Showing any linear operator $T : X to Y$ is bounded, where $X$ is a finite dimensional normed vector space,...
$begingroup$
Let $X$ be a finite dimensional normed vector space and $Y$ an arbitrary normed vector space. Show that any linear operator $T : X to Y$ is bounded.
I got the hint to first show that $| x|_0 := | x | + | Tx|$, $x in X$, defines a norm on $X$, but I do not know how this should help me.
Further I should calculate $|T|$ for where $X = K^n$, equipped with the Euclidean norm $|cdot|_2$, $Y := ell_1(mathbb{N})$ and $Tx := (x_1,ldots,x_n,0,0,ldots) in ell_1(mathbb{N})$, for all $x = (x_1,ldots,x_n) in K^n$.
Can please someone help?
functional-analysis vector-spaces normed-spaces
$endgroup$
|
show 4 more comments
$begingroup$
Let $X$ be a finite dimensional normed vector space and $Y$ an arbitrary normed vector space. Show that any linear operator $T : X to Y$ is bounded.
I got the hint to first show that $| x|_0 := | x | + | Tx|$, $x in X$, defines a norm on $X$, but I do not know how this should help me.
Further I should calculate $|T|$ for where $X = K^n$, equipped with the Euclidean norm $|cdot|_2$, $Y := ell_1(mathbb{N})$ and $Tx := (x_1,ldots,x_n,0,0,ldots) in ell_1(mathbb{N})$, for all $x = (x_1,ldots,x_n) in K^n$.
Can please someone help?
functional-analysis vector-spaces normed-spaces
$endgroup$
$begingroup$
Hint: What theorem do you know about norms on a finite-dimensional vector space?
$endgroup$
– Mindlack
Dec 16 '18 at 11:02
$begingroup$
Norms on a finite-dimensional vector space are equivalent?
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:14
$begingroup$
Yes! So what can you infer, if you know that the original norn and the one you defined are equivalent?
$endgroup$
– Mindlack
Dec 16 '18 at 11:16
$begingroup$
$∥Tx∥ leq ∥x∥ + ∥Tx∥ = ∥x∥_0$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:25
1
$begingroup$
I am sorry, I must have misunderstood your first comment and confused you further. You do have $|Tx| leq |x|_0$, thus the operator is bounded.
$endgroup$
– Mindlack
Dec 16 '18 at 11:41
|
show 4 more comments
$begingroup$
Let $X$ be a finite dimensional normed vector space and $Y$ an arbitrary normed vector space. Show that any linear operator $T : X to Y$ is bounded.
I got the hint to first show that $| x|_0 := | x | + | Tx|$, $x in X$, defines a norm on $X$, but I do not know how this should help me.
Further I should calculate $|T|$ for where $X = K^n$, equipped with the Euclidean norm $|cdot|_2$, $Y := ell_1(mathbb{N})$ and $Tx := (x_1,ldots,x_n,0,0,ldots) in ell_1(mathbb{N})$, for all $x = (x_1,ldots,x_n) in K^n$.
Can please someone help?
functional-analysis vector-spaces normed-spaces
$endgroup$
Let $X$ be a finite dimensional normed vector space and $Y$ an arbitrary normed vector space. Show that any linear operator $T : X to Y$ is bounded.
I got the hint to first show that $| x|_0 := | x | + | Tx|$, $x in X$, defines a norm on $X$, but I do not know how this should help me.
Further I should calculate $|T|$ for where $X = K^n$, equipped with the Euclidean norm $|cdot|_2$, $Y := ell_1(mathbb{N})$ and $Tx := (x_1,ldots,x_n,0,0,ldots) in ell_1(mathbb{N})$, for all $x = (x_1,ldots,x_n) in K^n$.
Can please someone help?
functional-analysis vector-spaces normed-spaces
functional-analysis vector-spaces normed-spaces
edited Dec 16 '18 at 12:17
amWhy
1
1
asked Dec 16 '18 at 10:45
Anna SchmitzAnna Schmitz
917
917
$begingroup$
Hint: What theorem do you know about norms on a finite-dimensional vector space?
$endgroup$
– Mindlack
Dec 16 '18 at 11:02
$begingroup$
Norms on a finite-dimensional vector space are equivalent?
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:14
$begingroup$
Yes! So what can you infer, if you know that the original norn and the one you defined are equivalent?
$endgroup$
– Mindlack
Dec 16 '18 at 11:16
$begingroup$
$∥Tx∥ leq ∥x∥ + ∥Tx∥ = ∥x∥_0$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:25
1
$begingroup$
I am sorry, I must have misunderstood your first comment and confused you further. You do have $|Tx| leq |x|_0$, thus the operator is bounded.
$endgroup$
– Mindlack
Dec 16 '18 at 11:41
|
show 4 more comments
$begingroup$
Hint: What theorem do you know about norms on a finite-dimensional vector space?
$endgroup$
– Mindlack
Dec 16 '18 at 11:02
$begingroup$
Norms on a finite-dimensional vector space are equivalent?
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:14
$begingroup$
Yes! So what can you infer, if you know that the original norn and the one you defined are equivalent?
$endgroup$
– Mindlack
Dec 16 '18 at 11:16
$begingroup$
$∥Tx∥ leq ∥x∥ + ∥Tx∥ = ∥x∥_0$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:25
1
$begingroup$
I am sorry, I must have misunderstood your first comment and confused you further. You do have $|Tx| leq |x|_0$, thus the operator is bounded.
$endgroup$
– Mindlack
Dec 16 '18 at 11:41
$begingroup$
Hint: What theorem do you know about norms on a finite-dimensional vector space?
$endgroup$
– Mindlack
Dec 16 '18 at 11:02
$begingroup$
Hint: What theorem do you know about norms on a finite-dimensional vector space?
$endgroup$
– Mindlack
Dec 16 '18 at 11:02
$begingroup$
Norms on a finite-dimensional vector space are equivalent?
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:14
$begingroup$
Norms on a finite-dimensional vector space are equivalent?
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:14
$begingroup$
Yes! So what can you infer, if you know that the original norn and the one you defined are equivalent?
$endgroup$
– Mindlack
Dec 16 '18 at 11:16
$begingroup$
Yes! So what can you infer, if you know that the original norn and the one you defined are equivalent?
$endgroup$
– Mindlack
Dec 16 '18 at 11:16
$begingroup$
$∥Tx∥ leq ∥x∥ + ∥Tx∥ = ∥x∥_0$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:25
$begingroup$
$∥Tx∥ leq ∥x∥ + ∥Tx∥ = ∥x∥_0$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:25
1
1
$begingroup$
I am sorry, I must have misunderstood your first comment and confused you further. You do have $|Tx| leq |x|_0$, thus the operator is bounded.
$endgroup$
– Mindlack
Dec 16 '18 at 11:41
$begingroup$
I am sorry, I must have misunderstood your first comment and confused you further. You do have $|Tx| leq |x|_0$, thus the operator is bounded.
$endgroup$
– Mindlack
Dec 16 '18 at 11:41
|
show 4 more comments
1 Answer
1
active
oldest
votes
$begingroup$
Regarding the operator norm:
I was thinking
$ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_1} = sup limits_{x neq0} frac{∥(
x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_1} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{|x_1|+…+|x_n|}= 1 $
$endgroup$
1
$begingroup$
Seems correct !
$endgroup$
– Viktor Glombik
Dec 16 '18 at 12:18
$begingroup$
Why are you using the $1$ norm for $x$ if $X$ is equipped with the Euclidean norm?
$endgroup$
– user289143
Dec 16 '18 at 16:37
$begingroup$
Because $Y := ell_1(mathbb{N})$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:39
$begingroup$
But for $x$ you have to look at the norm of $X$. You should use the norm of $Y$ just for $Tx$
$endgroup$
– user289143
Dec 16 '18 at 16:42
1
$begingroup$
True. So $ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq0} frac{∥( x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $ and I thought I had figured it out
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:50
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042463%2fshowing-any-linear-operator-t-x-to-y-is-bounded-where-x-is-a-finite-dime%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Regarding the operator norm:
I was thinking
$ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_1} = sup limits_{x neq0} frac{∥(
x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_1} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{|x_1|+…+|x_n|}= 1 $
$endgroup$
1
$begingroup$
Seems correct !
$endgroup$
– Viktor Glombik
Dec 16 '18 at 12:18
$begingroup$
Why are you using the $1$ norm for $x$ if $X$ is equipped with the Euclidean norm?
$endgroup$
– user289143
Dec 16 '18 at 16:37
$begingroup$
Because $Y := ell_1(mathbb{N})$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:39
$begingroup$
But for $x$ you have to look at the norm of $X$. You should use the norm of $Y$ just for $Tx$
$endgroup$
– user289143
Dec 16 '18 at 16:42
1
$begingroup$
True. So $ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq0} frac{∥( x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $ and I thought I had figured it out
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:50
add a comment |
$begingroup$
Regarding the operator norm:
I was thinking
$ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_1} = sup limits_{x neq0} frac{∥(
x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_1} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{|x_1|+…+|x_n|}= 1 $
$endgroup$
1
$begingroup$
Seems correct !
$endgroup$
– Viktor Glombik
Dec 16 '18 at 12:18
$begingroup$
Why are you using the $1$ norm for $x$ if $X$ is equipped with the Euclidean norm?
$endgroup$
– user289143
Dec 16 '18 at 16:37
$begingroup$
Because $Y := ell_1(mathbb{N})$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:39
$begingroup$
But for $x$ you have to look at the norm of $X$. You should use the norm of $Y$ just for $Tx$
$endgroup$
– user289143
Dec 16 '18 at 16:42
1
$begingroup$
True. So $ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq0} frac{∥( x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $ and I thought I had figured it out
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:50
add a comment |
$begingroup$
Regarding the operator norm:
I was thinking
$ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_1} = sup limits_{x neq0} frac{∥(
x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_1} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{|x_1|+…+|x_n|}= 1 $
$endgroup$
Regarding the operator norm:
I was thinking
$ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_1} = sup limits_{x neq0} frac{∥(
x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_1} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{|x_1|+…+|x_n|}= 1 $
answered Dec 16 '18 at 11:57
Anna SchmitzAnna Schmitz
917
917
1
$begingroup$
Seems correct !
$endgroup$
– Viktor Glombik
Dec 16 '18 at 12:18
$begingroup$
Why are you using the $1$ norm for $x$ if $X$ is equipped with the Euclidean norm?
$endgroup$
– user289143
Dec 16 '18 at 16:37
$begingroup$
Because $Y := ell_1(mathbb{N})$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:39
$begingroup$
But for $x$ you have to look at the norm of $X$. You should use the norm of $Y$ just for $Tx$
$endgroup$
– user289143
Dec 16 '18 at 16:42
1
$begingroup$
True. So $ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq0} frac{∥( x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $ and I thought I had figured it out
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:50
add a comment |
1
$begingroup$
Seems correct !
$endgroup$
– Viktor Glombik
Dec 16 '18 at 12:18
$begingroup$
Why are you using the $1$ norm for $x$ if $X$ is equipped with the Euclidean norm?
$endgroup$
– user289143
Dec 16 '18 at 16:37
$begingroup$
Because $Y := ell_1(mathbb{N})$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:39
$begingroup$
But for $x$ you have to look at the norm of $X$. You should use the norm of $Y$ just for $Tx$
$endgroup$
– user289143
Dec 16 '18 at 16:42
1
$begingroup$
True. So $ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq0} frac{∥( x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $ and I thought I had figured it out
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:50
1
1
$begingroup$
Seems correct !
$endgroup$
– Viktor Glombik
Dec 16 '18 at 12:18
$begingroup$
Seems correct !
$endgroup$
– Viktor Glombik
Dec 16 '18 at 12:18
$begingroup$
Why are you using the $1$ norm for $x$ if $X$ is equipped with the Euclidean norm?
$endgroup$
– user289143
Dec 16 '18 at 16:37
$begingroup$
Why are you using the $1$ norm for $x$ if $X$ is equipped with the Euclidean norm?
$endgroup$
– user289143
Dec 16 '18 at 16:37
$begingroup$
Because $Y := ell_1(mathbb{N})$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:39
$begingroup$
Because $Y := ell_1(mathbb{N})$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:39
$begingroup$
But for $x$ you have to look at the norm of $X$. You should use the norm of $Y$ just for $Tx$
$endgroup$
– user289143
Dec 16 '18 at 16:42
$begingroup$
But for $x$ you have to look at the norm of $X$. You should use the norm of $Y$ just for $Tx$
$endgroup$
– user289143
Dec 16 '18 at 16:42
1
1
$begingroup$
True. So $ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq0} frac{∥( x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $ and I thought I had figured it out
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:50
$begingroup$
True. So $ ||T∥_2 = sup limits_{x neq 0} frac{∥Tx∥_1}{∥x∥_2} = sup limits_{x neq0} frac{∥( x_1,…,x_n,0,0,…)∥_1}{∥(x_1,…,x_n)∥_2} = sup limits_{x neq0} frac{|x_1|+…+|x_n|}{(|x_1|^2+…+|x_n|^2)^{frac{1}{2}}}= ? $ and I thought I had figured it out
$endgroup$
– Anna Schmitz
Dec 16 '18 at 16:50
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042463%2fshowing-any-linear-operator-t-x-to-y-is-bounded-where-x-is-a-finite-dime%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint: What theorem do you know about norms on a finite-dimensional vector space?
$endgroup$
– Mindlack
Dec 16 '18 at 11:02
$begingroup$
Norms on a finite-dimensional vector space are equivalent?
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:14
$begingroup$
Yes! So what can you infer, if you know that the original norn and the one you defined are equivalent?
$endgroup$
– Mindlack
Dec 16 '18 at 11:16
$begingroup$
$∥Tx∥ leq ∥x∥ + ∥Tx∥ = ∥x∥_0$
$endgroup$
– Anna Schmitz
Dec 16 '18 at 11:25
1
$begingroup$
I am sorry, I must have misunderstood your first comment and confused you further. You do have $|Tx| leq |x|_0$, thus the operator is bounded.
$endgroup$
– Mindlack
Dec 16 '18 at 11:41