 + 3 j^2 - j =m + 6 k m + 6 k^2 m - 3 m^2 - 6 k m^2 + 2 m^3
$$
$endgroup$
making $k-j+1=mto j=k-m+1$
and after substitution into
$$
2 k^3 + 3 k^2 + k - 2 j^3 + 3 j^2 - j =m + 6 k m + 6 k^2 m - 3 m^2 - 6 k m^2 + 2 m^3
$$
edited Jan 5 at 14:33
answered Jan 5 at 14:01
CesareoCesareo
9,3963517
9,3963517
$begingroup$
The OP already knows that. His question is how do you get at it
$endgroup$
– Shubham Johri
Jan 5 at 14:03
$begingroup$
@ShubhamJohri Is it OK now?
$endgroup$
– Cesareo
Jan 5 at 14:35
$begingroup$
It looks good now
$endgroup$
– Shubham Johri
Jan 5 at 14:37
add a comment |
$begingroup$
The OP already knows that. His question is how do you get at it
$endgroup$
– Shubham Johri
Jan 5 at 14:03
$begingroup$
@ShubhamJohri Is it OK now?
$endgroup$
– Cesareo
Jan 5 at 14:35
$begingroup$
It looks good now
$endgroup$
– Shubham Johri
Jan 5 at 14:37
$begingroup$
The OP already knows that. His question is how do you get at it
$endgroup$
– Shubham Johri
Jan 5 at 14:03
$begingroup$
The OP already knows that. His question is how do you get at it
$endgroup$
– Shubham Johri
Jan 5 at 14:03
$begingroup$
@ShubhamJohri Is it OK now?
$endgroup$
– Cesareo
Jan 5 at 14:35
$begingroup$
@ShubhamJohri Is it OK now?
$endgroup$
– Cesareo
Jan 5 at 14:35
$begingroup$
It looks good now
$endgroup$
– Shubham Johri
Jan 5 at 14:37
$begingroup$
It looks good now
$endgroup$
– Shubham Johri
Jan 5 at 14:37
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062708%2fhow-to-divide-2k33k2k-2j33j2-j-with-k1-j%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
you can do long division: en.wikipedia.org/wiki/Long_division
$endgroup$
– Pink Panther
Jan 5 at 13:26