Rudin's proof that the Cantor set has no segments












3












$begingroup$


In Principles of Mathematical Analysis, on page 42, Rudin proves that the Cantor set has no segments by stating that every segment $(alpha,beta)$ contains a segment of the form $(frac{3k+1}{3^{n}},frac{3k+2}{3^{n}})$ if $3^{-n}ltfrac{beta-alpha}{6}$. I don't know how $frac{beta-alpha}{6}$ is obtained.










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    In Principles of Mathematical Analysis, on page 42, Rudin proves that the Cantor set has no segments by stating that every segment $(alpha,beta)$ contains a segment of the form $(frac{3k+1}{3^{n}},frac{3k+2}{3^{n}})$ if $3^{-n}ltfrac{beta-alpha}{6}$. I don't know how $frac{beta-alpha}{6}$ is obtained.










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      3



      $begingroup$


      In Principles of Mathematical Analysis, on page 42, Rudin proves that the Cantor set has no segments by stating that every segment $(alpha,beta)$ contains a segment of the form $(frac{3k+1}{3^{n}},frac{3k+2}{3^{n}})$ if $3^{-n}ltfrac{beta-alpha}{6}$. I don't know how $frac{beta-alpha}{6}$ is obtained.










      share|cite|improve this question











      $endgroup$




      In Principles of Mathematical Analysis, on page 42, Rudin proves that the Cantor set has no segments by stating that every segment $(alpha,beta)$ contains a segment of the form $(frac{3k+1}{3^{n}},frac{3k+2}{3^{n}})$ if $3^{-n}ltfrac{beta-alpha}{6}$. I don't know how $frac{beta-alpha}{6}$ is obtained.







      real-analysis cantor-set






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Oct 12 '15 at 18:14







      Milad

















      asked Oct 10 '15 at 19:03









      MiladMilad

      819




      819






















          3 Answers
          3






          active

          oldest

          votes


















          4












          $begingroup$

          Your denominators should be $3^n$, not $3^{-n}$.



          Suppose that $alpha$ is just a little bigger than $frac{3k+1}{3^n}$ for some $k$, so that $(alpha,beta)$ is just barely too far to the right to contain $left(frac{3k+1}{3^n},frac{3k+2}{3^n}right)$ no matter how big $beta-alpha$ is. The next interval of that form to the right is



          $$left(frac{3k+4}{3^n},frac{3k+5}{3^n}right);;tag{1}$$



          if ensure that $frac{3k+5}{3^n}lebeta$, the interval $(alpha,beta)$ will contain the interval $(1)$. If $alpha=frac{3k+1}{3^n}+epsilon$, then



          $$frac{3k+5}{3^n}=alpha-epsilon+frac4{3^n};,$$



          so we need to make sure that $betagealpha-epsilon+frac4{3^n}$ no matter how small $epsilon$ is. This will certainly be the case if $betagealpha+frac4{3^n}$, i.e., if $beta-alphagefrac4{3^n}$. In other words, if we choose $n$ big enough so that



          $$frac1{3^n}lefrac{beta-alpha}4;,$$



          the interval $(alpha,beta)$ is certain to contain an interval of the form $left(frac{3k+1}{3^n},frac{3k+2}{3^n}right)$.



          Clearly this will be the case if $frac1{3^n}lefrac{beta-alpha}6$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            @Milad: You’re welcome.
            $endgroup$
            – Brian M. Scott
            Oct 10 '15 at 19:24










          • $begingroup$
            in fact I had obtained $frac{beta-alpha}{4}$ but thought I had a mistake because Rudin uses $frac{beta-alpha}{6}$ @Brian
            $endgroup$
            – Milad
            Oct 10 '15 at 19:42






          • 1




            $begingroup$
            @Milad: Using $frac{beta-alpha}6$ makes it just a little easier to see that $(alpha,beta)$ must contain an interval of the desired form. It means that $(alpha,beta)$ is at least $frac6{3^n}$ units long, long enough for two full cycles from $frac{3k}{3^n}$ to $frac{3(k+1)}{3^n}$, and it’s clear without really even doing any arithmetic that no matter where $alpha$ falls, two full cycles have to contain an interval of the desired type.
            $endgroup$
            – Brian M. Scott
            Oct 10 '15 at 19:45










          • $begingroup$
            @Milad: You’re welcome.
            $endgroup$
            – Brian M. Scott
            Oct 10 '15 at 19:59



















          5












          $begingroup$

          We want to show that there is an integer $k$ such that $alphalefrac{3k+1}{3^n}$ and $frac{3k+2}{3^n}lebeta$,



          so we want to have $frac{alpha(3^n)-1}{3}le klefrac{beta(3^n)-2}{3}$.



          Such an integer $k$ will exist if $frac{beta(3^n)-2}{3}-frac{alpha(3^n)-1}{3}ge1$, so



          $(beta-alpha)3^nge4$ gives $3^{-n}lefrac{beta-alpha}{4}$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Very nice proof!
            $endgroup$
            – ZFR
            Oct 10 '15 at 19:22










          • $begingroup$
            @RFZ Thanks for your comment; I appreciate it!
            $endgroup$
            – user84413
            Oct 10 '15 at 19:24










          • $begingroup$
            You are always welcome!
            $endgroup$
            – ZFR
            Oct 10 '15 at 19:25










          • $begingroup$
            your proof is really smart. thanks @user84413
            $endgroup$
            – Milad
            Oct 10 '15 at 19:35



















          0












          $begingroup$

          enter image description here



          If $alpha$ and $beta$ satisfy $3^{-m} < frac{beta-alpha}{5}$, then every segment $(alpha, beta)$ contains a segment which was removed when the Cantor set was constructed.

          See the above picture.






          share|cite|improve this answer









          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1473660%2frudins-proof-that-the-cantor-set-has-no-segments%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            Your denominators should be $3^n$, not $3^{-n}$.



            Suppose that $alpha$ is just a little bigger than $frac{3k+1}{3^n}$ for some $k$, so that $(alpha,beta)$ is just barely too far to the right to contain $left(frac{3k+1}{3^n},frac{3k+2}{3^n}right)$ no matter how big $beta-alpha$ is. The next interval of that form to the right is



            $$left(frac{3k+4}{3^n},frac{3k+5}{3^n}right);;tag{1}$$



            if ensure that $frac{3k+5}{3^n}lebeta$, the interval $(alpha,beta)$ will contain the interval $(1)$. If $alpha=frac{3k+1}{3^n}+epsilon$, then



            $$frac{3k+5}{3^n}=alpha-epsilon+frac4{3^n};,$$



            so we need to make sure that $betagealpha-epsilon+frac4{3^n}$ no matter how small $epsilon$ is. This will certainly be the case if $betagealpha+frac4{3^n}$, i.e., if $beta-alphagefrac4{3^n}$. In other words, if we choose $n$ big enough so that



            $$frac1{3^n}lefrac{beta-alpha}4;,$$



            the interval $(alpha,beta)$ is certain to contain an interval of the form $left(frac{3k+1}{3^n},frac{3k+2}{3^n}right)$.



            Clearly this will be the case if $frac1{3^n}lefrac{beta-alpha}6$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              @Milad: You’re welcome.
              $endgroup$
              – Brian M. Scott
              Oct 10 '15 at 19:24










            • $begingroup$
              in fact I had obtained $frac{beta-alpha}{4}$ but thought I had a mistake because Rudin uses $frac{beta-alpha}{6}$ @Brian
              $endgroup$
              – Milad
              Oct 10 '15 at 19:42






            • 1




              $begingroup$
              @Milad: Using $frac{beta-alpha}6$ makes it just a little easier to see that $(alpha,beta)$ must contain an interval of the desired form. It means that $(alpha,beta)$ is at least $frac6{3^n}$ units long, long enough for two full cycles from $frac{3k}{3^n}$ to $frac{3(k+1)}{3^n}$, and it’s clear without really even doing any arithmetic that no matter where $alpha$ falls, two full cycles have to contain an interval of the desired type.
              $endgroup$
              – Brian M. Scott
              Oct 10 '15 at 19:45










            • $begingroup$
              @Milad: You’re welcome.
              $endgroup$
              – Brian M. Scott
              Oct 10 '15 at 19:59
















            4












            $begingroup$

            Your denominators should be $3^n$, not $3^{-n}$.



            Suppose that $alpha$ is just a little bigger than $frac{3k+1}{3^n}$ for some $k$, so that $(alpha,beta)$ is just barely too far to the right to contain $left(frac{3k+1}{3^n},frac{3k+2}{3^n}right)$ no matter how big $beta-alpha$ is. The next interval of that form to the right is



            $$left(frac{3k+4}{3^n},frac{3k+5}{3^n}right);;tag{1}$$



            if ensure that $frac{3k+5}{3^n}lebeta$, the interval $(alpha,beta)$ will contain the interval $(1)$. If $alpha=frac{3k+1}{3^n}+epsilon$, then



            $$frac{3k+5}{3^n}=alpha-epsilon+frac4{3^n};,$$



            so we need to make sure that $betagealpha-epsilon+frac4{3^n}$ no matter how small $epsilon$ is. This will certainly be the case if $betagealpha+frac4{3^n}$, i.e., if $beta-alphagefrac4{3^n}$. In other words, if we choose $n$ big enough so that



            $$frac1{3^n}lefrac{beta-alpha}4;,$$



            the interval $(alpha,beta)$ is certain to contain an interval of the form $left(frac{3k+1}{3^n},frac{3k+2}{3^n}right)$.



            Clearly this will be the case if $frac1{3^n}lefrac{beta-alpha}6$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              @Milad: You’re welcome.
              $endgroup$
              – Brian M. Scott
              Oct 10 '15 at 19:24










            • $begingroup$
              in fact I had obtained $frac{beta-alpha}{4}$ but thought I had a mistake because Rudin uses $frac{beta-alpha}{6}$ @Brian
              $endgroup$
              – Milad
              Oct 10 '15 at 19:42






            • 1




              $begingroup$
              @Milad: Using $frac{beta-alpha}6$ makes it just a little easier to see that $(alpha,beta)$ must contain an interval of the desired form. It means that $(alpha,beta)$ is at least $frac6{3^n}$ units long, long enough for two full cycles from $frac{3k}{3^n}$ to $frac{3(k+1)}{3^n}$, and it’s clear without really even doing any arithmetic that no matter where $alpha$ falls, two full cycles have to contain an interval of the desired type.
              $endgroup$
              – Brian M. Scott
              Oct 10 '15 at 19:45










            • $begingroup$
              @Milad: You’re welcome.
              $endgroup$
              – Brian M. Scott
              Oct 10 '15 at 19:59














            4












            4








            4





            $begingroup$

            Your denominators should be $3^n$, not $3^{-n}$.



            Suppose that $alpha$ is just a little bigger than $frac{3k+1}{3^n}$ for some $k$, so that $(alpha,beta)$ is just barely too far to the right to contain $left(frac{3k+1}{3^n},frac{3k+2}{3^n}right)$ no matter how big $beta-alpha$ is. The next interval of that form to the right is



            $$left(frac{3k+4}{3^n},frac{3k+5}{3^n}right);;tag{1}$$



            if ensure that $frac{3k+5}{3^n}lebeta$, the interval $(alpha,beta)$ will contain the interval $(1)$. If $alpha=frac{3k+1}{3^n}+epsilon$, then



            $$frac{3k+5}{3^n}=alpha-epsilon+frac4{3^n};,$$



            so we need to make sure that $betagealpha-epsilon+frac4{3^n}$ no matter how small $epsilon$ is. This will certainly be the case if $betagealpha+frac4{3^n}$, i.e., if $beta-alphagefrac4{3^n}$. In other words, if we choose $n$ big enough so that



            $$frac1{3^n}lefrac{beta-alpha}4;,$$



            the interval $(alpha,beta)$ is certain to contain an interval of the form $left(frac{3k+1}{3^n},frac{3k+2}{3^n}right)$.



            Clearly this will be the case if $frac1{3^n}lefrac{beta-alpha}6$.






            share|cite|improve this answer









            $endgroup$



            Your denominators should be $3^n$, not $3^{-n}$.



            Suppose that $alpha$ is just a little bigger than $frac{3k+1}{3^n}$ for some $k$, so that $(alpha,beta)$ is just barely too far to the right to contain $left(frac{3k+1}{3^n},frac{3k+2}{3^n}right)$ no matter how big $beta-alpha$ is. The next interval of that form to the right is



            $$left(frac{3k+4}{3^n},frac{3k+5}{3^n}right);;tag{1}$$



            if ensure that $frac{3k+5}{3^n}lebeta$, the interval $(alpha,beta)$ will contain the interval $(1)$. If $alpha=frac{3k+1}{3^n}+epsilon$, then



            $$frac{3k+5}{3^n}=alpha-epsilon+frac4{3^n};,$$



            so we need to make sure that $betagealpha-epsilon+frac4{3^n}$ no matter how small $epsilon$ is. This will certainly be the case if $betagealpha+frac4{3^n}$, i.e., if $beta-alphagefrac4{3^n}$. In other words, if we choose $n$ big enough so that



            $$frac1{3^n}lefrac{beta-alpha}4;,$$



            the interval $(alpha,beta)$ is certain to contain an interval of the form $left(frac{3k+1}{3^n},frac{3k+2}{3^n}right)$.



            Clearly this will be the case if $frac1{3^n}lefrac{beta-alpha}6$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Oct 10 '15 at 19:17









            Brian M. ScottBrian M. Scott

            460k40517918




            460k40517918












            • $begingroup$
              @Milad: You’re welcome.
              $endgroup$
              – Brian M. Scott
              Oct 10 '15 at 19:24










            • $begingroup$
              in fact I had obtained $frac{beta-alpha}{4}$ but thought I had a mistake because Rudin uses $frac{beta-alpha}{6}$ @Brian
              $endgroup$
              – Milad
              Oct 10 '15 at 19:42






            • 1




              $begingroup$
              @Milad: Using $frac{beta-alpha}6$ makes it just a little easier to see that $(alpha,beta)$ must contain an interval of the desired form. It means that $(alpha,beta)$ is at least $frac6{3^n}$ units long, long enough for two full cycles from $frac{3k}{3^n}$ to $frac{3(k+1)}{3^n}$, and it’s clear without really even doing any arithmetic that no matter where $alpha$ falls, two full cycles have to contain an interval of the desired type.
              $endgroup$
              – Brian M. Scott
              Oct 10 '15 at 19:45










            • $begingroup$
              @Milad: You’re welcome.
              $endgroup$
              – Brian M. Scott
              Oct 10 '15 at 19:59


















            • $begingroup$
              @Milad: You’re welcome.
              $endgroup$
              – Brian M. Scott
              Oct 10 '15 at 19:24










            • $begingroup$
              in fact I had obtained $frac{beta-alpha}{4}$ but thought I had a mistake because Rudin uses $frac{beta-alpha}{6}$ @Brian
              $endgroup$
              – Milad
              Oct 10 '15 at 19:42






            • 1




              $begingroup$
              @Milad: Using $frac{beta-alpha}6$ makes it just a little easier to see that $(alpha,beta)$ must contain an interval of the desired form. It means that $(alpha,beta)$ is at least $frac6{3^n}$ units long, long enough for two full cycles from $frac{3k}{3^n}$ to $frac{3(k+1)}{3^n}$, and it’s clear without really even doing any arithmetic that no matter where $alpha$ falls, two full cycles have to contain an interval of the desired type.
              $endgroup$
              – Brian M. Scott
              Oct 10 '15 at 19:45










            • $begingroup$
              @Milad: You’re welcome.
              $endgroup$
              – Brian M. Scott
              Oct 10 '15 at 19:59
















            $begingroup$
            @Milad: You’re welcome.
            $endgroup$
            – Brian M. Scott
            Oct 10 '15 at 19:24




            $begingroup$
            @Milad: You’re welcome.
            $endgroup$
            – Brian M. Scott
            Oct 10 '15 at 19:24












            $begingroup$
            in fact I had obtained $frac{beta-alpha}{4}$ but thought I had a mistake because Rudin uses $frac{beta-alpha}{6}$ @Brian
            $endgroup$
            – Milad
            Oct 10 '15 at 19:42




            $begingroup$
            in fact I had obtained $frac{beta-alpha}{4}$ but thought I had a mistake because Rudin uses $frac{beta-alpha}{6}$ @Brian
            $endgroup$
            – Milad
            Oct 10 '15 at 19:42




            1




            1




            $begingroup$
            @Milad: Using $frac{beta-alpha}6$ makes it just a little easier to see that $(alpha,beta)$ must contain an interval of the desired form. It means that $(alpha,beta)$ is at least $frac6{3^n}$ units long, long enough for two full cycles from $frac{3k}{3^n}$ to $frac{3(k+1)}{3^n}$, and it’s clear without really even doing any arithmetic that no matter where $alpha$ falls, two full cycles have to contain an interval of the desired type.
            $endgroup$
            – Brian M. Scott
            Oct 10 '15 at 19:45




            $begingroup$
            @Milad: Using $frac{beta-alpha}6$ makes it just a little easier to see that $(alpha,beta)$ must contain an interval of the desired form. It means that $(alpha,beta)$ is at least $frac6{3^n}$ units long, long enough for two full cycles from $frac{3k}{3^n}$ to $frac{3(k+1)}{3^n}$, and it’s clear without really even doing any arithmetic that no matter where $alpha$ falls, two full cycles have to contain an interval of the desired type.
            $endgroup$
            – Brian M. Scott
            Oct 10 '15 at 19:45












            $begingroup$
            @Milad: You’re welcome.
            $endgroup$
            – Brian M. Scott
            Oct 10 '15 at 19:59




            $begingroup$
            @Milad: You’re welcome.
            $endgroup$
            – Brian M. Scott
            Oct 10 '15 at 19:59











            5












            $begingroup$

            We want to show that there is an integer $k$ such that $alphalefrac{3k+1}{3^n}$ and $frac{3k+2}{3^n}lebeta$,



            so we want to have $frac{alpha(3^n)-1}{3}le klefrac{beta(3^n)-2}{3}$.



            Such an integer $k$ will exist if $frac{beta(3^n)-2}{3}-frac{alpha(3^n)-1}{3}ge1$, so



            $(beta-alpha)3^nge4$ gives $3^{-n}lefrac{beta-alpha}{4}$.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Very nice proof!
              $endgroup$
              – ZFR
              Oct 10 '15 at 19:22










            • $begingroup$
              @RFZ Thanks for your comment; I appreciate it!
              $endgroup$
              – user84413
              Oct 10 '15 at 19:24










            • $begingroup$
              You are always welcome!
              $endgroup$
              – ZFR
              Oct 10 '15 at 19:25










            • $begingroup$
              your proof is really smart. thanks @user84413
              $endgroup$
              – Milad
              Oct 10 '15 at 19:35
















            5












            $begingroup$

            We want to show that there is an integer $k$ such that $alphalefrac{3k+1}{3^n}$ and $frac{3k+2}{3^n}lebeta$,



            so we want to have $frac{alpha(3^n)-1}{3}le klefrac{beta(3^n)-2}{3}$.



            Such an integer $k$ will exist if $frac{beta(3^n)-2}{3}-frac{alpha(3^n)-1}{3}ge1$, so



            $(beta-alpha)3^nge4$ gives $3^{-n}lefrac{beta-alpha}{4}$.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Very nice proof!
              $endgroup$
              – ZFR
              Oct 10 '15 at 19:22










            • $begingroup$
              @RFZ Thanks for your comment; I appreciate it!
              $endgroup$
              – user84413
              Oct 10 '15 at 19:24










            • $begingroup$
              You are always welcome!
              $endgroup$
              – ZFR
              Oct 10 '15 at 19:25










            • $begingroup$
              your proof is really smart. thanks @user84413
              $endgroup$
              – Milad
              Oct 10 '15 at 19:35














            5












            5








            5





            $begingroup$

            We want to show that there is an integer $k$ such that $alphalefrac{3k+1}{3^n}$ and $frac{3k+2}{3^n}lebeta$,



            so we want to have $frac{alpha(3^n)-1}{3}le klefrac{beta(3^n)-2}{3}$.



            Such an integer $k$ will exist if $frac{beta(3^n)-2}{3}-frac{alpha(3^n)-1}{3}ge1$, so



            $(beta-alpha)3^nge4$ gives $3^{-n}lefrac{beta-alpha}{4}$.






            share|cite|improve this answer











            $endgroup$



            We want to show that there is an integer $k$ such that $alphalefrac{3k+1}{3^n}$ and $frac{3k+2}{3^n}lebeta$,



            so we want to have $frac{alpha(3^n)-1}{3}le klefrac{beta(3^n)-2}{3}$.



            Such an integer $k$ will exist if $frac{beta(3^n)-2}{3}-frac{alpha(3^n)-1}{3}ge1$, so



            $(beta-alpha)3^nge4$ gives $3^{-n}lefrac{beta-alpha}{4}$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Oct 10 '15 at 19:22

























            answered Oct 10 '15 at 19:16









            user84413user84413

            23k11848




            23k11848












            • $begingroup$
              Very nice proof!
              $endgroup$
              – ZFR
              Oct 10 '15 at 19:22










            • $begingroup$
              @RFZ Thanks for your comment; I appreciate it!
              $endgroup$
              – user84413
              Oct 10 '15 at 19:24










            • $begingroup$
              You are always welcome!
              $endgroup$
              – ZFR
              Oct 10 '15 at 19:25










            • $begingroup$
              your proof is really smart. thanks @user84413
              $endgroup$
              – Milad
              Oct 10 '15 at 19:35


















            • $begingroup$
              Very nice proof!
              $endgroup$
              – ZFR
              Oct 10 '15 at 19:22










            • $begingroup$
              @RFZ Thanks for your comment; I appreciate it!
              $endgroup$
              – user84413
              Oct 10 '15 at 19:24










            • $begingroup$
              You are always welcome!
              $endgroup$
              – ZFR
              Oct 10 '15 at 19:25










            • $begingroup$
              your proof is really smart. thanks @user84413
              $endgroup$
              – Milad
              Oct 10 '15 at 19:35
















            $begingroup$
            Very nice proof!
            $endgroup$
            – ZFR
            Oct 10 '15 at 19:22




            $begingroup$
            Very nice proof!
            $endgroup$
            – ZFR
            Oct 10 '15 at 19:22












            $begingroup$
            @RFZ Thanks for your comment; I appreciate it!
            $endgroup$
            – user84413
            Oct 10 '15 at 19:24




            $begingroup$
            @RFZ Thanks for your comment; I appreciate it!
            $endgroup$
            – user84413
            Oct 10 '15 at 19:24












            $begingroup$
            You are always welcome!
            $endgroup$
            – ZFR
            Oct 10 '15 at 19:25




            $begingroup$
            You are always welcome!
            $endgroup$
            – ZFR
            Oct 10 '15 at 19:25












            $begingroup$
            your proof is really smart. thanks @user84413
            $endgroup$
            – Milad
            Oct 10 '15 at 19:35




            $begingroup$
            your proof is really smart. thanks @user84413
            $endgroup$
            – Milad
            Oct 10 '15 at 19:35











            0












            $begingroup$

            enter image description here



            If $alpha$ and $beta$ satisfy $3^{-m} < frac{beta-alpha}{5}$, then every segment $(alpha, beta)$ contains a segment which was removed when the Cantor set was constructed.

            See the above picture.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              enter image description here



              If $alpha$ and $beta$ satisfy $3^{-m} < frac{beta-alpha}{5}$, then every segment $(alpha, beta)$ contains a segment which was removed when the Cantor set was constructed.

              See the above picture.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                enter image description here



                If $alpha$ and $beta$ satisfy $3^{-m} < frac{beta-alpha}{5}$, then every segment $(alpha, beta)$ contains a segment which was removed when the Cantor set was constructed.

                See the above picture.






                share|cite|improve this answer









                $endgroup$



                enter image description here



                If $alpha$ and $beta$ satisfy $3^{-m} < frac{beta-alpha}{5}$, then every segment $(alpha, beta)$ contains a segment which was removed when the Cantor set was constructed.

                See the above picture.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 10 at 1:31









                tchappy hatchappy ha

                778412




                778412






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1473660%2frudins-proof-that-the-cantor-set-has-no-segments%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna