Frightening Stokes Theorem Computation











up vote
2
down vote

favorite
1












I came across a rather frightening problem in my problem set and I am confused about it.



I need to compute the flux of a field $vec F = langle y, x^2, z(x^2-y^3)^7 cos(e^{xyz}) rangle$ through the upward-pointing surface $z= sqrt {1 - frac {x^2} 9 - frac {y^2} 4} $.



I'm told it would be wise to use Stokes's Theorem and I'm also told to figure out the boundary to get a head start. I attempted to compute this integral with brute force, but it seems to be unintegrable that way.



How should I approach this problem?










share|cite|improve this question
























  • The boundary is not difficult to find, it's an ellipse of semi axis, 3 and 2. But the field is not the curl of anything. By other side, I don't see the problem easier using the divergence theorem.
    – Rafa Budría
    12 hours ago










  • Are you sure it is not the flux of $curl vec {F} = (y,x^2,f(x,y,z))$ that you want to compute?
    – Kuifje
    12 hours ago

















up vote
2
down vote

favorite
1












I came across a rather frightening problem in my problem set and I am confused about it.



I need to compute the flux of a field $vec F = langle y, x^2, z(x^2-y^3)^7 cos(e^{xyz}) rangle$ through the upward-pointing surface $z= sqrt {1 - frac {x^2} 9 - frac {y^2} 4} $.



I'm told it would be wise to use Stokes's Theorem and I'm also told to figure out the boundary to get a head start. I attempted to compute this integral with brute force, but it seems to be unintegrable that way.



How should I approach this problem?










share|cite|improve this question
























  • The boundary is not difficult to find, it's an ellipse of semi axis, 3 and 2. But the field is not the curl of anything. By other side, I don't see the problem easier using the divergence theorem.
    – Rafa Budría
    12 hours ago










  • Are you sure it is not the flux of $curl vec {F} = (y,x^2,f(x,y,z))$ that you want to compute?
    – Kuifje
    12 hours ago















up vote
2
down vote

favorite
1









up vote
2
down vote

favorite
1






1





I came across a rather frightening problem in my problem set and I am confused about it.



I need to compute the flux of a field $vec F = langle y, x^2, z(x^2-y^3)^7 cos(e^{xyz}) rangle$ through the upward-pointing surface $z= sqrt {1 - frac {x^2} 9 - frac {y^2} 4} $.



I'm told it would be wise to use Stokes's Theorem and I'm also told to figure out the boundary to get a head start. I attempted to compute this integral with brute force, but it seems to be unintegrable that way.



How should I approach this problem?










share|cite|improve this question















I came across a rather frightening problem in my problem set and I am confused about it.



I need to compute the flux of a field $vec F = langle y, x^2, z(x^2-y^3)^7 cos(e^{xyz}) rangle$ through the upward-pointing surface $z= sqrt {1 - frac {x^2} 9 - frac {y^2} 4} $.



I'm told it would be wise to use Stokes's Theorem and I'm also told to figure out the boundary to get a head start. I attempted to compute this integral with brute force, but it seems to be unintegrable that way.



How should I approach this problem?







calculus integration multivariable-calculus vector-fields stokes-theorem






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 22 hours ago









Mattos

2,73021321




2,73021321










asked 22 hours ago









Jackson Joffe

525




525












  • The boundary is not difficult to find, it's an ellipse of semi axis, 3 and 2. But the field is not the curl of anything. By other side, I don't see the problem easier using the divergence theorem.
    – Rafa Budría
    12 hours ago










  • Are you sure it is not the flux of $curl vec {F} = (y,x^2,f(x,y,z))$ that you want to compute?
    – Kuifje
    12 hours ago




















  • The boundary is not difficult to find, it's an ellipse of semi axis, 3 and 2. But the field is not the curl of anything. By other side, I don't see the problem easier using the divergence theorem.
    – Rafa Budría
    12 hours ago










  • Are you sure it is not the flux of $curl vec {F} = (y,x^2,f(x,y,z))$ that you want to compute?
    – Kuifje
    12 hours ago


















The boundary is not difficult to find, it's an ellipse of semi axis, 3 and 2. But the field is not the curl of anything. By other side, I don't see the problem easier using the divergence theorem.
– Rafa Budría
12 hours ago




The boundary is not difficult to find, it's an ellipse of semi axis, 3 and 2. But the field is not the curl of anything. By other side, I don't see the problem easier using the divergence theorem.
– Rafa Budría
12 hours ago












Are you sure it is not the flux of $curl vec {F} = (y,x^2,f(x,y,z))$ that you want to compute?
– Kuifje
12 hours ago






Are you sure it is not the flux of $curl vec {F} = (y,x^2,f(x,y,z))$ that you want to compute?
– Kuifje
12 hours ago

















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019616%2ffrightening-stokes-theorem-computation%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019616%2ffrightening-stokes-theorem-computation%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna