If $|f(p+q)-f(q)|leq p/q$ for rational $p$ and $q$ (with $qneq 0$), then $sum_{i=0}^k |f(2^k) -f(2^i)| leq...












1












$begingroup$



If $left|f(p+q) - f(q)right|leq p/q$ for all rational $p$ and $q$, with $q neq 0$, then prove that
$$sum_{i=0}^k left|fleft(2^kright) -fleft(2^iright)right| leq frac12 k(k-1)$$




My try:



I consider the sum for $i=r $ which gives the inequality from given property of function $$ left |fleft(2^kright) -fleft(2^iright)right| leq 2^{k-i} - 1$$, and then summed it, but it doesn't work.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Thanks for this
    $endgroup$
    – Keshav Sharma
    Jan 3 at 5:24
















1












$begingroup$



If $left|f(p+q) - f(q)right|leq p/q$ for all rational $p$ and $q$, with $q neq 0$, then prove that
$$sum_{i=0}^k left|fleft(2^kright) -fleft(2^iright)right| leq frac12 k(k-1)$$




My try:



I consider the sum for $i=r $ which gives the inequality from given property of function $$ left |fleft(2^kright) -fleft(2^iright)right| leq 2^{k-i} - 1$$, and then summed it, but it doesn't work.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Thanks for this
    $endgroup$
    – Keshav Sharma
    Jan 3 at 5:24














1












1








1


1



$begingroup$



If $left|f(p+q) - f(q)right|leq p/q$ for all rational $p$ and $q$, with $q neq 0$, then prove that
$$sum_{i=0}^k left|fleft(2^kright) -fleft(2^iright)right| leq frac12 k(k-1)$$




My try:



I consider the sum for $i=r $ which gives the inequality from given property of function $$ left |fleft(2^kright) -fleft(2^iright)right| leq 2^{k-i} - 1$$, and then summed it, but it doesn't work.










share|cite|improve this question











$endgroup$





If $left|f(p+q) - f(q)right|leq p/q$ for all rational $p$ and $q$, with $q neq 0$, then prove that
$$sum_{i=0}^k left|fleft(2^kright) -fleft(2^iright)right| leq frac12 k(k-1)$$




My try:



I consider the sum for $i=r $ which gives the inequality from given property of function $$ left |fleft(2^kright) -fleft(2^iright)right| leq 2^{k-i} - 1$$, and then summed it, but it doesn't work.







calculus functions summation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 3 at 10:18







Keshav Sharma

















asked Jan 2 at 16:15









Keshav SharmaKeshav Sharma

986




986












  • $begingroup$
    Thanks for this
    $endgroup$
    – Keshav Sharma
    Jan 3 at 5:24


















  • $begingroup$
    Thanks for this
    $endgroup$
    – Keshav Sharma
    Jan 3 at 5:24
















$begingroup$
Thanks for this
$endgroup$
– Keshav Sharma
Jan 3 at 5:24




$begingroup$
Thanks for this
$endgroup$
– Keshav Sharma
Jan 3 at 5:24










1 Answer
1






active

oldest

votes


















2












$begingroup$

By triangle inequality



$|f(2^k)-f(2^j)| leq |f(2^k)-f(2^{k-1})|+...|f(2^{j+1})-f(2^j)|leq k-j$



Hence $sum_{i=0}^{i=k}{|f(2^k)-f(2^i)|} leq sum_{i=0}^{i=k}{k-i} leq 0.5(k)(k+1)$



Still not as good as $0.5(k)(k-1)$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059662%2fif-fpq-fq-leq-p-q-for-rational-p-and-q-with-q-neq-0-then-sum%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    By triangle inequality



    $|f(2^k)-f(2^j)| leq |f(2^k)-f(2^{k-1})|+...|f(2^{j+1})-f(2^j)|leq k-j$



    Hence $sum_{i=0}^{i=k}{|f(2^k)-f(2^i)|} leq sum_{i=0}^{i=k}{k-i} leq 0.5(k)(k+1)$



    Still not as good as $0.5(k)(k-1)$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      By triangle inequality



      $|f(2^k)-f(2^j)| leq |f(2^k)-f(2^{k-1})|+...|f(2^{j+1})-f(2^j)|leq k-j$



      Hence $sum_{i=0}^{i=k}{|f(2^k)-f(2^i)|} leq sum_{i=0}^{i=k}{k-i} leq 0.5(k)(k+1)$



      Still not as good as $0.5(k)(k-1)$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        By triangle inequality



        $|f(2^k)-f(2^j)| leq |f(2^k)-f(2^{k-1})|+...|f(2^{j+1})-f(2^j)|leq k-j$



        Hence $sum_{i=0}^{i=k}{|f(2^k)-f(2^i)|} leq sum_{i=0}^{i=k}{k-i} leq 0.5(k)(k+1)$



        Still not as good as $0.5(k)(k-1)$






        share|cite|improve this answer









        $endgroup$



        By triangle inequality



        $|f(2^k)-f(2^j)| leq |f(2^k)-f(2^{k-1})|+...|f(2^{j+1})-f(2^j)|leq k-j$



        Hence $sum_{i=0}^{i=k}{|f(2^k)-f(2^i)|} leq sum_{i=0}^{i=k}{k-i} leq 0.5(k)(k+1)$



        Still not as good as $0.5(k)(k-1)$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 3 at 11:18









        acreativenameacreativename

        7617




        7617






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059662%2fif-fpq-fq-leq-p-q-for-rational-p-and-q-with-q-neq-0-then-sum%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna