Lipschitz constant higher dimension
$begingroup$
Suppose $f:mathbb{R^2} rightarrow mathbb{R}$ is Lipschitz with Lipschitz constant $K>0$, i.e. $|f(x)-f(y)|le K||x-y||$.
Define $g:mathbb{Rtimes mathbb{R}^2} rightarrow mathbb{R^3}$ by $g(t, x)=(x, f(x))$. I want to prove $g$ is Lipschitz in the second variable with Lipschitz constant $K+1$ i.e. $||g(t, x)-g(t, y)||le (1+K) ||x-y||$, $forall x, y in mathbb{R^2}$
I want to know if my proof is correct:
We have: $||g(t, x)-g(t, y)||=||(x, f(x))-(y, f(y))||=||(x-y, f(x)-f(y))||le||(x-y, 0)||+$ $ +||(0, 0, f(x)-f(y))||le(1+K)||x-y||$ as $f$ is Lipschitz.
Is my proof correct? Thank you.
analysis
$endgroup$
add a comment |
$begingroup$
Suppose $f:mathbb{R^2} rightarrow mathbb{R}$ is Lipschitz with Lipschitz constant $K>0$, i.e. $|f(x)-f(y)|le K||x-y||$.
Define $g:mathbb{Rtimes mathbb{R}^2} rightarrow mathbb{R^3}$ by $g(t, x)=(x, f(x))$. I want to prove $g$ is Lipschitz in the second variable with Lipschitz constant $K+1$ i.e. $||g(t, x)-g(t, y)||le (1+K) ||x-y||$, $forall x, y in mathbb{R^2}$
I want to know if my proof is correct:
We have: $||g(t, x)-g(t, y)||=||(x, f(x))-(y, f(y))||=||(x-y, f(x)-f(y))||le||(x-y, 0)||+$ $ +||(0, 0, f(x)-f(y))||le(1+K)||x-y||$ as $f$ is Lipschitz.
Is my proof correct? Thank you.
analysis
$endgroup$
add a comment |
$begingroup$
Suppose $f:mathbb{R^2} rightarrow mathbb{R}$ is Lipschitz with Lipschitz constant $K>0$, i.e. $|f(x)-f(y)|le K||x-y||$.
Define $g:mathbb{Rtimes mathbb{R}^2} rightarrow mathbb{R^3}$ by $g(t, x)=(x, f(x))$. I want to prove $g$ is Lipschitz in the second variable with Lipschitz constant $K+1$ i.e. $||g(t, x)-g(t, y)||le (1+K) ||x-y||$, $forall x, y in mathbb{R^2}$
I want to know if my proof is correct:
We have: $||g(t, x)-g(t, y)||=||(x, f(x))-(y, f(y))||=||(x-y, f(x)-f(y))||le||(x-y, 0)||+$ $ +||(0, 0, f(x)-f(y))||le(1+K)||x-y||$ as $f$ is Lipschitz.
Is my proof correct? Thank you.
analysis
$endgroup$
Suppose $f:mathbb{R^2} rightarrow mathbb{R}$ is Lipschitz with Lipschitz constant $K>0$, i.e. $|f(x)-f(y)|le K||x-y||$.
Define $g:mathbb{Rtimes mathbb{R}^2} rightarrow mathbb{R^3}$ by $g(t, x)=(x, f(x))$. I want to prove $g$ is Lipschitz in the second variable with Lipschitz constant $K+1$ i.e. $||g(t, x)-g(t, y)||le (1+K) ||x-y||$, $forall x, y in mathbb{R^2}$
I want to know if my proof is correct:
We have: $||g(t, x)-g(t, y)||=||(x, f(x))-(y, f(y))||=||(x-y, f(x)-f(y))||le||(x-y, 0)||+$ $ +||(0, 0, f(x)-f(y))||le(1+K)||x-y||$ as $f$ is Lipschitz.
Is my proof correct? Thank you.
analysis
analysis
asked Dec 16 '18 at 12:59
hermithermit
353
353
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your proof is correct, up to some typos and details to be added:
$||(0, 0, f(x)-f(y))||$ should be $||(0, f(x)-f(y))||$;- maybe it would be better to add the step $||(0, f(x)-f(y))||=leftlvert f(x)-f(y)rightrvert$.
$endgroup$
$begingroup$
Thank you. I wrote $||(0, 0, f(x)-f(y))||$ because $x, y in mathbb{R^2}$
$endgroup$
– hermit
Dec 16 '18 at 13:40
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042584%2flipschitz-constant-higher-dimension%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your proof is correct, up to some typos and details to be added:
$||(0, 0, f(x)-f(y))||$ should be $||(0, f(x)-f(y))||$;- maybe it would be better to add the step $||(0, f(x)-f(y))||=leftlvert f(x)-f(y)rightrvert$.
$endgroup$
$begingroup$
Thank you. I wrote $||(0, 0, f(x)-f(y))||$ because $x, y in mathbb{R^2}$
$endgroup$
– hermit
Dec 16 '18 at 13:40
add a comment |
$begingroup$
Your proof is correct, up to some typos and details to be added:
$||(0, 0, f(x)-f(y))||$ should be $||(0, f(x)-f(y))||$;- maybe it would be better to add the step $||(0, f(x)-f(y))||=leftlvert f(x)-f(y)rightrvert$.
$endgroup$
$begingroup$
Thank you. I wrote $||(0, 0, f(x)-f(y))||$ because $x, y in mathbb{R^2}$
$endgroup$
– hermit
Dec 16 '18 at 13:40
add a comment |
$begingroup$
Your proof is correct, up to some typos and details to be added:
$||(0, 0, f(x)-f(y))||$ should be $||(0, f(x)-f(y))||$;- maybe it would be better to add the step $||(0, f(x)-f(y))||=leftlvert f(x)-f(y)rightrvert$.
$endgroup$
Your proof is correct, up to some typos and details to be added:
$||(0, 0, f(x)-f(y))||$ should be $||(0, f(x)-f(y))||$;- maybe it would be better to add the step $||(0, f(x)-f(y))||=leftlvert f(x)-f(y)rightrvert$.
answered Dec 16 '18 at 13:36
Davide GiraudoDavide Giraudo
125k16150261
125k16150261
$begingroup$
Thank you. I wrote $||(0, 0, f(x)-f(y))||$ because $x, y in mathbb{R^2}$
$endgroup$
– hermit
Dec 16 '18 at 13:40
add a comment |
$begingroup$
Thank you. I wrote $||(0, 0, f(x)-f(y))||$ because $x, y in mathbb{R^2}$
$endgroup$
– hermit
Dec 16 '18 at 13:40
$begingroup$
Thank you. I wrote $||(0, 0, f(x)-f(y))||$ because $x, y in mathbb{R^2}$
$endgroup$
– hermit
Dec 16 '18 at 13:40
$begingroup$
Thank you. I wrote $||(0, 0, f(x)-f(y))||$ because $x, y in mathbb{R^2}$
$endgroup$
– hermit
Dec 16 '18 at 13:40
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042584%2flipschitz-constant-higher-dimension%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown