As a vector space, is $A/I$ isomorphic to $A/mathrm{in}(I)$?











up vote
0
down vote

favorite












Let $A=k[x_1, ldots, x_n]$ and "$>$" a monomial order on $A$. For a polynomial $p$, denote by $mathrm{in}_>(p)$ the term of $p$ with the largest monomial. For an ideal $I$ of $A$, the initial ideal of $I$ is defined as $mathrm{in}_{>}(I) = langle mathrm{in}_{>}(p) mid p in I rangle$.




As a vector space, is $A/I$ isomorphic to $A/mathrm{in}_{>}(I)$?




Thank you very much.










share|cite|improve this question
























  • Yes. All you need to show is that the projections of the reduced monomials (i.e., the monomials not in $in_>(I)$) form a basis of $A/I$. This is the Macaulay-Buchberger basis theorem (see, e.g., Proposition 3.10 in arXiv:1704.00839v6 detailed version for a proof).
    – darij grinberg
    18 hours ago















up vote
0
down vote

favorite












Let $A=k[x_1, ldots, x_n]$ and "$>$" a monomial order on $A$. For a polynomial $p$, denote by $mathrm{in}_>(p)$ the term of $p$ with the largest monomial. For an ideal $I$ of $A$, the initial ideal of $I$ is defined as $mathrm{in}_{>}(I) = langle mathrm{in}_{>}(p) mid p in I rangle$.




As a vector space, is $A/I$ isomorphic to $A/mathrm{in}_{>}(I)$?




Thank you very much.










share|cite|improve this question
























  • Yes. All you need to show is that the projections of the reduced monomials (i.e., the monomials not in $in_>(I)$) form a basis of $A/I$. This is the Macaulay-Buchberger basis theorem (see, e.g., Proposition 3.10 in arXiv:1704.00839v6 detailed version for a proof).
    – darij grinberg
    18 hours ago













up vote
0
down vote

favorite









up vote
0
down vote

favorite











Let $A=k[x_1, ldots, x_n]$ and "$>$" a monomial order on $A$. For a polynomial $p$, denote by $mathrm{in}_>(p)$ the term of $p$ with the largest monomial. For an ideal $I$ of $A$, the initial ideal of $I$ is defined as $mathrm{in}_{>}(I) = langle mathrm{in}_{>}(p) mid p in I rangle$.




As a vector space, is $A/I$ isomorphic to $A/mathrm{in}_{>}(I)$?




Thank you very much.










share|cite|improve this question















Let $A=k[x_1, ldots, x_n]$ and "$>$" a monomial order on $A$. For a polynomial $p$, denote by $mathrm{in}_>(p)$ the term of $p$ with the largest monomial. For an ideal $I$ of $A$, the initial ideal of $I$ is defined as $mathrm{in}_{>}(I) = langle mathrm{in}_{>}(p) mid p in I rangle$.




As a vector space, is $A/I$ isomorphic to $A/mathrm{in}_{>}(I)$?




Thank you very much.







algebraic-geometry commutative-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 10 hours ago









user26857

39.1k123882




39.1k123882










asked 18 hours ago









LJR

6,53141648




6,53141648












  • Yes. All you need to show is that the projections of the reduced monomials (i.e., the monomials not in $in_>(I)$) form a basis of $A/I$. This is the Macaulay-Buchberger basis theorem (see, e.g., Proposition 3.10 in arXiv:1704.00839v6 detailed version for a proof).
    – darij grinberg
    18 hours ago


















  • Yes. All you need to show is that the projections of the reduced monomials (i.e., the monomials not in $in_>(I)$) form a basis of $A/I$. This is the Macaulay-Buchberger basis theorem (see, e.g., Proposition 3.10 in arXiv:1704.00839v6 detailed version for a proof).
    – darij grinberg
    18 hours ago
















Yes. All you need to show is that the projections of the reduced monomials (i.e., the monomials not in $in_>(I)$) form a basis of $A/I$. This is the Macaulay-Buchberger basis theorem (see, e.g., Proposition 3.10 in arXiv:1704.00839v6 detailed version for a proof).
– darij grinberg
18 hours ago




Yes. All you need to show is that the projections of the reduced monomials (i.e., the monomials not in $in_>(I)$) form a basis of $A/I$. This is the Macaulay-Buchberger basis theorem (see, e.g., Proposition 3.10 in arXiv:1704.00839v6 detailed version for a proof).
– darij grinberg
18 hours ago















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019886%2fas-a-vector-space-is-a-i-isomorphic-to-a-mathrmini%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019886%2fas-a-vector-space-is-a-i-isomorphic-to-a-mathrmini%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna