Is $f(x;a)=sum_{n=0}^{infty}cfrac{n!(1-x)^n}{(1-a)(2-a)cdots(n-a)}$ some kind of special function?












0












$begingroup$


In deriving the solution to a differential equation I arrived at the following series expression:



$f(x;a)=sum_{n=0}^{infty}cfrac{n!(1-x)^n}{(1-a)(2-a)cdots(n-a)};quad 0le x le 1$



where $a$ is a very small parameter of the equation, and is NOT an integer (otherwise the formula is not valid). After some brief analysis I found this series to be convergent, but I couldn't find a closed form expression.



Does it belong to any existing families of special functions?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    the series sums to a hypergeometric function ${}_2F_1(1,1;1-a;1-x)$
    $endgroup$
    – achille hui
    Jan 10 at 2:33












  • $begingroup$
    Hypergeometric functions pop up a lot in solving differential equations, namely when using Frobenius series. Specifically, if $$f(x)=x^rsum_{k=0}^infty a_kx^k$$ and $frac{a_{k+1}}{a_k}$ forms a rational function in $k$, you have yourself a generalized hypergeometric function.
    $endgroup$
    – Simply Beautiful Art
    Jan 10 at 3:06










  • $begingroup$
    Thanks! My original differential equation arises from the forward-time Fokker-Planck equation regarding a derivative: $frac{1}{2}partial_x^2[x(1-x)partial_xf]+mpartial_x^2f=delta(x)$
    $endgroup$
    – yixianshuiesuan
    Jan 10 at 3:09


















0












$begingroup$


In deriving the solution to a differential equation I arrived at the following series expression:



$f(x;a)=sum_{n=0}^{infty}cfrac{n!(1-x)^n}{(1-a)(2-a)cdots(n-a)};quad 0le x le 1$



where $a$ is a very small parameter of the equation, and is NOT an integer (otherwise the formula is not valid). After some brief analysis I found this series to be convergent, but I couldn't find a closed form expression.



Does it belong to any existing families of special functions?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    the series sums to a hypergeometric function ${}_2F_1(1,1;1-a;1-x)$
    $endgroup$
    – achille hui
    Jan 10 at 2:33












  • $begingroup$
    Hypergeometric functions pop up a lot in solving differential equations, namely when using Frobenius series. Specifically, if $$f(x)=x^rsum_{k=0}^infty a_kx^k$$ and $frac{a_{k+1}}{a_k}$ forms a rational function in $k$, you have yourself a generalized hypergeometric function.
    $endgroup$
    – Simply Beautiful Art
    Jan 10 at 3:06










  • $begingroup$
    Thanks! My original differential equation arises from the forward-time Fokker-Planck equation regarding a derivative: $frac{1}{2}partial_x^2[x(1-x)partial_xf]+mpartial_x^2f=delta(x)$
    $endgroup$
    – yixianshuiesuan
    Jan 10 at 3:09
















0












0








0





$begingroup$


In deriving the solution to a differential equation I arrived at the following series expression:



$f(x;a)=sum_{n=0}^{infty}cfrac{n!(1-x)^n}{(1-a)(2-a)cdots(n-a)};quad 0le x le 1$



where $a$ is a very small parameter of the equation, and is NOT an integer (otherwise the formula is not valid). After some brief analysis I found this series to be convergent, but I couldn't find a closed form expression.



Does it belong to any existing families of special functions?










share|cite|improve this question









$endgroup$




In deriving the solution to a differential equation I arrived at the following series expression:



$f(x;a)=sum_{n=0}^{infty}cfrac{n!(1-x)^n}{(1-a)(2-a)cdots(n-a)};quad 0le x le 1$



where $a$ is a very small parameter of the equation, and is NOT an integer (otherwise the formula is not valid). After some brief analysis I found this series to be convergent, but I couldn't find a closed form expression.



Does it belong to any existing families of special functions?







sequences-and-series complex-analysis taylor-expansion special-functions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 10 at 2:24









yixianshuiesuanyixianshuiesuan

54




54








  • 1




    $begingroup$
    the series sums to a hypergeometric function ${}_2F_1(1,1;1-a;1-x)$
    $endgroup$
    – achille hui
    Jan 10 at 2:33












  • $begingroup$
    Hypergeometric functions pop up a lot in solving differential equations, namely when using Frobenius series. Specifically, if $$f(x)=x^rsum_{k=0}^infty a_kx^k$$ and $frac{a_{k+1}}{a_k}$ forms a rational function in $k$, you have yourself a generalized hypergeometric function.
    $endgroup$
    – Simply Beautiful Art
    Jan 10 at 3:06










  • $begingroup$
    Thanks! My original differential equation arises from the forward-time Fokker-Planck equation regarding a derivative: $frac{1}{2}partial_x^2[x(1-x)partial_xf]+mpartial_x^2f=delta(x)$
    $endgroup$
    – yixianshuiesuan
    Jan 10 at 3:09
















  • 1




    $begingroup$
    the series sums to a hypergeometric function ${}_2F_1(1,1;1-a;1-x)$
    $endgroup$
    – achille hui
    Jan 10 at 2:33












  • $begingroup$
    Hypergeometric functions pop up a lot in solving differential equations, namely when using Frobenius series. Specifically, if $$f(x)=x^rsum_{k=0}^infty a_kx^k$$ and $frac{a_{k+1}}{a_k}$ forms a rational function in $k$, you have yourself a generalized hypergeometric function.
    $endgroup$
    – Simply Beautiful Art
    Jan 10 at 3:06










  • $begingroup$
    Thanks! My original differential equation arises from the forward-time Fokker-Planck equation regarding a derivative: $frac{1}{2}partial_x^2[x(1-x)partial_xf]+mpartial_x^2f=delta(x)$
    $endgroup$
    – yixianshuiesuan
    Jan 10 at 3:09










1




1




$begingroup$
the series sums to a hypergeometric function ${}_2F_1(1,1;1-a;1-x)$
$endgroup$
– achille hui
Jan 10 at 2:33






$begingroup$
the series sums to a hypergeometric function ${}_2F_1(1,1;1-a;1-x)$
$endgroup$
– achille hui
Jan 10 at 2:33














$begingroup$
Hypergeometric functions pop up a lot in solving differential equations, namely when using Frobenius series. Specifically, if $$f(x)=x^rsum_{k=0}^infty a_kx^k$$ and $frac{a_{k+1}}{a_k}$ forms a rational function in $k$, you have yourself a generalized hypergeometric function.
$endgroup$
– Simply Beautiful Art
Jan 10 at 3:06




$begingroup$
Hypergeometric functions pop up a lot in solving differential equations, namely when using Frobenius series. Specifically, if $$f(x)=x^rsum_{k=0}^infty a_kx^k$$ and $frac{a_{k+1}}{a_k}$ forms a rational function in $k$, you have yourself a generalized hypergeometric function.
$endgroup$
– Simply Beautiful Art
Jan 10 at 3:06












$begingroup$
Thanks! My original differential equation arises from the forward-time Fokker-Planck equation regarding a derivative: $frac{1}{2}partial_x^2[x(1-x)partial_xf]+mpartial_x^2f=delta(x)$
$endgroup$
– yixianshuiesuan
Jan 10 at 3:09






$begingroup$
Thanks! My original differential equation arises from the forward-time Fokker-Planck equation regarding a derivative: $frac{1}{2}partial_x^2[x(1-x)partial_xf]+mpartial_x^2f=delta(x)$
$endgroup$
– yixianshuiesuan
Jan 10 at 3:09












1 Answer
1






active

oldest

votes


















3












$begingroup$

Indeed it is - it's a kind of hypergeometric function. More specifically, we rewrite it through a series of steps as



$$begin{align}
f(x; a) &= sum_{n=0}^{infty} frac{n!}{(1 - a)(2 - a) cdots (n - a)} frac{n!}{n!} (1 - x)^n\
&= sum_{n=0}^{infty} frac{n! n!}{(1 - a)(2 - a) cdots (n - a)} frac{(1 - x)^n}{n!}\
&= sum_{n=0}^{infty} frac{n! n!}{(1 - a)([1 - a] + 1) cdots ([1 - a] + n - 1)} frac{(1 - x)^n}{n!}end{align}$$



and now converting to rising factorials, using $n! = 1^{(n)}$, we get



$$f(x; a) = sum_{n=0}^{infty} frac{1^{(n)} 1^{(n)}}{[1 - a]^{(n)}} frac{(1 - x)^n}{n!}$$



which we can read off now as



$$f(x; a) = _2 F_1left(begin{matrix}1, 1 \ 1 - aend{matrix} Big| 1 - xright)$$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068161%2fis-fxa-sum-n-0-infty-cfracn1-xn1-a2-a-cdotsn-a-some-kin%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Indeed it is - it's a kind of hypergeometric function. More specifically, we rewrite it through a series of steps as



    $$begin{align}
    f(x; a) &= sum_{n=0}^{infty} frac{n!}{(1 - a)(2 - a) cdots (n - a)} frac{n!}{n!} (1 - x)^n\
    &= sum_{n=0}^{infty} frac{n! n!}{(1 - a)(2 - a) cdots (n - a)} frac{(1 - x)^n}{n!}\
    &= sum_{n=0}^{infty} frac{n! n!}{(1 - a)([1 - a] + 1) cdots ([1 - a] + n - 1)} frac{(1 - x)^n}{n!}end{align}$$



    and now converting to rising factorials, using $n! = 1^{(n)}$, we get



    $$f(x; a) = sum_{n=0}^{infty} frac{1^{(n)} 1^{(n)}}{[1 - a]^{(n)}} frac{(1 - x)^n}{n!}$$



    which we can read off now as



    $$f(x; a) = _2 F_1left(begin{matrix}1, 1 \ 1 - aend{matrix} Big| 1 - xright)$$






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      Indeed it is - it's a kind of hypergeometric function. More specifically, we rewrite it through a series of steps as



      $$begin{align}
      f(x; a) &= sum_{n=0}^{infty} frac{n!}{(1 - a)(2 - a) cdots (n - a)} frac{n!}{n!} (1 - x)^n\
      &= sum_{n=0}^{infty} frac{n! n!}{(1 - a)(2 - a) cdots (n - a)} frac{(1 - x)^n}{n!}\
      &= sum_{n=0}^{infty} frac{n! n!}{(1 - a)([1 - a] + 1) cdots ([1 - a] + n - 1)} frac{(1 - x)^n}{n!}end{align}$$



      and now converting to rising factorials, using $n! = 1^{(n)}$, we get



      $$f(x; a) = sum_{n=0}^{infty} frac{1^{(n)} 1^{(n)}}{[1 - a]^{(n)}} frac{(1 - x)^n}{n!}$$



      which we can read off now as



      $$f(x; a) = _2 F_1left(begin{matrix}1, 1 \ 1 - aend{matrix} Big| 1 - xright)$$






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        Indeed it is - it's a kind of hypergeometric function. More specifically, we rewrite it through a series of steps as



        $$begin{align}
        f(x; a) &= sum_{n=0}^{infty} frac{n!}{(1 - a)(2 - a) cdots (n - a)} frac{n!}{n!} (1 - x)^n\
        &= sum_{n=0}^{infty} frac{n! n!}{(1 - a)(2 - a) cdots (n - a)} frac{(1 - x)^n}{n!}\
        &= sum_{n=0}^{infty} frac{n! n!}{(1 - a)([1 - a] + 1) cdots ([1 - a] + n - 1)} frac{(1 - x)^n}{n!}end{align}$$



        and now converting to rising factorials, using $n! = 1^{(n)}$, we get



        $$f(x; a) = sum_{n=0}^{infty} frac{1^{(n)} 1^{(n)}}{[1 - a]^{(n)}} frac{(1 - x)^n}{n!}$$



        which we can read off now as



        $$f(x; a) = _2 F_1left(begin{matrix}1, 1 \ 1 - aend{matrix} Big| 1 - xright)$$






        share|cite|improve this answer









        $endgroup$



        Indeed it is - it's a kind of hypergeometric function. More specifically, we rewrite it through a series of steps as



        $$begin{align}
        f(x; a) &= sum_{n=0}^{infty} frac{n!}{(1 - a)(2 - a) cdots (n - a)} frac{n!}{n!} (1 - x)^n\
        &= sum_{n=0}^{infty} frac{n! n!}{(1 - a)(2 - a) cdots (n - a)} frac{(1 - x)^n}{n!}\
        &= sum_{n=0}^{infty} frac{n! n!}{(1 - a)([1 - a] + 1) cdots ([1 - a] + n - 1)} frac{(1 - x)^n}{n!}end{align}$$



        and now converting to rising factorials, using $n! = 1^{(n)}$, we get



        $$f(x; a) = sum_{n=0}^{infty} frac{1^{(n)} 1^{(n)}}{[1 - a]^{(n)}} frac{(1 - x)^n}{n!}$$



        which we can read off now as



        $$f(x; a) = _2 F_1left(begin{matrix}1, 1 \ 1 - aend{matrix} Big| 1 - xright)$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 10 at 2:37









        The_SympathizerThe_Sympathizer

        7,8002246




        7,8002246






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068161%2fis-fxa-sum-n-0-infty-cfracn1-xn1-a2-a-cdotsn-a-some-kin%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna