A triangle has sides $a$, $b$, $c$ and medians $m_a$, $m_b$, $m_c$. Show...
$begingroup$
Let $triangle ABC$ have sides $BC=a$, $CA=b$, and $AB=c$. Let $m_a$, $m_b$, $m_c$ be the medians to $BC$, $CA$, and $AB$, respectively. Prove that
$$(ab+bc+ca)left(frac{1}{a}+frac{1}{b}+frac{1}{c}right)geq 2sqrt{3}(m_a+m_b+m_c)$$
My trying: $$Leftrightarrow (ab+bc+ca)left(frac{1}{a}+frac{1}{b}+frac{1}{c}right)geq 3sqrt{3}sqrt{a^2+b^2+c^2}$$
Because: $$m_a+m_b+m_cleq sqrt{3(m_{a}^{2}+m_{b}^{2}+m_{c}^{2})}=frac{3}{2}sqrt{a^2+b^2+c^2}$$
$$Leftrightarrow left(p^2+4Rr+r^2right)left(frac{4R+r}{pr}
right)geq 3sqrt{3}sqrt{2p^2-8Rr-2r^2}$$
I square it, but that doesn't help.
geometry inequality triangle geometric-inequalities sos
$endgroup$
add a comment |
$begingroup$
Let $triangle ABC$ have sides $BC=a$, $CA=b$, and $AB=c$. Let $m_a$, $m_b$, $m_c$ be the medians to $BC$, $CA$, and $AB$, respectively. Prove that
$$(ab+bc+ca)left(frac{1}{a}+frac{1}{b}+frac{1}{c}right)geq 2sqrt{3}(m_a+m_b+m_c)$$
My trying: $$Leftrightarrow (ab+bc+ca)left(frac{1}{a}+frac{1}{b}+frac{1}{c}right)geq 3sqrt{3}sqrt{a^2+b^2+c^2}$$
Because: $$m_a+m_b+m_cleq sqrt{3(m_{a}^{2}+m_{b}^{2}+m_{c}^{2})}=frac{3}{2}sqrt{a^2+b^2+c^2}$$
$$Leftrightarrow left(p^2+4Rr+r^2right)left(frac{4R+r}{pr}
right)geq 3sqrt{3}sqrt{2p^2-8Rr-2r^2}$$
I square it, but that doesn't help.
geometry inequality triangle geometric-inequalities sos
$endgroup$
add a comment |
$begingroup$
Let $triangle ABC$ have sides $BC=a$, $CA=b$, and $AB=c$. Let $m_a$, $m_b$, $m_c$ be the medians to $BC$, $CA$, and $AB$, respectively. Prove that
$$(ab+bc+ca)left(frac{1}{a}+frac{1}{b}+frac{1}{c}right)geq 2sqrt{3}(m_a+m_b+m_c)$$
My trying: $$Leftrightarrow (ab+bc+ca)left(frac{1}{a}+frac{1}{b}+frac{1}{c}right)geq 3sqrt{3}sqrt{a^2+b^2+c^2}$$
Because: $$m_a+m_b+m_cleq sqrt{3(m_{a}^{2}+m_{b}^{2}+m_{c}^{2})}=frac{3}{2}sqrt{a^2+b^2+c^2}$$
$$Leftrightarrow left(p^2+4Rr+r^2right)left(frac{4R+r}{pr}
right)geq 3sqrt{3}sqrt{2p^2-8Rr-2r^2}$$
I square it, but that doesn't help.
geometry inequality triangle geometric-inequalities sos
$endgroup$
Let $triangle ABC$ have sides $BC=a$, $CA=b$, and $AB=c$. Let $m_a$, $m_b$, $m_c$ be the medians to $BC$, $CA$, and $AB$, respectively. Prove that
$$(ab+bc+ca)left(frac{1}{a}+frac{1}{b}+frac{1}{c}right)geq 2sqrt{3}(m_a+m_b+m_c)$$
My trying: $$Leftrightarrow (ab+bc+ca)left(frac{1}{a}+frac{1}{b}+frac{1}{c}right)geq 3sqrt{3}sqrt{a^2+b^2+c^2}$$
Because: $$m_a+m_b+m_cleq sqrt{3(m_{a}^{2}+m_{b}^{2}+m_{c}^{2})}=frac{3}{2}sqrt{a^2+b^2+c^2}$$
$$Leftrightarrow left(p^2+4Rr+r^2right)left(frac{4R+r}{pr}
right)geq 3sqrt{3}sqrt{2p^2-8Rr-2r^2}$$
I square it, but that doesn't help.
geometry inequality triangle geometric-inequalities sos
geometry inequality triangle geometric-inequalities sos
edited Dec 30 '18 at 1:59
Michael Rozenberg
98.5k1590189
98.5k1590189
asked Dec 16 '18 at 12:14
Winter In My Heart Winter In My Heart
463
463
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The hint:
Draw the $Delta ABC$ with medians $m_b=BD$ and $CE=m_a$.
Thus, by the Ptolemy's theorem for the equilateral $BCDE$ we obtain:
$$BEcdot DC+BCcdot EDgeq BDcdot CE$$ or
$$frac{bc}{4}+frac{a^2}{2}geq m_am_b.$$
Hence, $$sum_{cyc}m_a=sqrt{sum_{cyc}left(m_a^2+2m_bm_cright)}leqsqrt{sum_{cyc}left(m_a^2+2left(frac{bc}{4}+frac{a^2}{2}right)right)}=$$
$$=sqrt{sum_{cyc}left(frac{1}{4}(2b^2+2c^2-a^2)+2left(frac{bc}{4}+frac{a^2}{2}right)right)}=frac{1}{2}sqrt{sum_{cyc}(7a^2+2ab)}.$$
It est, it's enough to prove that
$$frac{(ab+ac+bc)^4}{3a^2b^2c^2}geqsum_{cyc}(7a^2+2ab).$$
Now, let $a=y+z$, $b=x+z$ and $c=x+y$.
Thus, $x$, $y$ and $z$ are positives and we need to prove that
$$left(sum_{cyc}(x^2+3xy)right)^4geq3prod_{cyc}(x+y)^2sum_{cyc}(14x^2+14y^2+2x^2+6xy)$$ or
$$left(sum_{cyc}(x^2+3xy)right)^4geq12prod_{cyc}(x+y)^2sum_{cyc}(4x^2+5xy)$$ or
$$sum_{cyc}(x^8+12x^7y+12x^7z+10x^6y^2+10x^6z^2-12x^5y^3-12x^5z^3-21x^4y^4)+$$
$$+24xyzsum_{cyc}(x^5-x^3y^2-x^3z^2+x^2y^2z)geq0.$$
Now, $$sum_{cyc}(x^8+12x^7y+12x^7z+10x^6y^2+10x^6z^2-12x^5y^3-12x^5z^3-21x^4y^4)=$$
$$=frac{1}{2}sum_{cyc}(x^8+y^8+24x^7y+24xy^7+20x^6y^2+20x^2y^6-24x^5y^3-24x^3y^5-42x^4y^4)=$$
$$=frac{1}{2}sum_{cyc}(x^2-y^2)^2(x^4+24x^3y+22x^2y^2+24xy^3+y^4)geq0$$ and let $xgeq ygeq z$.
Thus,
$$sum_{cyc}(x^5-x^3y^2-x^3z^2+x^2y^2z)=$$
$$=frac{1}{2}sum_{cyc}(x^5-x^3y^2-x^2y^3+y^5-(x^3z^2-x^2yz^2-y^2xz^2+y^3z^2))=$$
$$=frac{1}{2}sum_{cyc}(x-y)^2((x+y)(x^2+xy+y^2)-(x+y)z^2)=$$
$$=frac{1}{2}sum_{cyc}(x-y)^2(x+y)(x^2+xy+y^2-z^2)geq$$
$$geqfrac{1}{2}left((x-z)^2(x+z)(x^2-y^2)+(y-z)^2(y+z)(y^2-x^2)right)geq$$
$$geqfrac{1}{2}left((y-z)^2(x+z)(x^2-y^2)+(y-z)^2(y+z)(y^2-x^2)right)=frac{1}{2}(y-z)^2(x-y)^2(x+y)geq0.$$
Done!
$endgroup$
$begingroup$
Please help me prove the last. Do you have another solution?
$endgroup$
– Winter In My Heart
Dec 16 '18 at 12:29
$begingroup$
@Winter In My Heart Also, it's true after the Ravi's substitution and full expanding. It's very ugly, but it's proof.
$endgroup$
– Michael Rozenberg
Dec 16 '18 at 12:47
$begingroup$
No problem, show it please
$endgroup$
– Winter In My Heart
Dec 16 '18 at 12:51
$begingroup$
@Winter In My Heart I fixed a typo in my proof. See now.
$endgroup$
– Michael Rozenberg
Dec 17 '18 at 6:45
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042546%2fa-triangle-has-sides-a-b-c-and-medians-m-a-m-b-m-c-show-abbc%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The hint:
Draw the $Delta ABC$ with medians $m_b=BD$ and $CE=m_a$.
Thus, by the Ptolemy's theorem for the equilateral $BCDE$ we obtain:
$$BEcdot DC+BCcdot EDgeq BDcdot CE$$ or
$$frac{bc}{4}+frac{a^2}{2}geq m_am_b.$$
Hence, $$sum_{cyc}m_a=sqrt{sum_{cyc}left(m_a^2+2m_bm_cright)}leqsqrt{sum_{cyc}left(m_a^2+2left(frac{bc}{4}+frac{a^2}{2}right)right)}=$$
$$=sqrt{sum_{cyc}left(frac{1}{4}(2b^2+2c^2-a^2)+2left(frac{bc}{4}+frac{a^2}{2}right)right)}=frac{1}{2}sqrt{sum_{cyc}(7a^2+2ab)}.$$
It est, it's enough to prove that
$$frac{(ab+ac+bc)^4}{3a^2b^2c^2}geqsum_{cyc}(7a^2+2ab).$$
Now, let $a=y+z$, $b=x+z$ and $c=x+y$.
Thus, $x$, $y$ and $z$ are positives and we need to prove that
$$left(sum_{cyc}(x^2+3xy)right)^4geq3prod_{cyc}(x+y)^2sum_{cyc}(14x^2+14y^2+2x^2+6xy)$$ or
$$left(sum_{cyc}(x^2+3xy)right)^4geq12prod_{cyc}(x+y)^2sum_{cyc}(4x^2+5xy)$$ or
$$sum_{cyc}(x^8+12x^7y+12x^7z+10x^6y^2+10x^6z^2-12x^5y^3-12x^5z^3-21x^4y^4)+$$
$$+24xyzsum_{cyc}(x^5-x^3y^2-x^3z^2+x^2y^2z)geq0.$$
Now, $$sum_{cyc}(x^8+12x^7y+12x^7z+10x^6y^2+10x^6z^2-12x^5y^3-12x^5z^3-21x^4y^4)=$$
$$=frac{1}{2}sum_{cyc}(x^8+y^8+24x^7y+24xy^7+20x^6y^2+20x^2y^6-24x^5y^3-24x^3y^5-42x^4y^4)=$$
$$=frac{1}{2}sum_{cyc}(x^2-y^2)^2(x^4+24x^3y+22x^2y^2+24xy^3+y^4)geq0$$ and let $xgeq ygeq z$.
Thus,
$$sum_{cyc}(x^5-x^3y^2-x^3z^2+x^2y^2z)=$$
$$=frac{1}{2}sum_{cyc}(x^5-x^3y^2-x^2y^3+y^5-(x^3z^2-x^2yz^2-y^2xz^2+y^3z^2))=$$
$$=frac{1}{2}sum_{cyc}(x-y)^2((x+y)(x^2+xy+y^2)-(x+y)z^2)=$$
$$=frac{1}{2}sum_{cyc}(x-y)^2(x+y)(x^2+xy+y^2-z^2)geq$$
$$geqfrac{1}{2}left((x-z)^2(x+z)(x^2-y^2)+(y-z)^2(y+z)(y^2-x^2)right)geq$$
$$geqfrac{1}{2}left((y-z)^2(x+z)(x^2-y^2)+(y-z)^2(y+z)(y^2-x^2)right)=frac{1}{2}(y-z)^2(x-y)^2(x+y)geq0.$$
Done!
$endgroup$
$begingroup$
Please help me prove the last. Do you have another solution?
$endgroup$
– Winter In My Heart
Dec 16 '18 at 12:29
$begingroup$
@Winter In My Heart Also, it's true after the Ravi's substitution and full expanding. It's very ugly, but it's proof.
$endgroup$
– Michael Rozenberg
Dec 16 '18 at 12:47
$begingroup$
No problem, show it please
$endgroup$
– Winter In My Heart
Dec 16 '18 at 12:51
$begingroup$
@Winter In My Heart I fixed a typo in my proof. See now.
$endgroup$
– Michael Rozenberg
Dec 17 '18 at 6:45
add a comment |
$begingroup$
The hint:
Draw the $Delta ABC$ with medians $m_b=BD$ and $CE=m_a$.
Thus, by the Ptolemy's theorem for the equilateral $BCDE$ we obtain:
$$BEcdot DC+BCcdot EDgeq BDcdot CE$$ or
$$frac{bc}{4}+frac{a^2}{2}geq m_am_b.$$
Hence, $$sum_{cyc}m_a=sqrt{sum_{cyc}left(m_a^2+2m_bm_cright)}leqsqrt{sum_{cyc}left(m_a^2+2left(frac{bc}{4}+frac{a^2}{2}right)right)}=$$
$$=sqrt{sum_{cyc}left(frac{1}{4}(2b^2+2c^2-a^2)+2left(frac{bc}{4}+frac{a^2}{2}right)right)}=frac{1}{2}sqrt{sum_{cyc}(7a^2+2ab)}.$$
It est, it's enough to prove that
$$frac{(ab+ac+bc)^4}{3a^2b^2c^2}geqsum_{cyc}(7a^2+2ab).$$
Now, let $a=y+z$, $b=x+z$ and $c=x+y$.
Thus, $x$, $y$ and $z$ are positives and we need to prove that
$$left(sum_{cyc}(x^2+3xy)right)^4geq3prod_{cyc}(x+y)^2sum_{cyc}(14x^2+14y^2+2x^2+6xy)$$ or
$$left(sum_{cyc}(x^2+3xy)right)^4geq12prod_{cyc}(x+y)^2sum_{cyc}(4x^2+5xy)$$ or
$$sum_{cyc}(x^8+12x^7y+12x^7z+10x^6y^2+10x^6z^2-12x^5y^3-12x^5z^3-21x^4y^4)+$$
$$+24xyzsum_{cyc}(x^5-x^3y^2-x^3z^2+x^2y^2z)geq0.$$
Now, $$sum_{cyc}(x^8+12x^7y+12x^7z+10x^6y^2+10x^6z^2-12x^5y^3-12x^5z^3-21x^4y^4)=$$
$$=frac{1}{2}sum_{cyc}(x^8+y^8+24x^7y+24xy^7+20x^6y^2+20x^2y^6-24x^5y^3-24x^3y^5-42x^4y^4)=$$
$$=frac{1}{2}sum_{cyc}(x^2-y^2)^2(x^4+24x^3y+22x^2y^2+24xy^3+y^4)geq0$$ and let $xgeq ygeq z$.
Thus,
$$sum_{cyc}(x^5-x^3y^2-x^3z^2+x^2y^2z)=$$
$$=frac{1}{2}sum_{cyc}(x^5-x^3y^2-x^2y^3+y^5-(x^3z^2-x^2yz^2-y^2xz^2+y^3z^2))=$$
$$=frac{1}{2}sum_{cyc}(x-y)^2((x+y)(x^2+xy+y^2)-(x+y)z^2)=$$
$$=frac{1}{2}sum_{cyc}(x-y)^2(x+y)(x^2+xy+y^2-z^2)geq$$
$$geqfrac{1}{2}left((x-z)^2(x+z)(x^2-y^2)+(y-z)^2(y+z)(y^2-x^2)right)geq$$
$$geqfrac{1}{2}left((y-z)^2(x+z)(x^2-y^2)+(y-z)^2(y+z)(y^2-x^2)right)=frac{1}{2}(y-z)^2(x-y)^2(x+y)geq0.$$
Done!
$endgroup$
$begingroup$
Please help me prove the last. Do you have another solution?
$endgroup$
– Winter In My Heart
Dec 16 '18 at 12:29
$begingroup$
@Winter In My Heart Also, it's true after the Ravi's substitution and full expanding. It's very ugly, but it's proof.
$endgroup$
– Michael Rozenberg
Dec 16 '18 at 12:47
$begingroup$
No problem, show it please
$endgroup$
– Winter In My Heart
Dec 16 '18 at 12:51
$begingroup$
@Winter In My Heart I fixed a typo in my proof. See now.
$endgroup$
– Michael Rozenberg
Dec 17 '18 at 6:45
add a comment |
$begingroup$
The hint:
Draw the $Delta ABC$ with medians $m_b=BD$ and $CE=m_a$.
Thus, by the Ptolemy's theorem for the equilateral $BCDE$ we obtain:
$$BEcdot DC+BCcdot EDgeq BDcdot CE$$ or
$$frac{bc}{4}+frac{a^2}{2}geq m_am_b.$$
Hence, $$sum_{cyc}m_a=sqrt{sum_{cyc}left(m_a^2+2m_bm_cright)}leqsqrt{sum_{cyc}left(m_a^2+2left(frac{bc}{4}+frac{a^2}{2}right)right)}=$$
$$=sqrt{sum_{cyc}left(frac{1}{4}(2b^2+2c^2-a^2)+2left(frac{bc}{4}+frac{a^2}{2}right)right)}=frac{1}{2}sqrt{sum_{cyc}(7a^2+2ab)}.$$
It est, it's enough to prove that
$$frac{(ab+ac+bc)^4}{3a^2b^2c^2}geqsum_{cyc}(7a^2+2ab).$$
Now, let $a=y+z$, $b=x+z$ and $c=x+y$.
Thus, $x$, $y$ and $z$ are positives and we need to prove that
$$left(sum_{cyc}(x^2+3xy)right)^4geq3prod_{cyc}(x+y)^2sum_{cyc}(14x^2+14y^2+2x^2+6xy)$$ or
$$left(sum_{cyc}(x^2+3xy)right)^4geq12prod_{cyc}(x+y)^2sum_{cyc}(4x^2+5xy)$$ or
$$sum_{cyc}(x^8+12x^7y+12x^7z+10x^6y^2+10x^6z^2-12x^5y^3-12x^5z^3-21x^4y^4)+$$
$$+24xyzsum_{cyc}(x^5-x^3y^2-x^3z^2+x^2y^2z)geq0.$$
Now, $$sum_{cyc}(x^8+12x^7y+12x^7z+10x^6y^2+10x^6z^2-12x^5y^3-12x^5z^3-21x^4y^4)=$$
$$=frac{1}{2}sum_{cyc}(x^8+y^8+24x^7y+24xy^7+20x^6y^2+20x^2y^6-24x^5y^3-24x^3y^5-42x^4y^4)=$$
$$=frac{1}{2}sum_{cyc}(x^2-y^2)^2(x^4+24x^3y+22x^2y^2+24xy^3+y^4)geq0$$ and let $xgeq ygeq z$.
Thus,
$$sum_{cyc}(x^5-x^3y^2-x^3z^2+x^2y^2z)=$$
$$=frac{1}{2}sum_{cyc}(x^5-x^3y^2-x^2y^3+y^5-(x^3z^2-x^2yz^2-y^2xz^2+y^3z^2))=$$
$$=frac{1}{2}sum_{cyc}(x-y)^2((x+y)(x^2+xy+y^2)-(x+y)z^2)=$$
$$=frac{1}{2}sum_{cyc}(x-y)^2(x+y)(x^2+xy+y^2-z^2)geq$$
$$geqfrac{1}{2}left((x-z)^2(x+z)(x^2-y^2)+(y-z)^2(y+z)(y^2-x^2)right)geq$$
$$geqfrac{1}{2}left((y-z)^2(x+z)(x^2-y^2)+(y-z)^2(y+z)(y^2-x^2)right)=frac{1}{2}(y-z)^2(x-y)^2(x+y)geq0.$$
Done!
$endgroup$
The hint:
Draw the $Delta ABC$ with medians $m_b=BD$ and $CE=m_a$.
Thus, by the Ptolemy's theorem for the equilateral $BCDE$ we obtain:
$$BEcdot DC+BCcdot EDgeq BDcdot CE$$ or
$$frac{bc}{4}+frac{a^2}{2}geq m_am_b.$$
Hence, $$sum_{cyc}m_a=sqrt{sum_{cyc}left(m_a^2+2m_bm_cright)}leqsqrt{sum_{cyc}left(m_a^2+2left(frac{bc}{4}+frac{a^2}{2}right)right)}=$$
$$=sqrt{sum_{cyc}left(frac{1}{4}(2b^2+2c^2-a^2)+2left(frac{bc}{4}+frac{a^2}{2}right)right)}=frac{1}{2}sqrt{sum_{cyc}(7a^2+2ab)}.$$
It est, it's enough to prove that
$$frac{(ab+ac+bc)^4}{3a^2b^2c^2}geqsum_{cyc}(7a^2+2ab).$$
Now, let $a=y+z$, $b=x+z$ and $c=x+y$.
Thus, $x$, $y$ and $z$ are positives and we need to prove that
$$left(sum_{cyc}(x^2+3xy)right)^4geq3prod_{cyc}(x+y)^2sum_{cyc}(14x^2+14y^2+2x^2+6xy)$$ or
$$left(sum_{cyc}(x^2+3xy)right)^4geq12prod_{cyc}(x+y)^2sum_{cyc}(4x^2+5xy)$$ or
$$sum_{cyc}(x^8+12x^7y+12x^7z+10x^6y^2+10x^6z^2-12x^5y^3-12x^5z^3-21x^4y^4)+$$
$$+24xyzsum_{cyc}(x^5-x^3y^2-x^3z^2+x^2y^2z)geq0.$$
Now, $$sum_{cyc}(x^8+12x^7y+12x^7z+10x^6y^2+10x^6z^2-12x^5y^3-12x^5z^3-21x^4y^4)=$$
$$=frac{1}{2}sum_{cyc}(x^8+y^8+24x^7y+24xy^7+20x^6y^2+20x^2y^6-24x^5y^3-24x^3y^5-42x^4y^4)=$$
$$=frac{1}{2}sum_{cyc}(x^2-y^2)^2(x^4+24x^3y+22x^2y^2+24xy^3+y^4)geq0$$ and let $xgeq ygeq z$.
Thus,
$$sum_{cyc}(x^5-x^3y^2-x^3z^2+x^2y^2z)=$$
$$=frac{1}{2}sum_{cyc}(x^5-x^3y^2-x^2y^3+y^5-(x^3z^2-x^2yz^2-y^2xz^2+y^3z^2))=$$
$$=frac{1}{2}sum_{cyc}(x-y)^2((x+y)(x^2+xy+y^2)-(x+y)z^2)=$$
$$=frac{1}{2}sum_{cyc}(x-y)^2(x+y)(x^2+xy+y^2-z^2)geq$$
$$geqfrac{1}{2}left((x-z)^2(x+z)(x^2-y^2)+(y-z)^2(y+z)(y^2-x^2)right)geq$$
$$geqfrac{1}{2}left((y-z)^2(x+z)(x^2-y^2)+(y-z)^2(y+z)(y^2-x^2)right)=frac{1}{2}(y-z)^2(x-y)^2(x+y)geq0.$$
Done!
edited Dec 17 '18 at 6:44
answered Dec 16 '18 at 12:26
Michael RozenbergMichael Rozenberg
98.5k1590189
98.5k1590189
$begingroup$
Please help me prove the last. Do you have another solution?
$endgroup$
– Winter In My Heart
Dec 16 '18 at 12:29
$begingroup$
@Winter In My Heart Also, it's true after the Ravi's substitution and full expanding. It's very ugly, but it's proof.
$endgroup$
– Michael Rozenberg
Dec 16 '18 at 12:47
$begingroup$
No problem, show it please
$endgroup$
– Winter In My Heart
Dec 16 '18 at 12:51
$begingroup$
@Winter In My Heart I fixed a typo in my proof. See now.
$endgroup$
– Michael Rozenberg
Dec 17 '18 at 6:45
add a comment |
$begingroup$
Please help me prove the last. Do you have another solution?
$endgroup$
– Winter In My Heart
Dec 16 '18 at 12:29
$begingroup$
@Winter In My Heart Also, it's true after the Ravi's substitution and full expanding. It's very ugly, but it's proof.
$endgroup$
– Michael Rozenberg
Dec 16 '18 at 12:47
$begingroup$
No problem, show it please
$endgroup$
– Winter In My Heart
Dec 16 '18 at 12:51
$begingroup$
@Winter In My Heart I fixed a typo in my proof. See now.
$endgroup$
– Michael Rozenberg
Dec 17 '18 at 6:45
$begingroup$
Please help me prove the last. Do you have another solution?
$endgroup$
– Winter In My Heart
Dec 16 '18 at 12:29
$begingroup$
Please help me prove the last. Do you have another solution?
$endgroup$
– Winter In My Heart
Dec 16 '18 at 12:29
$begingroup$
@Winter In My Heart Also, it's true after the Ravi's substitution and full expanding. It's very ugly, but it's proof.
$endgroup$
– Michael Rozenberg
Dec 16 '18 at 12:47
$begingroup$
@Winter In My Heart Also, it's true after the Ravi's substitution and full expanding. It's very ugly, but it's proof.
$endgroup$
– Michael Rozenberg
Dec 16 '18 at 12:47
$begingroup$
No problem, show it please
$endgroup$
– Winter In My Heart
Dec 16 '18 at 12:51
$begingroup$
No problem, show it please
$endgroup$
– Winter In My Heart
Dec 16 '18 at 12:51
$begingroup$
@Winter In My Heart I fixed a typo in my proof. See now.
$endgroup$
– Michael Rozenberg
Dec 17 '18 at 6:45
$begingroup$
@Winter In My Heart I fixed a typo in my proof. See now.
$endgroup$
– Michael Rozenberg
Dec 17 '18 at 6:45
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042546%2fa-triangle-has-sides-a-b-c-and-medians-m-a-m-b-m-c-show-abbc%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown