Finding conditional expectation and conditional probability
$begingroup$
Let $xi $ be a random variable in $(Omega, mathcal{F}, mathbb{P})$ distributed according to $mathrm{Unif}{-2,...,3}$. Hence,
$$mathbb{P}(xi = -2) = mathbb{P}(xi = -1) =mathbb{P}(xi = 0) =mathbb{P}(xi = 1) =mathbb{P}(xi = 2) =mathbb{P}(xi = 3) =1/6$$
Now let $mathcal{D}={D_1,D_2,D_3}$ where $D_1={xi<0}$ $D_2={xi in [0,2]}$ $D_3={ xi >2 }$.
I need to find:
1) $mathbb{E}(xi^2|mathcal{D})$ (The conditional expectation).
2) $mathbb{P}(xi<1|mathcal{D})$.
I am not sure, but I think that for 1) I should use formula $mathbb{E}(xi^2 |mathcal{D})(omega)= sum_{i} frac{mathbb{E}(xi^2 mathbf{1}_{D_i)}}{mathbb{P}(D_i)} mathbf{1}_{D_i} (omega) $. But how should I use it?
probability probability-theory conditional-expectation conditional-probability expected-value
$endgroup$
add a comment |
$begingroup$
Let $xi $ be a random variable in $(Omega, mathcal{F}, mathbb{P})$ distributed according to $mathrm{Unif}{-2,...,3}$. Hence,
$$mathbb{P}(xi = -2) = mathbb{P}(xi = -1) =mathbb{P}(xi = 0) =mathbb{P}(xi = 1) =mathbb{P}(xi = 2) =mathbb{P}(xi = 3) =1/6$$
Now let $mathcal{D}={D_1,D_2,D_3}$ where $D_1={xi<0}$ $D_2={xi in [0,2]}$ $D_3={ xi >2 }$.
I need to find:
1) $mathbb{E}(xi^2|mathcal{D})$ (The conditional expectation).
2) $mathbb{P}(xi<1|mathcal{D})$.
I am not sure, but I think that for 1) I should use formula $mathbb{E}(xi^2 |mathcal{D})(omega)= sum_{i} frac{mathbb{E}(xi^2 mathbf{1}_{D_i)}}{mathbb{P}(D_i)} mathbf{1}_{D_i} (omega) $. But how should I use it?
probability probability-theory conditional-expectation conditional-probability expected-value
$endgroup$
$begingroup$
In your original distribution, you have six possible outcomes, -1 to 3, each "equally likely". Restricting to $D_1$, "< 0", means that we are restricting to 2 outcomes, -2 and -1, still equally likely. Restricting to $D_1$, the probabilities of -2 and of -1 are both 1/2 and the expected value is (1/2)(-1)+ (1/2)(-2)= -1.5.
$endgroup$
– user247327
Jan 2 at 16:11
add a comment |
$begingroup$
Let $xi $ be a random variable in $(Omega, mathcal{F}, mathbb{P})$ distributed according to $mathrm{Unif}{-2,...,3}$. Hence,
$$mathbb{P}(xi = -2) = mathbb{P}(xi = -1) =mathbb{P}(xi = 0) =mathbb{P}(xi = 1) =mathbb{P}(xi = 2) =mathbb{P}(xi = 3) =1/6$$
Now let $mathcal{D}={D_1,D_2,D_3}$ where $D_1={xi<0}$ $D_2={xi in [0,2]}$ $D_3={ xi >2 }$.
I need to find:
1) $mathbb{E}(xi^2|mathcal{D})$ (The conditional expectation).
2) $mathbb{P}(xi<1|mathcal{D})$.
I am not sure, but I think that for 1) I should use formula $mathbb{E}(xi^2 |mathcal{D})(omega)= sum_{i} frac{mathbb{E}(xi^2 mathbf{1}_{D_i)}}{mathbb{P}(D_i)} mathbf{1}_{D_i} (omega) $. But how should I use it?
probability probability-theory conditional-expectation conditional-probability expected-value
$endgroup$
Let $xi $ be a random variable in $(Omega, mathcal{F}, mathbb{P})$ distributed according to $mathrm{Unif}{-2,...,3}$. Hence,
$$mathbb{P}(xi = -2) = mathbb{P}(xi = -1) =mathbb{P}(xi = 0) =mathbb{P}(xi = 1) =mathbb{P}(xi = 2) =mathbb{P}(xi = 3) =1/6$$
Now let $mathcal{D}={D_1,D_2,D_3}$ where $D_1={xi<0}$ $D_2={xi in [0,2]}$ $D_3={ xi >2 }$.
I need to find:
1) $mathbb{E}(xi^2|mathcal{D})$ (The conditional expectation).
2) $mathbb{P}(xi<1|mathcal{D})$.
I am not sure, but I think that for 1) I should use formula $mathbb{E}(xi^2 |mathcal{D})(omega)= sum_{i} frac{mathbb{E}(xi^2 mathbf{1}_{D_i)}}{mathbb{P}(D_i)} mathbf{1}_{D_i} (omega) $. But how should I use it?
probability probability-theory conditional-expectation conditional-probability expected-value
probability probability-theory conditional-expectation conditional-probability expected-value
edited Jan 2 at 16:43
Jonas
398212
398212
asked Jan 2 at 16:03
AtstovasAtstovas
1139
1139
$begingroup$
In your original distribution, you have six possible outcomes, -1 to 3, each "equally likely". Restricting to $D_1$, "< 0", means that we are restricting to 2 outcomes, -2 and -1, still equally likely. Restricting to $D_1$, the probabilities of -2 and of -1 are both 1/2 and the expected value is (1/2)(-1)+ (1/2)(-2)= -1.5.
$endgroup$
– user247327
Jan 2 at 16:11
add a comment |
$begingroup$
In your original distribution, you have six possible outcomes, -1 to 3, each "equally likely". Restricting to $D_1$, "< 0", means that we are restricting to 2 outcomes, -2 and -1, still equally likely. Restricting to $D_1$, the probabilities of -2 and of -1 are both 1/2 and the expected value is (1/2)(-1)+ (1/2)(-2)= -1.5.
$endgroup$
– user247327
Jan 2 at 16:11
$begingroup$
In your original distribution, you have six possible outcomes, -1 to 3, each "equally likely". Restricting to $D_1$, "< 0", means that we are restricting to 2 outcomes, -2 and -1, still equally likely. Restricting to $D_1$, the probabilities of -2 and of -1 are both 1/2 and the expected value is (1/2)(-1)+ (1/2)(-2)= -1.5.
$endgroup$
– user247327
Jan 2 at 16:11
$begingroup$
In your original distribution, you have six possible outcomes, -1 to 3, each "equally likely". Restricting to $D_1$, "< 0", means that we are restricting to 2 outcomes, -2 and -1, still equally likely. Restricting to $D_1$, the probabilities of -2 and of -1 are both 1/2 and the expected value is (1/2)(-1)+ (1/2)(-2)= -1.5.
$endgroup$
– user247327
Jan 2 at 16:11
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
I assume that $mathbb E[xi^2midmathcal D]$ denotes the same as $mathbb E[xi^2midmathcalsigma(mathcal D)]$
$mathbb{E}left[xi^{2}midmathcal{D}right]$ is measurable wrt
$sigmaleft(mathcal{D}right)$ implying here the existence of coefficients
$a,b,c$ with $$mathbb{E}left[xi^{2}midmathcal{D}right]=amathbf{1}_{xi<0}+bmathbf{1}_{0leqxileq2}+cmathbf{1}_{xi>2}tag1$$
Secondly we have the equalities: $$mathbb{E}left[xi^{2}mathbf{1}_{D}right]=mathbb{E}left[mathbb{E}left[xi^{2}midmathcal{D}right]mathbf{1}_{D}right]text{ for every }Dinsigmaleft(mathcal{D}right)tag2$$
Substituting $left(1right)$ in $(2)$ we find for $D={xi<0}$, ${0leqxileq2}$ and ${xi>2}$:
$mathbb{E}left[xi^{2}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$
$mathbb{E}left[xi^{2}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$
$mathbb{E}left[xi^{2}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$
Or equivalently
- $a=mathbb{E}left[xi^{2}midxi<0right]=frac{1}{2}left(-2right)^{2}+frac{1}{2}left(-1right)^{2}=frac{5}{2}$
- $b=mathbb{E}left[xi^{2}mid0leqxileq2right]=frac{1}{3}0^{2}+frac{1}{3}1^{2}+frac{1}{3}2^{2}=frac{5}{3}$
$c=mathbb{E}left[xi^{2}midxi>2right]=3^{2}=9$.
So we end up with: $$mathbb{E}left[xi^{2}midmathcal{D}right]=frac{5}{2}mathbf{1}_{xi<0}+frac{5}{3}mathbf{1}_{0leqxileq2}+9mathbf{1}_{xi>2}$$
edit:
Observe that $mathbb P(xi<1midmathcal D)=mathbb E(mathbf1_{xi<1}midmathcal D)$.
We can find it exactly as above if we replace $xi^2$ there by $mathbf1_{xi<1}$:
$mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$
$mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$
$mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$
Or equivalently:
- $a=mathbb P(xi<1midxi<0)=1$
- $b=mathbb P(xi<1mid0leqxileq2)=frac13$
- $c=mathbb P(xi<1mid xi>2)=0$
So we end up with: $$mathbb{P}left[xi<1midmathcal{D}right]=mathbf{1}_{xi<0}+frac{1}{3}mathbf{1}_{0leqxileq2}$$
$endgroup$
$begingroup$
can you show me and second part?
$endgroup$
– Atstovas
Jan 2 at 19:39
$begingroup$
Can you be more precise: what exactly is the second part in your view?
$endgroup$
– drhab
Jan 3 at 7:54
$begingroup$
can you show how to find $mathbb{P}(xi<1|mathcal{D})$?
$endgroup$
– Atstovas
Jan 3 at 8:38
$begingroup$
Exactly the same route. See my edit.
$endgroup$
– drhab
Jan 3 at 9:11
add a comment |
$begingroup$
First, we define the underlying probability space $(Omega, mathcal{A}, mathbb{P}) := ({-2,...,3}, 2^{{-2,...,3}}, mathrm{Unif}{-2,...,3})$. $xi$ is a random variable from $Omega$ into itself, say $xi equiv mathrm{id}_Omega$. Hence, $xi(omega) = omega$.
Note that $mathbb{E}[xi^2|mathcal{D}]$ is also a random variable, from $Omega$ into itself. Hence, we need to compute its value (in principal) for every $omega in Omega$. Also note that the outcome really depends on the definition of $xi$ above. Only the distribution of $mathbb{E}[xi^2|mathcal{D}]$ is unique.
We can now just apply the formula:
begin{align}
mathbb{E}[xi^2|mathcal{D}](-2) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](-1) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](0) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](1) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](2) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](3) &= frac{3^2 cdot 1/6}{1/6} = 9.
end{align}
If I didn't do any mistakes, this should be the correct conditional expectation, given the modelling of $xi$.
The second example you can probably solve yourself, remember that $mathbb{P}(xi < 1|mathcal{D} ) = mathbb{E}[mathbf{1}_{xi < 1}|mathcal{D}]$.
$endgroup$
$begingroup$
Sorry but it is absolutely not necessary to specify the probability space. For every probability space on which $xi$ is defined, $E(ximidmathcal{D})=sumlimits_ix_imathbf 1_{D_i}$ for some numbers $(x_i)$ that are the same for every probability space such that $xi$ has the correct distribution.
$endgroup$
– Did
Jan 2 at 17:05
$begingroup$
So can I say that $mathbb{E} (xi^2|mathcal{D}) =13,167$?
$endgroup$
– Atstovas
Jan 2 at 17:24
$begingroup$
@Did True. To determine the distribution of that conditional expectation, it should be not necessary. I found it easier to explain it like this, when using the formula above that distinguishes $xi$ and $omega$.
$endgroup$
– Jonas
Jan 2 at 17:38
$begingroup$
@Atstovas No. This conditional expectation is a random variable and therefore a function of $Omega$. It is (in general) not a deterministic value. Maybe, you want to check up on the definition in en.wikipedia.org/wiki/…
$endgroup$
– Jonas
Jan 2 at 17:40
$begingroup$
@Jonas can you show me also and second example?
$endgroup$
– Atstovas
Jan 2 at 17:56
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059649%2ffinding-conditional-expectation-and-conditional-probability%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I assume that $mathbb E[xi^2midmathcal D]$ denotes the same as $mathbb E[xi^2midmathcalsigma(mathcal D)]$
$mathbb{E}left[xi^{2}midmathcal{D}right]$ is measurable wrt
$sigmaleft(mathcal{D}right)$ implying here the existence of coefficients
$a,b,c$ with $$mathbb{E}left[xi^{2}midmathcal{D}right]=amathbf{1}_{xi<0}+bmathbf{1}_{0leqxileq2}+cmathbf{1}_{xi>2}tag1$$
Secondly we have the equalities: $$mathbb{E}left[xi^{2}mathbf{1}_{D}right]=mathbb{E}left[mathbb{E}left[xi^{2}midmathcal{D}right]mathbf{1}_{D}right]text{ for every }Dinsigmaleft(mathcal{D}right)tag2$$
Substituting $left(1right)$ in $(2)$ we find for $D={xi<0}$, ${0leqxileq2}$ and ${xi>2}$:
$mathbb{E}left[xi^{2}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$
$mathbb{E}left[xi^{2}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$
$mathbb{E}left[xi^{2}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$
Or equivalently
- $a=mathbb{E}left[xi^{2}midxi<0right]=frac{1}{2}left(-2right)^{2}+frac{1}{2}left(-1right)^{2}=frac{5}{2}$
- $b=mathbb{E}left[xi^{2}mid0leqxileq2right]=frac{1}{3}0^{2}+frac{1}{3}1^{2}+frac{1}{3}2^{2}=frac{5}{3}$
$c=mathbb{E}left[xi^{2}midxi>2right]=3^{2}=9$.
So we end up with: $$mathbb{E}left[xi^{2}midmathcal{D}right]=frac{5}{2}mathbf{1}_{xi<0}+frac{5}{3}mathbf{1}_{0leqxileq2}+9mathbf{1}_{xi>2}$$
edit:
Observe that $mathbb P(xi<1midmathcal D)=mathbb E(mathbf1_{xi<1}midmathcal D)$.
We can find it exactly as above if we replace $xi^2$ there by $mathbf1_{xi<1}$:
$mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$
$mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$
$mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$
Or equivalently:
- $a=mathbb P(xi<1midxi<0)=1$
- $b=mathbb P(xi<1mid0leqxileq2)=frac13$
- $c=mathbb P(xi<1mid xi>2)=0$
So we end up with: $$mathbb{P}left[xi<1midmathcal{D}right]=mathbf{1}_{xi<0}+frac{1}{3}mathbf{1}_{0leqxileq2}$$
$endgroup$
$begingroup$
can you show me and second part?
$endgroup$
– Atstovas
Jan 2 at 19:39
$begingroup$
Can you be more precise: what exactly is the second part in your view?
$endgroup$
– drhab
Jan 3 at 7:54
$begingroup$
can you show how to find $mathbb{P}(xi<1|mathcal{D})$?
$endgroup$
– Atstovas
Jan 3 at 8:38
$begingroup$
Exactly the same route. See my edit.
$endgroup$
– drhab
Jan 3 at 9:11
add a comment |
$begingroup$
I assume that $mathbb E[xi^2midmathcal D]$ denotes the same as $mathbb E[xi^2midmathcalsigma(mathcal D)]$
$mathbb{E}left[xi^{2}midmathcal{D}right]$ is measurable wrt
$sigmaleft(mathcal{D}right)$ implying here the existence of coefficients
$a,b,c$ with $$mathbb{E}left[xi^{2}midmathcal{D}right]=amathbf{1}_{xi<0}+bmathbf{1}_{0leqxileq2}+cmathbf{1}_{xi>2}tag1$$
Secondly we have the equalities: $$mathbb{E}left[xi^{2}mathbf{1}_{D}right]=mathbb{E}left[mathbb{E}left[xi^{2}midmathcal{D}right]mathbf{1}_{D}right]text{ for every }Dinsigmaleft(mathcal{D}right)tag2$$
Substituting $left(1right)$ in $(2)$ we find for $D={xi<0}$, ${0leqxileq2}$ and ${xi>2}$:
$mathbb{E}left[xi^{2}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$
$mathbb{E}left[xi^{2}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$
$mathbb{E}left[xi^{2}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$
Or equivalently
- $a=mathbb{E}left[xi^{2}midxi<0right]=frac{1}{2}left(-2right)^{2}+frac{1}{2}left(-1right)^{2}=frac{5}{2}$
- $b=mathbb{E}left[xi^{2}mid0leqxileq2right]=frac{1}{3}0^{2}+frac{1}{3}1^{2}+frac{1}{3}2^{2}=frac{5}{3}$
$c=mathbb{E}left[xi^{2}midxi>2right]=3^{2}=9$.
So we end up with: $$mathbb{E}left[xi^{2}midmathcal{D}right]=frac{5}{2}mathbf{1}_{xi<0}+frac{5}{3}mathbf{1}_{0leqxileq2}+9mathbf{1}_{xi>2}$$
edit:
Observe that $mathbb P(xi<1midmathcal D)=mathbb E(mathbf1_{xi<1}midmathcal D)$.
We can find it exactly as above if we replace $xi^2$ there by $mathbf1_{xi<1}$:
$mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$
$mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$
$mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$
Or equivalently:
- $a=mathbb P(xi<1midxi<0)=1$
- $b=mathbb P(xi<1mid0leqxileq2)=frac13$
- $c=mathbb P(xi<1mid xi>2)=0$
So we end up with: $$mathbb{P}left[xi<1midmathcal{D}right]=mathbf{1}_{xi<0}+frac{1}{3}mathbf{1}_{0leqxileq2}$$
$endgroup$
$begingroup$
can you show me and second part?
$endgroup$
– Atstovas
Jan 2 at 19:39
$begingroup$
Can you be more precise: what exactly is the second part in your view?
$endgroup$
– drhab
Jan 3 at 7:54
$begingroup$
can you show how to find $mathbb{P}(xi<1|mathcal{D})$?
$endgroup$
– Atstovas
Jan 3 at 8:38
$begingroup$
Exactly the same route. See my edit.
$endgroup$
– drhab
Jan 3 at 9:11
add a comment |
$begingroup$
I assume that $mathbb E[xi^2midmathcal D]$ denotes the same as $mathbb E[xi^2midmathcalsigma(mathcal D)]$
$mathbb{E}left[xi^{2}midmathcal{D}right]$ is measurable wrt
$sigmaleft(mathcal{D}right)$ implying here the existence of coefficients
$a,b,c$ with $$mathbb{E}left[xi^{2}midmathcal{D}right]=amathbf{1}_{xi<0}+bmathbf{1}_{0leqxileq2}+cmathbf{1}_{xi>2}tag1$$
Secondly we have the equalities: $$mathbb{E}left[xi^{2}mathbf{1}_{D}right]=mathbb{E}left[mathbb{E}left[xi^{2}midmathcal{D}right]mathbf{1}_{D}right]text{ for every }Dinsigmaleft(mathcal{D}right)tag2$$
Substituting $left(1right)$ in $(2)$ we find for $D={xi<0}$, ${0leqxileq2}$ and ${xi>2}$:
$mathbb{E}left[xi^{2}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$
$mathbb{E}left[xi^{2}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$
$mathbb{E}left[xi^{2}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$
Or equivalently
- $a=mathbb{E}left[xi^{2}midxi<0right]=frac{1}{2}left(-2right)^{2}+frac{1}{2}left(-1right)^{2}=frac{5}{2}$
- $b=mathbb{E}left[xi^{2}mid0leqxileq2right]=frac{1}{3}0^{2}+frac{1}{3}1^{2}+frac{1}{3}2^{2}=frac{5}{3}$
$c=mathbb{E}left[xi^{2}midxi>2right]=3^{2}=9$.
So we end up with: $$mathbb{E}left[xi^{2}midmathcal{D}right]=frac{5}{2}mathbf{1}_{xi<0}+frac{5}{3}mathbf{1}_{0leqxileq2}+9mathbf{1}_{xi>2}$$
edit:
Observe that $mathbb P(xi<1midmathcal D)=mathbb E(mathbf1_{xi<1}midmathcal D)$.
We can find it exactly as above if we replace $xi^2$ there by $mathbf1_{xi<1}$:
$mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$
$mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$
$mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$
Or equivalently:
- $a=mathbb P(xi<1midxi<0)=1$
- $b=mathbb P(xi<1mid0leqxileq2)=frac13$
- $c=mathbb P(xi<1mid xi>2)=0$
So we end up with: $$mathbb{P}left[xi<1midmathcal{D}right]=mathbf{1}_{xi<0}+frac{1}{3}mathbf{1}_{0leqxileq2}$$
$endgroup$
I assume that $mathbb E[xi^2midmathcal D]$ denotes the same as $mathbb E[xi^2midmathcalsigma(mathcal D)]$
$mathbb{E}left[xi^{2}midmathcal{D}right]$ is measurable wrt
$sigmaleft(mathcal{D}right)$ implying here the existence of coefficients
$a,b,c$ with $$mathbb{E}left[xi^{2}midmathcal{D}right]=amathbf{1}_{xi<0}+bmathbf{1}_{0leqxileq2}+cmathbf{1}_{xi>2}tag1$$
Secondly we have the equalities: $$mathbb{E}left[xi^{2}mathbf{1}_{D}right]=mathbb{E}left[mathbb{E}left[xi^{2}midmathcal{D}right]mathbf{1}_{D}right]text{ for every }Dinsigmaleft(mathcal{D}right)tag2$$
Substituting $left(1right)$ in $(2)$ we find for $D={xi<0}$, ${0leqxileq2}$ and ${xi>2}$:
$mathbb{E}left[xi^{2}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$
$mathbb{E}left[xi^{2}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$
$mathbb{E}left[xi^{2}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$
Or equivalently
- $a=mathbb{E}left[xi^{2}midxi<0right]=frac{1}{2}left(-2right)^{2}+frac{1}{2}left(-1right)^{2}=frac{5}{2}$
- $b=mathbb{E}left[xi^{2}mid0leqxileq2right]=frac{1}{3}0^{2}+frac{1}{3}1^{2}+frac{1}{3}2^{2}=frac{5}{3}$
$c=mathbb{E}left[xi^{2}midxi>2right]=3^{2}=9$.
So we end up with: $$mathbb{E}left[xi^{2}midmathcal{D}right]=frac{5}{2}mathbf{1}_{xi<0}+frac{5}{3}mathbf{1}_{0leqxileq2}+9mathbf{1}_{xi>2}$$
edit:
Observe that $mathbb P(xi<1midmathcal D)=mathbb E(mathbf1_{xi<1}midmathcal D)$.
We can find it exactly as above if we replace $xi^2$ there by $mathbf1_{xi<1}$:
$mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi<0}right]=aPleft(xi<0right)$
$mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{0leqxileq2}right]=bPleft(0leqxileq2right)$
$mathbb{E}left[mathbf1_{xi<1}mathbf{1}_{xi>2}right]=cPleft(xi>2right)$
Or equivalently:
- $a=mathbb P(xi<1midxi<0)=1$
- $b=mathbb P(xi<1mid0leqxileq2)=frac13$
- $c=mathbb P(xi<1mid xi>2)=0$
So we end up with: $$mathbb{P}left[xi<1midmathcal{D}right]=mathbf{1}_{xi<0}+frac{1}{3}mathbf{1}_{0leqxileq2}$$
edited Jan 3 at 9:10
answered Jan 2 at 18:37
drhabdrhab
102k545136
102k545136
$begingroup$
can you show me and second part?
$endgroup$
– Atstovas
Jan 2 at 19:39
$begingroup$
Can you be more precise: what exactly is the second part in your view?
$endgroup$
– drhab
Jan 3 at 7:54
$begingroup$
can you show how to find $mathbb{P}(xi<1|mathcal{D})$?
$endgroup$
– Atstovas
Jan 3 at 8:38
$begingroup$
Exactly the same route. See my edit.
$endgroup$
– drhab
Jan 3 at 9:11
add a comment |
$begingroup$
can you show me and second part?
$endgroup$
– Atstovas
Jan 2 at 19:39
$begingroup$
Can you be more precise: what exactly is the second part in your view?
$endgroup$
– drhab
Jan 3 at 7:54
$begingroup$
can you show how to find $mathbb{P}(xi<1|mathcal{D})$?
$endgroup$
– Atstovas
Jan 3 at 8:38
$begingroup$
Exactly the same route. See my edit.
$endgroup$
– drhab
Jan 3 at 9:11
$begingroup$
can you show me and second part?
$endgroup$
– Atstovas
Jan 2 at 19:39
$begingroup$
can you show me and second part?
$endgroup$
– Atstovas
Jan 2 at 19:39
$begingroup$
Can you be more precise: what exactly is the second part in your view?
$endgroup$
– drhab
Jan 3 at 7:54
$begingroup$
Can you be more precise: what exactly is the second part in your view?
$endgroup$
– drhab
Jan 3 at 7:54
$begingroup$
can you show how to find $mathbb{P}(xi<1|mathcal{D})$?
$endgroup$
– Atstovas
Jan 3 at 8:38
$begingroup$
can you show how to find $mathbb{P}(xi<1|mathcal{D})$?
$endgroup$
– Atstovas
Jan 3 at 8:38
$begingroup$
Exactly the same route. See my edit.
$endgroup$
– drhab
Jan 3 at 9:11
$begingroup$
Exactly the same route. See my edit.
$endgroup$
– drhab
Jan 3 at 9:11
add a comment |
$begingroup$
First, we define the underlying probability space $(Omega, mathcal{A}, mathbb{P}) := ({-2,...,3}, 2^{{-2,...,3}}, mathrm{Unif}{-2,...,3})$. $xi$ is a random variable from $Omega$ into itself, say $xi equiv mathrm{id}_Omega$. Hence, $xi(omega) = omega$.
Note that $mathbb{E}[xi^2|mathcal{D}]$ is also a random variable, from $Omega$ into itself. Hence, we need to compute its value (in principal) for every $omega in Omega$. Also note that the outcome really depends on the definition of $xi$ above. Only the distribution of $mathbb{E}[xi^2|mathcal{D}]$ is unique.
We can now just apply the formula:
begin{align}
mathbb{E}[xi^2|mathcal{D}](-2) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](-1) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](0) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](1) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](2) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](3) &= frac{3^2 cdot 1/6}{1/6} = 9.
end{align}
If I didn't do any mistakes, this should be the correct conditional expectation, given the modelling of $xi$.
The second example you can probably solve yourself, remember that $mathbb{P}(xi < 1|mathcal{D} ) = mathbb{E}[mathbf{1}_{xi < 1}|mathcal{D}]$.
$endgroup$
$begingroup$
Sorry but it is absolutely not necessary to specify the probability space. For every probability space on which $xi$ is defined, $E(ximidmathcal{D})=sumlimits_ix_imathbf 1_{D_i}$ for some numbers $(x_i)$ that are the same for every probability space such that $xi$ has the correct distribution.
$endgroup$
– Did
Jan 2 at 17:05
$begingroup$
So can I say that $mathbb{E} (xi^2|mathcal{D}) =13,167$?
$endgroup$
– Atstovas
Jan 2 at 17:24
$begingroup$
@Did True. To determine the distribution of that conditional expectation, it should be not necessary. I found it easier to explain it like this, when using the formula above that distinguishes $xi$ and $omega$.
$endgroup$
– Jonas
Jan 2 at 17:38
$begingroup$
@Atstovas No. This conditional expectation is a random variable and therefore a function of $Omega$. It is (in general) not a deterministic value. Maybe, you want to check up on the definition in en.wikipedia.org/wiki/…
$endgroup$
– Jonas
Jan 2 at 17:40
$begingroup$
@Jonas can you show me also and second example?
$endgroup$
– Atstovas
Jan 2 at 17:56
add a comment |
$begingroup$
First, we define the underlying probability space $(Omega, mathcal{A}, mathbb{P}) := ({-2,...,3}, 2^{{-2,...,3}}, mathrm{Unif}{-2,...,3})$. $xi$ is a random variable from $Omega$ into itself, say $xi equiv mathrm{id}_Omega$. Hence, $xi(omega) = omega$.
Note that $mathbb{E}[xi^2|mathcal{D}]$ is also a random variable, from $Omega$ into itself. Hence, we need to compute its value (in principal) for every $omega in Omega$. Also note that the outcome really depends on the definition of $xi$ above. Only the distribution of $mathbb{E}[xi^2|mathcal{D}]$ is unique.
We can now just apply the formula:
begin{align}
mathbb{E}[xi^2|mathcal{D}](-2) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](-1) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](0) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](1) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](2) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](3) &= frac{3^2 cdot 1/6}{1/6} = 9.
end{align}
If I didn't do any mistakes, this should be the correct conditional expectation, given the modelling of $xi$.
The second example you can probably solve yourself, remember that $mathbb{P}(xi < 1|mathcal{D} ) = mathbb{E}[mathbf{1}_{xi < 1}|mathcal{D}]$.
$endgroup$
$begingroup$
Sorry but it is absolutely not necessary to specify the probability space. For every probability space on which $xi$ is defined, $E(ximidmathcal{D})=sumlimits_ix_imathbf 1_{D_i}$ for some numbers $(x_i)$ that are the same for every probability space such that $xi$ has the correct distribution.
$endgroup$
– Did
Jan 2 at 17:05
$begingroup$
So can I say that $mathbb{E} (xi^2|mathcal{D}) =13,167$?
$endgroup$
– Atstovas
Jan 2 at 17:24
$begingroup$
@Did True. To determine the distribution of that conditional expectation, it should be not necessary. I found it easier to explain it like this, when using the formula above that distinguishes $xi$ and $omega$.
$endgroup$
– Jonas
Jan 2 at 17:38
$begingroup$
@Atstovas No. This conditional expectation is a random variable and therefore a function of $Omega$. It is (in general) not a deterministic value. Maybe, you want to check up on the definition in en.wikipedia.org/wiki/…
$endgroup$
– Jonas
Jan 2 at 17:40
$begingroup$
@Jonas can you show me also and second example?
$endgroup$
– Atstovas
Jan 2 at 17:56
add a comment |
$begingroup$
First, we define the underlying probability space $(Omega, mathcal{A}, mathbb{P}) := ({-2,...,3}, 2^{{-2,...,3}}, mathrm{Unif}{-2,...,3})$. $xi$ is a random variable from $Omega$ into itself, say $xi equiv mathrm{id}_Omega$. Hence, $xi(omega) = omega$.
Note that $mathbb{E}[xi^2|mathcal{D}]$ is also a random variable, from $Omega$ into itself. Hence, we need to compute its value (in principal) for every $omega in Omega$. Also note that the outcome really depends on the definition of $xi$ above. Only the distribution of $mathbb{E}[xi^2|mathcal{D}]$ is unique.
We can now just apply the formula:
begin{align}
mathbb{E}[xi^2|mathcal{D}](-2) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](-1) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](0) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](1) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](2) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](3) &= frac{3^2 cdot 1/6}{1/6} = 9.
end{align}
If I didn't do any mistakes, this should be the correct conditional expectation, given the modelling of $xi$.
The second example you can probably solve yourself, remember that $mathbb{P}(xi < 1|mathcal{D} ) = mathbb{E}[mathbf{1}_{xi < 1}|mathcal{D}]$.
$endgroup$
First, we define the underlying probability space $(Omega, mathcal{A}, mathbb{P}) := ({-2,...,3}, 2^{{-2,...,3}}, mathrm{Unif}{-2,...,3})$. $xi$ is a random variable from $Omega$ into itself, say $xi equiv mathrm{id}_Omega$. Hence, $xi(omega) = omega$.
Note that $mathbb{E}[xi^2|mathcal{D}]$ is also a random variable, from $Omega$ into itself. Hence, we need to compute its value (in principal) for every $omega in Omega$. Also note that the outcome really depends on the definition of $xi$ above. Only the distribution of $mathbb{E}[xi^2|mathcal{D}]$ is unique.
We can now just apply the formula:
begin{align}
mathbb{E}[xi^2|mathcal{D}](-2) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](-1) &= frac{(-2)^2 cdot 1/6 + (-1)^2 cdot 1/6}{1/3} = 2.5\
mathbb{E}[xi^2|mathcal{D}](0) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](1) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](2) &= frac{0^2 cdot 1/6 + 1^2 cdot 1/6 + 2^2 cdot 1/6}{1/2} = 5/3\
mathbb{E}[xi^2|mathcal{D}](3) &= frac{3^2 cdot 1/6}{1/6} = 9.
end{align}
If I didn't do any mistakes, this should be the correct conditional expectation, given the modelling of $xi$.
The second example you can probably solve yourself, remember that $mathbb{P}(xi < 1|mathcal{D} ) = mathbb{E}[mathbf{1}_{xi < 1}|mathcal{D}]$.
answered Jan 2 at 16:28
JonasJonas
398212
398212
$begingroup$
Sorry but it is absolutely not necessary to specify the probability space. For every probability space on which $xi$ is defined, $E(ximidmathcal{D})=sumlimits_ix_imathbf 1_{D_i}$ for some numbers $(x_i)$ that are the same for every probability space such that $xi$ has the correct distribution.
$endgroup$
– Did
Jan 2 at 17:05
$begingroup$
So can I say that $mathbb{E} (xi^2|mathcal{D}) =13,167$?
$endgroup$
– Atstovas
Jan 2 at 17:24
$begingroup$
@Did True. To determine the distribution of that conditional expectation, it should be not necessary. I found it easier to explain it like this, when using the formula above that distinguishes $xi$ and $omega$.
$endgroup$
– Jonas
Jan 2 at 17:38
$begingroup$
@Atstovas No. This conditional expectation is a random variable and therefore a function of $Omega$. It is (in general) not a deterministic value. Maybe, you want to check up on the definition in en.wikipedia.org/wiki/…
$endgroup$
– Jonas
Jan 2 at 17:40
$begingroup$
@Jonas can you show me also and second example?
$endgroup$
– Atstovas
Jan 2 at 17:56
add a comment |
$begingroup$
Sorry but it is absolutely not necessary to specify the probability space. For every probability space on which $xi$ is defined, $E(ximidmathcal{D})=sumlimits_ix_imathbf 1_{D_i}$ for some numbers $(x_i)$ that are the same for every probability space such that $xi$ has the correct distribution.
$endgroup$
– Did
Jan 2 at 17:05
$begingroup$
So can I say that $mathbb{E} (xi^2|mathcal{D}) =13,167$?
$endgroup$
– Atstovas
Jan 2 at 17:24
$begingroup$
@Did True. To determine the distribution of that conditional expectation, it should be not necessary. I found it easier to explain it like this, when using the formula above that distinguishes $xi$ and $omega$.
$endgroup$
– Jonas
Jan 2 at 17:38
$begingroup$
@Atstovas No. This conditional expectation is a random variable and therefore a function of $Omega$. It is (in general) not a deterministic value. Maybe, you want to check up on the definition in en.wikipedia.org/wiki/…
$endgroup$
– Jonas
Jan 2 at 17:40
$begingroup$
@Jonas can you show me also and second example?
$endgroup$
– Atstovas
Jan 2 at 17:56
$begingroup$
Sorry but it is absolutely not necessary to specify the probability space. For every probability space on which $xi$ is defined, $E(ximidmathcal{D})=sumlimits_ix_imathbf 1_{D_i}$ for some numbers $(x_i)$ that are the same for every probability space such that $xi$ has the correct distribution.
$endgroup$
– Did
Jan 2 at 17:05
$begingroup$
Sorry but it is absolutely not necessary to specify the probability space. For every probability space on which $xi$ is defined, $E(ximidmathcal{D})=sumlimits_ix_imathbf 1_{D_i}$ for some numbers $(x_i)$ that are the same for every probability space such that $xi$ has the correct distribution.
$endgroup$
– Did
Jan 2 at 17:05
$begingroup$
So can I say that $mathbb{E} (xi^2|mathcal{D}) =13,167$?
$endgroup$
– Atstovas
Jan 2 at 17:24
$begingroup$
So can I say that $mathbb{E} (xi^2|mathcal{D}) =13,167$?
$endgroup$
– Atstovas
Jan 2 at 17:24
$begingroup$
@Did True. To determine the distribution of that conditional expectation, it should be not necessary. I found it easier to explain it like this, when using the formula above that distinguishes $xi$ and $omega$.
$endgroup$
– Jonas
Jan 2 at 17:38
$begingroup$
@Did True. To determine the distribution of that conditional expectation, it should be not necessary. I found it easier to explain it like this, when using the formula above that distinguishes $xi$ and $omega$.
$endgroup$
– Jonas
Jan 2 at 17:38
$begingroup$
@Atstovas No. This conditional expectation is a random variable and therefore a function of $Omega$. It is (in general) not a deterministic value. Maybe, you want to check up on the definition in en.wikipedia.org/wiki/…
$endgroup$
– Jonas
Jan 2 at 17:40
$begingroup$
@Atstovas No. This conditional expectation is a random variable and therefore a function of $Omega$. It is (in general) not a deterministic value. Maybe, you want to check up on the definition in en.wikipedia.org/wiki/…
$endgroup$
– Jonas
Jan 2 at 17:40
$begingroup$
@Jonas can you show me also and second example?
$endgroup$
– Atstovas
Jan 2 at 17:56
$begingroup$
@Jonas can you show me also and second example?
$endgroup$
– Atstovas
Jan 2 at 17:56
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059649%2ffinding-conditional-expectation-and-conditional-probability%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
In your original distribution, you have six possible outcomes, -1 to 3, each "equally likely". Restricting to $D_1$, "< 0", means that we are restricting to 2 outcomes, -2 and -1, still equally likely. Restricting to $D_1$, the probabilities of -2 and of -1 are both 1/2 and the expected value is (1/2)(-1)+ (1/2)(-2)= -1.5.
$endgroup$
– user247327
Jan 2 at 16:11