proving the laplacian of a vector in cylindrical coordnates
$begingroup$
I am proving the following identity for the laplacian of a vector $vec{v}=<v_r,v_theta,v_z>$ in cylindrical coordinates:
$$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}+frac{1}{r}frac{partial v_r}{partial r}-frac{2}{r^2}frac{partial v_theta}{partial theta} -frac{v_r}{r^2}right )vec{e_r} \ + left (frac{partial^2 v_theta}{partial r^2}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}+frac{partial^2 v_theta}{partial z^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{2}{r^2}frac{partial v_r}{partial theta}-frac{v_theta}{r^2} right )vec{e_theta} \ left( frac{partial^2 v_z}{partial r^2}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ I am able to derive the following identity for the Laplacian operator in cylindrical coordinates $$nabla^2=frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} $$. So to prove the desired identity, $$nabla^2 vec{v}=left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r}+v_theta vec{e_theta}+v_zvec{e_z}) \
= left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_thetavec{e_theta})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_zvec{e_z})$$. And upon distributing the vector components to the operator I finally get $$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r}frac{partial v_r}{partial r}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}-frac{v_r}{r^2} right)vec{e_r} \
+left( frac{partial^2 v_theta}{partial r^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}-frac{v_theta}{r^2}+frac{partial^2 v_theta}{partial z^2} right)vec{e_theta} \
left( frac{partial^2 v_z}{partial r^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ which is not the same with the identity. I am confused how the $-frac{2}{r^2}frac{partial v_theta}{partial theta}$ and $frac{2}{r^2}frac{partial v_r}{partial theta}$ appeared in the $vec{e_r}$ and $vec{e_theta}$ components, respectively. Where did I go wrong? Need help...thanks
vector-analysis
$endgroup$
add a comment |
$begingroup$
I am proving the following identity for the laplacian of a vector $vec{v}=<v_r,v_theta,v_z>$ in cylindrical coordinates:
$$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}+frac{1}{r}frac{partial v_r}{partial r}-frac{2}{r^2}frac{partial v_theta}{partial theta} -frac{v_r}{r^2}right )vec{e_r} \ + left (frac{partial^2 v_theta}{partial r^2}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}+frac{partial^2 v_theta}{partial z^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{2}{r^2}frac{partial v_r}{partial theta}-frac{v_theta}{r^2} right )vec{e_theta} \ left( frac{partial^2 v_z}{partial r^2}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ I am able to derive the following identity for the Laplacian operator in cylindrical coordinates $$nabla^2=frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} $$. So to prove the desired identity, $$nabla^2 vec{v}=left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r}+v_theta vec{e_theta}+v_zvec{e_z}) \
= left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_thetavec{e_theta})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_zvec{e_z})$$. And upon distributing the vector components to the operator I finally get $$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r}frac{partial v_r}{partial r}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}-frac{v_r}{r^2} right)vec{e_r} \
+left( frac{partial^2 v_theta}{partial r^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}-frac{v_theta}{r^2}+frac{partial^2 v_theta}{partial z^2} right)vec{e_theta} \
left( frac{partial^2 v_z}{partial r^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ which is not the same with the identity. I am confused how the $-frac{2}{r^2}frac{partial v_theta}{partial theta}$ and $frac{2}{r^2}frac{partial v_r}{partial theta}$ appeared in the $vec{e_r}$ and $vec{e_theta}$ components, respectively. Where did I go wrong? Need help...thanks
vector-analysis
$endgroup$
3
$begingroup$
The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
$endgroup$
– Giuseppe Negro
Oct 5 '15 at 16:23
add a comment |
$begingroup$
I am proving the following identity for the laplacian of a vector $vec{v}=<v_r,v_theta,v_z>$ in cylindrical coordinates:
$$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}+frac{1}{r}frac{partial v_r}{partial r}-frac{2}{r^2}frac{partial v_theta}{partial theta} -frac{v_r}{r^2}right )vec{e_r} \ + left (frac{partial^2 v_theta}{partial r^2}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}+frac{partial^2 v_theta}{partial z^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{2}{r^2}frac{partial v_r}{partial theta}-frac{v_theta}{r^2} right )vec{e_theta} \ left( frac{partial^2 v_z}{partial r^2}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ I am able to derive the following identity for the Laplacian operator in cylindrical coordinates $$nabla^2=frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} $$. So to prove the desired identity, $$nabla^2 vec{v}=left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r}+v_theta vec{e_theta}+v_zvec{e_z}) \
= left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_thetavec{e_theta})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_zvec{e_z})$$. And upon distributing the vector components to the operator I finally get $$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r}frac{partial v_r}{partial r}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}-frac{v_r}{r^2} right)vec{e_r} \
+left( frac{partial^2 v_theta}{partial r^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}-frac{v_theta}{r^2}+frac{partial^2 v_theta}{partial z^2} right)vec{e_theta} \
left( frac{partial^2 v_z}{partial r^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ which is not the same with the identity. I am confused how the $-frac{2}{r^2}frac{partial v_theta}{partial theta}$ and $frac{2}{r^2}frac{partial v_r}{partial theta}$ appeared in the $vec{e_r}$ and $vec{e_theta}$ components, respectively. Where did I go wrong? Need help...thanks
vector-analysis
$endgroup$
I am proving the following identity for the laplacian of a vector $vec{v}=<v_r,v_theta,v_z>$ in cylindrical coordinates:
$$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}+frac{1}{r}frac{partial v_r}{partial r}-frac{2}{r^2}frac{partial v_theta}{partial theta} -frac{v_r}{r^2}right )vec{e_r} \ + left (frac{partial^2 v_theta}{partial r^2}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}+frac{partial^2 v_theta}{partial z^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{2}{r^2}frac{partial v_r}{partial theta}-frac{v_theta}{r^2} right )vec{e_theta} \ left( frac{partial^2 v_z}{partial r^2}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ I am able to derive the following identity for the Laplacian operator in cylindrical coordinates $$nabla^2=frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} $$. So to prove the desired identity, $$nabla^2 vec{v}=left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r}+v_theta vec{e_theta}+v_zvec{e_z}) \
= left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_rvec{e_r})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_thetavec{e_theta})+ left(frac{partial^2}{partial r^2}+frac{1}{r}frac{partial}{partial r}+frac{1}{r^2}frac{partial^2}{partial theta^2}+frac{partial^2}{z^2} right)(v_zvec{e_z})$$. And upon distributing the vector components to the operator I finally get $$nabla^2 vec{v}=left( frac{partial^2 v_r}{partial r^2}+frac{1}{r}frac{partial v_r}{partial r}+frac{1}{r^2}frac{partial^2 v_r}{partial theta^2}+frac{partial^2 v_r}{partial z^2}-frac{v_r}{r^2} right)vec{e_r} \
+left( frac{partial^2 v_theta}{partial r^2}+frac{1}{r}frac{partial v_theta}{partial r}+frac{1}{r^2}frac{partial^2 v_theta}{partial theta^2}-frac{v_theta}{r^2}+frac{partial^2 v_theta}{partial z^2} right)vec{e_theta} \
left( frac{partial^2 v_z}{partial r^2}+frac{1}{r}frac{partial v_z}{partial r}+frac{1}{r^2}frac{partial^2 v_z}{partial theta^2}+frac{partial^2 v_z}{partial z^2} right)vec{e_z}$$ which is not the same with the identity. I am confused how the $-frac{2}{r^2}frac{partial v_theta}{partial theta}$ and $frac{2}{r^2}frac{partial v_r}{partial theta}$ appeared in the $vec{e_r}$ and $vec{e_theta}$ components, respectively. Where did I go wrong? Need help...thanks
vector-analysis
vector-analysis
asked Feb 24 '15 at 18:41
james25james25
8318
8318
3
$begingroup$
The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
$endgroup$
– Giuseppe Negro
Oct 5 '15 at 16:23
add a comment |
3
$begingroup$
The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
$endgroup$
– Giuseppe Negro
Oct 5 '15 at 16:23
3
3
$begingroup$
The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
$endgroup$
– Giuseppe Negro
Oct 5 '15 at 16:23
$begingroup$
The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
$endgroup$
– Giuseppe Negro
Oct 5 '15 at 16:23
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The product rule for second order differentiation is $(fg)'' = f''g + 2f'g'+ fg''$. You simply omitted the middle value.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1163644%2fproving-the-laplacian-of-a-vector-in-cylindrical-coordnates%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The product rule for second order differentiation is $(fg)'' = f''g + 2f'g'+ fg''$. You simply omitted the middle value.
$endgroup$
add a comment |
$begingroup$
The product rule for second order differentiation is $(fg)'' = f''g + 2f'g'+ fg''$. You simply omitted the middle value.
$endgroup$
add a comment |
$begingroup$
The product rule for second order differentiation is $(fg)'' = f''g + 2f'g'+ fg''$. You simply omitted the middle value.
$endgroup$
The product rule for second order differentiation is $(fg)'' = f''g + 2f'g'+ fg''$. You simply omitted the middle value.
edited Nov 11 '17 at 16:53
TheSimpliFire
12.7k62461
12.7k62461
answered Nov 11 '17 at 16:17
katiousakatiousa
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1163644%2fproving-the-laplacian-of-a-vector-in-cylindrical-coordnates%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
The vectors $e_r, e_z$ and $e_theta$ are not constant when $r, theta, z$ vary. (This is a distinctive trait of Cartesian coordinates). You should differentiate those vectors as well. mathworld.wolfram.com/CylindricalCoordinates.html
$endgroup$
– Giuseppe Negro
Oct 5 '15 at 16:23