Finding conditional expectation and conditional probability












0












$begingroup$


Let $xi $ be a random variable in $(Omega, mathcal{F}, mathbb{P})$ distributed according to $mathrm{Unif}{-2,...,3}$. Hence,
$$mathbb{P}(xi = -2) = mathbb{P}(xi = -1) =mathbb{P}(xi = 0) =mathbb{P}(xi = 1) =mathbb{P}(xi = 2) =mathbb{P}(xi = 3) =1/6$$
Now let $mathcal{D}={D_1,D_2,D_3}$ where $D_1={xi<0}$ $D_2={xi in [0,2]}$ $D_3={ xi >2 }$.



I need to find:



1) $mathbb{E}(xi^2|mathcal{D})$ (The conditional expectation).



2) $mathbb{P}(xi<1|mathcal{D})$.



I am not sure, but I think that for 1) I should use formula $mathbb{E}(xi^2 |mathcal{D})(omega)= sum_{i} frac{mathbb{E}(xi^2 mathbf{1}_{D_i)}}{mathbb{P}(D_i)} mathbf{1}_{D_i} (omega) $. But how should I use it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    In your original distribution, you have six possible outcomes, -1 to 3, each "equally likely". Restricting to $D_1$, "< 0", means that we are restricting to 2 outcomes, -2 and -1, still equally likely. Restricting to $D_1$, the probabilities of -2 and of -1 are both 1/2 and the expected value is (1/2)(-1)+ (1/2)(-2)= -1.5.
    $endgroup$
    – user247327
    Jan 2 at 16:11
















0












$begingroup$


Let $xi $ be a random variable in $(Omega, mathcal{F}, mathbb{P})$ distributed according to $mathrm{Unif}{-2,...,3}$. Hence,
$$mathbb{P}(xi = -2) = mathbb{P}(xi = -1) =mathbb{P}(xi = 0) =mathbb{P}(xi = 1) =mathbb{P}(xi = 2) =mathbb{P}(xi = 3) =1/6$$
Now let $mathcal{D}={D_1,D_2,D_3}$ where $D_1={xi<0}$ $D_2={xi in [0,2]}$ $D_3={ xi >2 }$.



I need to find:



1) $mathbb{E}(xi^2|mathcal{D})$ (The conditional expectation).



2) $mathbb{P}(xi<1|mathcal{D})$.



I am not sure, but I think that for 1) I should use formula $mathbb{E}(xi^2 |mathcal{D})(omega)= sum_{i} frac{mathbb{E}(xi^2 mathbf{1}_{D_i)}}{mathbb{P}(D_i)} mathbf{1}_{D_i} (omega) $. But how should I use it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    In your original distribution, you have six possible outcomes, -1 to 3, each "equally likely". Restricting to $D_1$, "< 0", means that we are restricting to 2 outcomes, -2 and -1, still equally likely. Restricting to $D_1$, the probabilities of -2 and of -1 are both 1/2 and the expected value is (1/2)(-1)+ (1/2)(-2)= -1.5.
    $endgroup$
    – user247327
    Jan 2 at 16:11














0












0








0





$begingroup$


Let $xi $ be a random variable in $(Omega, mathcal{F}, mathbb{P})$ distributed according to $mathrm{Unif}{-2,...,3}$. Hence,
$$mathbb{P}(xi = -2) = mathbb{P}(xi = -1) =mathbb{P}(xi = 0) =mathbb{P}(xi = 1) =mathbb{P}(xi = 2) =mathbb{P}(xi = 3) =1/6$$
Now let $mathcal{D}={D_1,D_2,D_3}$ where $D_1={xi<0}$ $D_2={xi in [0,2]}$ $D_3={ xi >2 }$.



I need to find:



1) $mathbb{E}(xi^2|mathcal{D})$ (The conditional expectation).



2) $mathbb{P}(xi<1|mathcal{D})$.



I am not sure, but I think that for 1) I should use formula $mathbb{E}(xi^2 |mathcal{D})(omega)= sum_{i} frac{mathbb{E}(xi^2 mathbf{1}_{D_i)}}{mathbb{P}(D_i)} mathbf{1}_{D_i} (omega) $. But how should I use it?










share|cite|improve this question











$endgroup$




Let $xi $ be a random variable in $(Omega, mathcal{F}, mathbb{P})$ distributed according to $mathrm{Unif}{-2,...,3}$. Hence,
$$mathbb{P}(xi = -2) = mathbb{P}(xi = -1) =mathbb{P}(xi = 0) =mathbb{P}(xi = 1) =mathbb{P}(xi = 2) =mathbb{P}(xi = 3) =1/6$$
Now let $mathcal{D}={D_1,D_2,D_3}$ where $D_1={xi<0}$ $D_2={xi in [0,2]}$ $D_3={ xi >2 }$.



I need to find:



1) $mathbb{E}(xi^2|mathcal{D})$ (The conditional expectation).



2) $mathbb{P}(xi<1|mathcal{D})$.



I am not sure, but I think that for 1) I should use formula $mathbb{E}(xi^2 |mathcal{D})(omega)= sum_{i} frac{mathbb{E}(xi^2 mathbf{1}_{D_i)}}{mathbb{P}(D_i)} mathbf{1}_{D_i} (omega) $. But how should I use it?







probability probability-theory conditional-expectation conditional-probability expected-value






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 2 at 16:43









Jonas

398212




398212










asked Jan 2 at 16:03









AtstovasAtstovas

1139




1139












  • $begingroup$
    In your original distribution, you have six possible outcomes, -1 to 3, each "equally likely". Restricting to $D_1$, "< 0", means that we are restricting to 2 outcomes, -2 and -1, still equally likely. Restricting to $D_1$, the probabilities of -2 and of -1 are both 1/2 and the expected value is (1/2)(-1)+ (1/2)(-2)= -1.5.
    $endgroup$
    – user247327
    Jan 2 at 16:11


















  • $begingroup$
    In your original distribution, you have six possible outcomes, -1 to 3, each "equally likely". Restricting to $D_1$, "< 0", means that we are restricting to 2 outcomes, -2 and -1, still equally likely. Restricting to $D_1$, the probabilities of -2 and of -1 are both 1/2 and the expected value is (1/2)(-1)+ (1/2)(-2)= -1.5.
    $endgroup$
    – user247327
    Jan 2 at 16:11
















$begingroup$
In your original distribution, you have six possible outcomes, -1 to 3, each "equally likely". Restricting to $D_1$, "< 0", means that we are restricting to 2 outcomes, -2 and -1, still equally likely. Restricting to $D_1$, the probabilities of -2 and of -1 are both 1/2 and the expected value is (1/2)(-1)+ (1/2)(-2)= -1.5.
$endgroup$
– user247327
Jan 2 at 16:11




$begingroup$
In your original distribution, you have six possible outcomes, -1 to 3, each "equally likely". Restricting to $D_1$, "< 0", means that we are restricting to 2 outcomes, -2 and -1, still equally likely. Restricting to $D_1$, the probabilities of -2 and of -1 are both 1/2 and the expected value is (1/2)(-1)+ (1/2)(-2)= -1.5.
$endgroup$
– user247327
Jan 2 at 16:11










2 Answers
2






active

oldest

votes


















0












$begingroup$

I assume that $mathbb E[xi^2midmathcal D]$ denotes the same as $mathbb E[xi^2midmathcalsigma(mathcal D)]$





$mathbb{E}left[xi^{2}midmathcal{D}right]$ is measurable wrt
$sigmaleft(mathcal{D}right)$ implying here the existence of coefficients
$a,b,c$ with $$mathbb{E}left[xi^{2}midmathcal{D}right]=amathbf{1}_{xi<0}+bmathbf{1}_{0leqxileq2}+cmathbf{1}_{xi>2}tag1$$



Secondly we have the equalities: $$mathbb{E}left[xi^{2}mathbf{1}_{D}right]=mathbb{E}left[mathbb{E}left[xi^{2}midmathcal{D}right]mathbf{1}_{D}right]text{ for every }Dinsigmaleft(mathcal{D}right)tag2$$



Substituting $left(1right)$ in $(2)$ we find for $D={xi<0}$, ${0leqxileq2}$ and ${xi>2}$:




  • $mathbb{E}left[xi^{2}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$


  • $mathbb{E}left[xi^{2}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$


  • $mathbb{E}left[xi^{2}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$



Or equivalently




  • $a=mathbb{E}left[xi^{2}midxi<0right]=frac{1}{2}left(-2right)^{2}+frac{1}{2}left(-1right)^{2}=frac{5}{2}$

  • $b=mathbb{E}left[xi^{2}mid0leqxileq2right]=frac{1}{3}0^{2}+frac{1}{3}1^{2}+frac{1}{3}2^{2}=frac{5}{3}$


  • $c=mathbb{E}left[xi^{2}midxi>2right]=3^{2}=9$.


So we end up with: $$mathbb{E}left[xi^{2}midmathcal{D}right]=frac{5}{2}mathbf{1}_{xi<0}+frac{5}{3}mathbf{1}_{0leqxileq2}+9mathbf{1}_{xi>2}$$





edit:



Observe that $mathbb P(xi<1midmathcal D)=mathbb E(mathbf1_{xi<1}midmathcal D)$.



We can find it exactly as above if we replace $xi^2$ there by $mathbf1_{xi<1}$:




  • $mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$


  • $mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$


  • $mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$



Or equivalently:




  • $a=mathbb P(xi<1midxi<0)=1$

  • $b=mathbb P(xi<1mid0leqxileq2)=frac13$

  • $c=mathbb P(xi<1mid xi>2)=0$


So we end up with: $$mathbb{P}left[xi<1midmathcal{D}right]=mathbf{1}_{xi<0}+frac{1}{3}mathbf{1}_{0leqxileq2}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    can you show me and second part?
    $endgroup$
    – Atstovas
    Jan 2 at 19:39










  • $begingroup$
    Can you be more precise: what exactly is the second part in your view?
    $endgroup$
    – drhab
    Jan 3 at 7:54










  • $begingroup$
    can you show how to find $mathbb{P}(xi<1|mathcal{D})$?
    $endgroup$
    – Atstovas
    Jan 3 at 8:38










  • $begingroup$
    Exactly the same route. See my edit.
    $endgroup$
    – drhab
    Jan 3 at 9:11



















-1












$begingroup$

First, we define the underlying probability space $(Omega, mathcal{A}, mathbb{P}) := ({-2,...,3}, 2^{{-2,...,3}}, mathrm{Unif}{-2,...,3})$. $xi$ is a random variable from $Omega$ into itself, say $xi equiv mathrm{id}_Omega$. Hence, $xi(omega) = omega$.

Note that $mathbb{E}[xi^2|mathcal{D}]$ is also a random variable, from $Omega$ into itself. Hence, we need to compute its value (in principal) for every $omega in Omega$. Also note that the outcome really depends on the definition of $xi$ above. Only the distribution of $mathbb{E}[xi^2|mathcal{D}]$ is unique.
We can now just apply the formula:
begin{align}
mathbb{E}[xi^2|mathcal{D}](-2) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](-1) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](0) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](1) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](2) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](3) &= frac{3^2 cdot 1/6}{1/6} = 9.
end{align}

If I didn't do any mistakes, this should be the correct conditional expectation, given the modelling of $xi$.
The second example you can probably solve yourself, remember that $mathbb{P}(xi < 1|mathcal{D} ) = mathbb{E}[mathbf{1}_{xi < 1}|mathcal{D}]$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Sorry but it is absolutely not necessary to specify the probability space. For every probability space on which $xi$ is defined, $E(ximidmathcal{D})=sumlimits_ix_imathbf 1_{D_i}$ for some numbers $(x_i)$ that are the same for every probability space such that $xi$ has the correct distribution.
    $endgroup$
    – Did
    Jan 2 at 17:05












  • $begingroup$
    So can I say that $mathbb{E} (xi^2|mathcal{D}) =13,167$?
    $endgroup$
    – Atstovas
    Jan 2 at 17:24












  • $begingroup$
    @Did True. To determine the distribution of that conditional expectation, it should be not necessary. I found it easier to explain it like this, when using the formula above that distinguishes $xi$ and $omega$.
    $endgroup$
    – Jonas
    Jan 2 at 17:38










  • $begingroup$
    @Atstovas No. This conditional expectation is a random variable and therefore a function of $Omega$. It is (in general) not a deterministic value. Maybe, you want to check up on the definition in en.wikipedia.org/wiki/…
    $endgroup$
    – Jonas
    Jan 2 at 17:40










  • $begingroup$
    @Jonas can you show me also and second example?
    $endgroup$
    – Atstovas
    Jan 2 at 17:56











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059649%2ffinding-conditional-expectation-and-conditional-probability%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

I assume that $mathbb E[xi^2midmathcal D]$ denotes the same as $mathbb E[xi^2midmathcalsigma(mathcal D)]$





$mathbb{E}left[xi^{2}midmathcal{D}right]$ is measurable wrt
$sigmaleft(mathcal{D}right)$ implying here the existence of coefficients
$a,b,c$ with $$mathbb{E}left[xi^{2}midmathcal{D}right]=amathbf{1}_{xi<0}+bmathbf{1}_{0leqxileq2}+cmathbf{1}_{xi>2}tag1$$



Secondly we have the equalities: $$mathbb{E}left[xi^{2}mathbf{1}_{D}right]=mathbb{E}left[mathbb{E}left[xi^{2}midmathcal{D}right]mathbf{1}_{D}right]text{ for every }Dinsigmaleft(mathcal{D}right)tag2$$



Substituting $left(1right)$ in $(2)$ we find for $D={xi<0}$, ${0leqxileq2}$ and ${xi>2}$:




  • $mathbb{E}left[xi^{2}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$


  • $mathbb{E}left[xi^{2}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$


  • $mathbb{E}left[xi^{2}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$



Or equivalently




  • $a=mathbb{E}left[xi^{2}midxi<0right]=frac{1}{2}left(-2right)^{2}+frac{1}{2}left(-1right)^{2}=frac{5}{2}$

  • $b=mathbb{E}left[xi^{2}mid0leqxileq2right]=frac{1}{3}0^{2}+frac{1}{3}1^{2}+frac{1}{3}2^{2}=frac{5}{3}$


  • $c=mathbb{E}left[xi^{2}midxi>2right]=3^{2}=9$.


So we end up with: $$mathbb{E}left[xi^{2}midmathcal{D}right]=frac{5}{2}mathbf{1}_{xi<0}+frac{5}{3}mathbf{1}_{0leqxileq2}+9mathbf{1}_{xi>2}$$





edit:



Observe that $mathbb P(xi<1midmathcal D)=mathbb E(mathbf1_{xi<1}midmathcal D)$.



We can find it exactly as above if we replace $xi^2$ there by $mathbf1_{xi<1}$:




  • $mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$


  • $mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$


  • $mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$



Or equivalently:




  • $a=mathbb P(xi<1midxi<0)=1$

  • $b=mathbb P(xi<1mid0leqxileq2)=frac13$

  • $c=mathbb P(xi<1mid xi>2)=0$


So we end up with: $$mathbb{P}left[xi<1midmathcal{D}right]=mathbf{1}_{xi<0}+frac{1}{3}mathbf{1}_{0leqxileq2}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    can you show me and second part?
    $endgroup$
    – Atstovas
    Jan 2 at 19:39










  • $begingroup$
    Can you be more precise: what exactly is the second part in your view?
    $endgroup$
    – drhab
    Jan 3 at 7:54










  • $begingroup$
    can you show how to find $mathbb{P}(xi<1|mathcal{D})$?
    $endgroup$
    – Atstovas
    Jan 3 at 8:38










  • $begingroup$
    Exactly the same route. See my edit.
    $endgroup$
    – drhab
    Jan 3 at 9:11
















0












$begingroup$

I assume that $mathbb E[xi^2midmathcal D]$ denotes the same as $mathbb E[xi^2midmathcalsigma(mathcal D)]$





$mathbb{E}left[xi^{2}midmathcal{D}right]$ is measurable wrt
$sigmaleft(mathcal{D}right)$ implying here the existence of coefficients
$a,b,c$ with $$mathbb{E}left[xi^{2}midmathcal{D}right]=amathbf{1}_{xi<0}+bmathbf{1}_{0leqxileq2}+cmathbf{1}_{xi>2}tag1$$



Secondly we have the equalities: $$mathbb{E}left[xi^{2}mathbf{1}_{D}right]=mathbb{E}left[mathbb{E}left[xi^{2}midmathcal{D}right]mathbf{1}_{D}right]text{ for every }Dinsigmaleft(mathcal{D}right)tag2$$



Substituting $left(1right)$ in $(2)$ we find for $D={xi<0}$, ${0leqxileq2}$ and ${xi>2}$:




  • $mathbb{E}left[xi^{2}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$


  • $mathbb{E}left[xi^{2}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$


  • $mathbb{E}left[xi^{2}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$



Or equivalently




  • $a=mathbb{E}left[xi^{2}midxi<0right]=frac{1}{2}left(-2right)^{2}+frac{1}{2}left(-1right)^{2}=frac{5}{2}$

  • $b=mathbb{E}left[xi^{2}mid0leqxileq2right]=frac{1}{3}0^{2}+frac{1}{3}1^{2}+frac{1}{3}2^{2}=frac{5}{3}$


  • $c=mathbb{E}left[xi^{2}midxi>2right]=3^{2}=9$.


So we end up with: $$mathbb{E}left[xi^{2}midmathcal{D}right]=frac{5}{2}mathbf{1}_{xi<0}+frac{5}{3}mathbf{1}_{0leqxileq2}+9mathbf{1}_{xi>2}$$





edit:



Observe that $mathbb P(xi<1midmathcal D)=mathbb E(mathbf1_{xi<1}midmathcal D)$.



We can find it exactly as above if we replace $xi^2$ there by $mathbf1_{xi<1}$:




  • $mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$


  • $mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$


  • $mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$



Or equivalently:




  • $a=mathbb P(xi<1midxi<0)=1$

  • $b=mathbb P(xi<1mid0leqxileq2)=frac13$

  • $c=mathbb P(xi<1mid xi>2)=0$


So we end up with: $$mathbb{P}left[xi<1midmathcal{D}right]=mathbf{1}_{xi<0}+frac{1}{3}mathbf{1}_{0leqxileq2}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    can you show me and second part?
    $endgroup$
    – Atstovas
    Jan 2 at 19:39










  • $begingroup$
    Can you be more precise: what exactly is the second part in your view?
    $endgroup$
    – drhab
    Jan 3 at 7:54










  • $begingroup$
    can you show how to find $mathbb{P}(xi<1|mathcal{D})$?
    $endgroup$
    – Atstovas
    Jan 3 at 8:38










  • $begingroup$
    Exactly the same route. See my edit.
    $endgroup$
    – drhab
    Jan 3 at 9:11














0












0








0





$begingroup$

I assume that $mathbb E[xi^2midmathcal D]$ denotes the same as $mathbb E[xi^2midmathcalsigma(mathcal D)]$





$mathbb{E}left[xi^{2}midmathcal{D}right]$ is measurable wrt
$sigmaleft(mathcal{D}right)$ implying here the existence of coefficients
$a,b,c$ with $$mathbb{E}left[xi^{2}midmathcal{D}right]=amathbf{1}_{xi<0}+bmathbf{1}_{0leqxileq2}+cmathbf{1}_{xi>2}tag1$$



Secondly we have the equalities: $$mathbb{E}left[xi^{2}mathbf{1}_{D}right]=mathbb{E}left[mathbb{E}left[xi^{2}midmathcal{D}right]mathbf{1}_{D}right]text{ for every }Dinsigmaleft(mathcal{D}right)tag2$$



Substituting $left(1right)$ in $(2)$ we find for $D={xi<0}$, ${0leqxileq2}$ and ${xi>2}$:




  • $mathbb{E}left[xi^{2}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$


  • $mathbb{E}left[xi^{2}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$


  • $mathbb{E}left[xi^{2}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$



Or equivalently




  • $a=mathbb{E}left[xi^{2}midxi<0right]=frac{1}{2}left(-2right)^{2}+frac{1}{2}left(-1right)^{2}=frac{5}{2}$

  • $b=mathbb{E}left[xi^{2}mid0leqxileq2right]=frac{1}{3}0^{2}+frac{1}{3}1^{2}+frac{1}{3}2^{2}=frac{5}{3}$


  • $c=mathbb{E}left[xi^{2}midxi>2right]=3^{2}=9$.


So we end up with: $$mathbb{E}left[xi^{2}midmathcal{D}right]=frac{5}{2}mathbf{1}_{xi<0}+frac{5}{3}mathbf{1}_{0leqxileq2}+9mathbf{1}_{xi>2}$$





edit:



Observe that $mathbb P(xi<1midmathcal D)=mathbb E(mathbf1_{xi<1}midmathcal D)$.



We can find it exactly as above if we replace $xi^2$ there by $mathbf1_{xi<1}$:




  • $mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$


  • $mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$


  • $mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$



Or equivalently:




  • $a=mathbb P(xi<1midxi<0)=1$

  • $b=mathbb P(xi<1mid0leqxileq2)=frac13$

  • $c=mathbb P(xi<1mid xi>2)=0$


So we end up with: $$mathbb{P}left[xi<1midmathcal{D}right]=mathbf{1}_{xi<0}+frac{1}{3}mathbf{1}_{0leqxileq2}$$






share|cite|improve this answer











$endgroup$



I assume that $mathbb E[xi^2midmathcal D]$ denotes the same as $mathbb E[xi^2midmathcalsigma(mathcal D)]$





$mathbb{E}left[xi^{2}midmathcal{D}right]$ is measurable wrt
$sigmaleft(mathcal{D}right)$ implying here the existence of coefficients
$a,b,c$ with $$mathbb{E}left[xi^{2}midmathcal{D}right]=amathbf{1}_{xi<0}+bmathbf{1}_{0leqxileq2}+cmathbf{1}_{xi>2}tag1$$



Secondly we have the equalities: $$mathbb{E}left[xi^{2}mathbf{1}_{D}right]=mathbb{E}left[mathbb{E}left[xi^{2}midmathcal{D}right]mathbf{1}_{D}right]text{ for every }Dinsigmaleft(mathcal{D}right)tag2$$



Substituting $left(1right)$ in $(2)$ we find for $D={xi<0}$, ${0leqxileq2}$ and ${xi>2}$:




  • $mathbb{E}left[xi^{2}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$


  • $mathbb{E}left[xi^{2}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$


  • $mathbb{E}left[xi^{2}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$



Or equivalently




  • $a=mathbb{E}left[xi^{2}midxi<0right]=frac{1}{2}left(-2right)^{2}+frac{1}{2}left(-1right)^{2}=frac{5}{2}$

  • $b=mathbb{E}left[xi^{2}mid0leqxileq2right]=frac{1}{3}0^{2}+frac{1}{3}1^{2}+frac{1}{3}2^{2}=frac{5}{3}$


  • $c=mathbb{E}left[xi^{2}midxi>2right]=3^{2}=9$.


So we end up with: $$mathbb{E}left[xi^{2}midmathcal{D}right]=frac{5}{2}mathbf{1}_{xi<0}+frac{5}{3}mathbf{1}_{0leqxileq2}+9mathbf{1}_{xi>2}$$





edit:



Observe that $mathbb P(xi<1midmathcal D)=mathbb E(mathbf1_{xi<1}midmathcal D)$.



We can find it exactly as above if we replace $xi^2$ there by $mathbf1_{xi<1}$:




  • $mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$


  • $mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$


  • $mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$



Or equivalently:




  • $a=mathbb P(xi<1midxi<0)=1$

  • $b=mathbb P(xi<1mid0leqxileq2)=frac13$

  • $c=mathbb P(xi<1mid xi>2)=0$


So we end up with: $$mathbb{P}left[xi<1midmathcal{D}right]=mathbf{1}_{xi<0}+frac{1}{3}mathbf{1}_{0leqxileq2}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 3 at 9:10

























answered Jan 2 at 18:37









drhabdrhab

102k545136




102k545136












  • $begingroup$
    can you show me and second part?
    $endgroup$
    – Atstovas
    Jan 2 at 19:39










  • $begingroup$
    Can you be more precise: what exactly is the second part in your view?
    $endgroup$
    – drhab
    Jan 3 at 7:54










  • $begingroup$
    can you show how to find $mathbb{P}(xi<1|mathcal{D})$?
    $endgroup$
    – Atstovas
    Jan 3 at 8:38










  • $begingroup$
    Exactly the same route. See my edit.
    $endgroup$
    – drhab
    Jan 3 at 9:11


















  • $begingroup$
    can you show me and second part?
    $endgroup$
    – Atstovas
    Jan 2 at 19:39










  • $begingroup$
    Can you be more precise: what exactly is the second part in your view?
    $endgroup$
    – drhab
    Jan 3 at 7:54










  • $begingroup$
    can you show how to find $mathbb{P}(xi<1|mathcal{D})$?
    $endgroup$
    – Atstovas
    Jan 3 at 8:38










  • $begingroup$
    Exactly the same route. See my edit.
    $endgroup$
    – drhab
    Jan 3 at 9:11
















$begingroup$
can you show me and second part?
$endgroup$
– Atstovas
Jan 2 at 19:39




$begingroup$
can you show me and second part?
$endgroup$
– Atstovas
Jan 2 at 19:39












$begingroup$
Can you be more precise: what exactly is the second part in your view?
$endgroup$
– drhab
Jan 3 at 7:54




$begingroup$
Can you be more precise: what exactly is the second part in your view?
$endgroup$
– drhab
Jan 3 at 7:54












$begingroup$
can you show how to find $mathbb{P}(xi<1|mathcal{D})$?
$endgroup$
– Atstovas
Jan 3 at 8:38




$begingroup$
can you show how to find $mathbb{P}(xi<1|mathcal{D})$?
$endgroup$
– Atstovas
Jan 3 at 8:38












$begingroup$
Exactly the same route. See my edit.
$endgroup$
– drhab
Jan 3 at 9:11




$begingroup$
Exactly the same route. See my edit.
$endgroup$
– drhab
Jan 3 at 9:11











-1












$begingroup$

First, we define the underlying probability space $(Omega, mathcal{A}, mathbb{P}) := ({-2,...,3}, 2^{{-2,...,3}}, mathrm{Unif}{-2,...,3})$. $xi$ is a random variable from $Omega$ into itself, say $xi equiv mathrm{id}_Omega$. Hence, $xi(omega) = omega$.

Note that $mathbb{E}[xi^2|mathcal{D}]$ is also a random variable, from $Omega$ into itself. Hence, we need to compute its value (in principal) for every $omega in Omega$. Also note that the outcome really depends on the definition of $xi$ above. Only the distribution of $mathbb{E}[xi^2|mathcal{D}]$ is unique.
We can now just apply the formula:
begin{align}
mathbb{E}[xi^2|mathcal{D}](-2) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](-1) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](0) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](1) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](2) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](3) &= frac{3^2 cdot 1/6}{1/6} = 9.
end{align}

If I didn't do any mistakes, this should be the correct conditional expectation, given the modelling of $xi$.
The second example you can probably solve yourself, remember that $mathbb{P}(xi < 1|mathcal{D} ) = mathbb{E}[mathbf{1}_{xi < 1}|mathcal{D}]$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Sorry but it is absolutely not necessary to specify the probability space. For every probability space on which $xi$ is defined, $E(ximidmathcal{D})=sumlimits_ix_imathbf 1_{D_i}$ for some numbers $(x_i)$ that are the same for every probability space such that $xi$ has the correct distribution.
    $endgroup$
    – Did
    Jan 2 at 17:05












  • $begingroup$
    So can I say that $mathbb{E} (xi^2|mathcal{D}) =13,167$?
    $endgroup$
    – Atstovas
    Jan 2 at 17:24












  • $begingroup$
    @Did True. To determine the distribution of that conditional expectation, it should be not necessary. I found it easier to explain it like this, when using the formula above that distinguishes $xi$ and $omega$.
    $endgroup$
    – Jonas
    Jan 2 at 17:38










  • $begingroup$
    @Atstovas No. This conditional expectation is a random variable and therefore a function of $Omega$. It is (in general) not a deterministic value. Maybe, you want to check up on the definition in en.wikipedia.org/wiki/…
    $endgroup$
    – Jonas
    Jan 2 at 17:40










  • $begingroup$
    @Jonas can you show me also and second example?
    $endgroup$
    – Atstovas
    Jan 2 at 17:56
















-1












$begingroup$

First, we define the underlying probability space $(Omega, mathcal{A}, mathbb{P}) := ({-2,...,3}, 2^{{-2,...,3}}, mathrm{Unif}{-2,...,3})$. $xi$ is a random variable from $Omega$ into itself, say $xi equiv mathrm{id}_Omega$. Hence, $xi(omega) = omega$.

Note that $mathbb{E}[xi^2|mathcal{D}]$ is also a random variable, from $Omega$ into itself. Hence, we need to compute its value (in principal) for every $omega in Omega$. Also note that the outcome really depends on the definition of $xi$ above. Only the distribution of $mathbb{E}[xi^2|mathcal{D}]$ is unique.
We can now just apply the formula:
begin{align}
mathbb{E}[xi^2|mathcal{D}](-2) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](-1) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](0) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](1) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](2) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](3) &= frac{3^2 cdot 1/6}{1/6} = 9.
end{align}

If I didn't do any mistakes, this should be the correct conditional expectation, given the modelling of $xi$.
The second example you can probably solve yourself, remember that $mathbb{P}(xi < 1|mathcal{D} ) = mathbb{E}[mathbf{1}_{xi < 1}|mathcal{D}]$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Sorry but it is absolutely not necessary to specify the probability space. For every probability space on which $xi$ is defined, $E(ximidmathcal{D})=sumlimits_ix_imathbf 1_{D_i}$ for some numbers $(x_i)$ that are the same for every probability space such that $xi$ has the correct distribution.
    $endgroup$
    – Did
    Jan 2 at 17:05












  • $begingroup$
    So can I say that $mathbb{E} (xi^2|mathcal{D}) =13,167$?
    $endgroup$
    – Atstovas
    Jan 2 at 17:24












  • $begingroup$
    @Did True. To determine the distribution of that conditional expectation, it should be not necessary. I found it easier to explain it like this, when using the formula above that distinguishes $xi$ and $omega$.
    $endgroup$
    – Jonas
    Jan 2 at 17:38










  • $begingroup$
    @Atstovas No. This conditional expectation is a random variable and therefore a function of $Omega$. It is (in general) not a deterministic value. Maybe, you want to check up on the definition in en.wikipedia.org/wiki/…
    $endgroup$
    – Jonas
    Jan 2 at 17:40










  • $begingroup$
    @Jonas can you show me also and second example?
    $endgroup$
    – Atstovas
    Jan 2 at 17:56














-1












-1








-1





$begingroup$

First, we define the underlying probability space $(Omega, mathcal{A}, mathbb{P}) := ({-2,...,3}, 2^{{-2,...,3}}, mathrm{Unif}{-2,...,3})$. $xi$ is a random variable from $Omega$ into itself, say $xi equiv mathrm{id}_Omega$. Hence, $xi(omega) = omega$.

Note that $mathbb{E}[xi^2|mathcal{D}]$ is also a random variable, from $Omega$ into itself. Hence, we need to compute its value (in principal) for every $omega in Omega$. Also note that the outcome really depends on the definition of $xi$ above. Only the distribution of $mathbb{E}[xi^2|mathcal{D}]$ is unique.
We can now just apply the formula:
begin{align}
mathbb{E}[xi^2|mathcal{D}](-2) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](-1) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](0) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](1) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](2) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](3) &= frac{3^2 cdot 1/6}{1/6} = 9.
end{align}

If I didn't do any mistakes, this should be the correct conditional expectation, given the modelling of $xi$.
The second example you can probably solve yourself, remember that $mathbb{P}(xi < 1|mathcal{D} ) = mathbb{E}[mathbf{1}_{xi < 1}|mathcal{D}]$.






share|cite|improve this answer









$endgroup$



First, we define the underlying probability space $(Omega, mathcal{A}, mathbb{P}) := ({-2,...,3}, 2^{{-2,...,3}}, mathrm{Unif}{-2,...,3})$. $xi$ is a random variable from $Omega$ into itself, say $xi equiv mathrm{id}_Omega$. Hence, $xi(omega) = omega$.

Note that $mathbb{E}[xi^2|mathcal{D}]$ is also a random variable, from $Omega$ into itself. Hence, we need to compute its value (in principal) for every $omega in Omega$. Also note that the outcome really depends on the definition of $xi$ above. Only the distribution of $mathbb{E}[xi^2|mathcal{D}]$ is unique.
We can now just apply the formula:
begin{align}
mathbb{E}[xi^2|mathcal{D}](-2) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](-1) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](0) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](1) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](2) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](3) &= frac{3^2 cdot 1/6}{1/6} = 9.
end{align}

If I didn't do any mistakes, this should be the correct conditional expectation, given the modelling of $xi$.
The second example you can probably solve yourself, remember that $mathbb{P}(xi < 1|mathcal{D} ) = mathbb{E}[mathbf{1}_{xi < 1}|mathcal{D}]$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 2 at 16:28









JonasJonas

398212




398212












  • $begingroup$
    Sorry but it is absolutely not necessary to specify the probability space. For every probability space on which $xi$ is defined, $E(ximidmathcal{D})=sumlimits_ix_imathbf 1_{D_i}$ for some numbers $(x_i)$ that are the same for every probability space such that $xi$ has the correct distribution.
    $endgroup$
    – Did
    Jan 2 at 17:05












  • $begingroup$
    So can I say that $mathbb{E} (xi^2|mathcal{D}) =13,167$?
    $endgroup$
    – Atstovas
    Jan 2 at 17:24












  • $begingroup$
    @Did True. To determine the distribution of that conditional expectation, it should be not necessary. I found it easier to explain it like this, when using the formula above that distinguishes $xi$ and $omega$.
    $endgroup$
    – Jonas
    Jan 2 at 17:38










  • $begingroup$
    @Atstovas No. This conditional expectation is a random variable and therefore a function of $Omega$. It is (in general) not a deterministic value. Maybe, you want to check up on the definition in en.wikipedia.org/wiki/…
    $endgroup$
    – Jonas
    Jan 2 at 17:40










  • $begingroup$
    @Jonas can you show me also and second example?
    $endgroup$
    – Atstovas
    Jan 2 at 17:56


















  • $begingroup$
    Sorry but it is absolutely not necessary to specify the probability space. For every probability space on which $xi$ is defined, $E(ximidmathcal{D})=sumlimits_ix_imathbf 1_{D_i}$ for some numbers $(x_i)$ that are the same for every probability space such that $xi$ has the correct distribution.
    $endgroup$
    – Did
    Jan 2 at 17:05












  • $begingroup$
    So can I say that $mathbb{E} (xi^2|mathcal{D}) =13,167$?
    $endgroup$
    – Atstovas
    Jan 2 at 17:24












  • $begingroup$
    @Did True. To determine the distribution of that conditional expectation, it should be not necessary. I found it easier to explain it like this, when using the formula above that distinguishes $xi$ and $omega$.
    $endgroup$
    – Jonas
    Jan 2 at 17:38










  • $begingroup$
    @Atstovas No. This conditional expectation is a random variable and therefore a function of $Omega$. It is (in general) not a deterministic value. Maybe, you want to check up on the definition in en.wikipedia.org/wiki/…
    $endgroup$
    – Jonas
    Jan 2 at 17:40










  • $begingroup$
    @Jonas can you show me also and second example?
    $endgroup$
    – Atstovas
    Jan 2 at 17:56
















$begingroup$
Sorry but it is absolutely not necessary to specify the probability space. For every probability space on which $xi$ is defined, $E(ximidmathcal{D})=sumlimits_ix_imathbf 1_{D_i}$ for some numbers $(x_i)$ that are the same for every probability space such that $xi$ has the correct distribution.
$endgroup$
– Did
Jan 2 at 17:05






$begingroup$
Sorry but it is absolutely not necessary to specify the probability space. For every probability space on which $xi$ is defined, $E(ximidmathcal{D})=sumlimits_ix_imathbf 1_{D_i}$ for some numbers $(x_i)$ that are the same for every probability space such that $xi$ has the correct distribution.
$endgroup$
– Did
Jan 2 at 17:05














$begingroup$
So can I say that $mathbb{E} (xi^2|mathcal{D}) =13,167$?
$endgroup$
– Atstovas
Jan 2 at 17:24






$begingroup$
So can I say that $mathbb{E} (xi^2|mathcal{D}) =13,167$?
$endgroup$
– Atstovas
Jan 2 at 17:24














$begingroup$
@Did True. To determine the distribution of that conditional expectation, it should be not necessary. I found it easier to explain it like this, when using the formula above that distinguishes $xi$ and $omega$.
$endgroup$
– Jonas
Jan 2 at 17:38




$begingroup$
@Did True. To determine the distribution of that conditional expectation, it should be not necessary. I found it easier to explain it like this, when using the formula above that distinguishes $xi$ and $omega$.
$endgroup$
– Jonas
Jan 2 at 17:38












$begingroup$
@Atstovas No. This conditional expectation is a random variable and therefore a function of $Omega$. It is (in general) not a deterministic value. Maybe, you want to check up on the definition in en.wikipedia.org/wiki/…
$endgroup$
– Jonas
Jan 2 at 17:40




$begingroup$
@Atstovas No. This conditional expectation is a random variable and therefore a function of $Omega$. It is (in general) not a deterministic value. Maybe, you want to check up on the definition in en.wikipedia.org/wiki/…
$endgroup$
– Jonas
Jan 2 at 17:40












$begingroup$
@Jonas can you show me also and second example?
$endgroup$
– Atstovas
Jan 2 at 17:56




$begingroup$
@Jonas can you show me also and second example?
$endgroup$
– Atstovas
Jan 2 at 17:56


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059649%2ffinding-conditional-expectation-and-conditional-probability%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna