As a vector space, is $A/I$ isomorphic to $A/mathrm{in}(I)$?
up vote
0
down vote
favorite
Let $A=k[x_1, ldots, x_n]$ and "$>$" a monomial order on $A$. For a polynomial $p$, denote by $mathrm{in}_>(p)$ the term of $p$ with the largest monomial. For an ideal $I$ of $A$, the initial ideal of $I$ is defined as $mathrm{in}_{>}(I) = langle mathrm{in}_{>}(p) mid p in I rangle$.
As a vector space, is $A/I$ isomorphic to $A/mathrm{in}_{>}(I)$?
Thank you very much.
algebraic-geometry commutative-algebra
add a comment |
up vote
0
down vote
favorite
Let $A=k[x_1, ldots, x_n]$ and "$>$" a monomial order on $A$. For a polynomial $p$, denote by $mathrm{in}_>(p)$ the term of $p$ with the largest monomial. For an ideal $I$ of $A$, the initial ideal of $I$ is defined as $mathrm{in}_{>}(I) = langle mathrm{in}_{>}(p) mid p in I rangle$.
As a vector space, is $A/I$ isomorphic to $A/mathrm{in}_{>}(I)$?
Thank you very much.
algebraic-geometry commutative-algebra
Yes. All you need to show is that the projections of the reduced monomials (i.e., the monomials not in $in_>(I)$) form a basis of $A/I$. This is the Macaulay-Buchberger basis theorem (see, e.g., Proposition 3.10 in arXiv:1704.00839v6 detailed version for a proof).
– darij grinberg
18 hours ago
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $A=k[x_1, ldots, x_n]$ and "$>$" a monomial order on $A$. For a polynomial $p$, denote by $mathrm{in}_>(p)$ the term of $p$ with the largest monomial. For an ideal $I$ of $A$, the initial ideal of $I$ is defined as $mathrm{in}_{>}(I) = langle mathrm{in}_{>}(p) mid p in I rangle$.
As a vector space, is $A/I$ isomorphic to $A/mathrm{in}_{>}(I)$?
Thank you very much.
algebraic-geometry commutative-algebra
Let $A=k[x_1, ldots, x_n]$ and "$>$" a monomial order on $A$. For a polynomial $p$, denote by $mathrm{in}_>(p)$ the term of $p$ with the largest monomial. For an ideal $I$ of $A$, the initial ideal of $I$ is defined as $mathrm{in}_{>}(I) = langle mathrm{in}_{>}(p) mid p in I rangle$.
As a vector space, is $A/I$ isomorphic to $A/mathrm{in}_{>}(I)$?
Thank you very much.
algebraic-geometry commutative-algebra
algebraic-geometry commutative-algebra
edited 10 hours ago
user26857
39.1k123882
39.1k123882
asked 18 hours ago
LJR
6,53141648
6,53141648
Yes. All you need to show is that the projections of the reduced monomials (i.e., the monomials not in $in_>(I)$) form a basis of $A/I$. This is the Macaulay-Buchberger basis theorem (see, e.g., Proposition 3.10 in arXiv:1704.00839v6 detailed version for a proof).
– darij grinberg
18 hours ago
add a comment |
Yes. All you need to show is that the projections of the reduced monomials (i.e., the monomials not in $in_>(I)$) form a basis of $A/I$. This is the Macaulay-Buchberger basis theorem (see, e.g., Proposition 3.10 in arXiv:1704.00839v6 detailed version for a proof).
– darij grinberg
18 hours ago
Yes. All you need to show is that the projections of the reduced monomials (i.e., the monomials not in $in_>(I)$) form a basis of $A/I$. This is the Macaulay-Buchberger basis theorem (see, e.g., Proposition 3.10 in arXiv:1704.00839v6 detailed version for a proof).
– darij grinberg
18 hours ago
Yes. All you need to show is that the projections of the reduced monomials (i.e., the monomials not in $in_>(I)$) form a basis of $A/I$. This is the Macaulay-Buchberger basis theorem (see, e.g., Proposition 3.10 in arXiv:1704.00839v6 detailed version for a proof).
– darij grinberg
18 hours ago
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019886%2fas-a-vector-space-is-a-i-isomorphic-to-a-mathrmini%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Yes. All you need to show is that the projections of the reduced monomials (i.e., the monomials not in $in_>(I)$) form a basis of $A/I$. This is the Macaulay-Buchberger basis theorem (see, e.g., Proposition 3.10 in arXiv:1704.00839v6 detailed version for a proof).
– darij grinberg
18 hours ago