Algebraic equation (find $b$ and $c$)
$begingroup$
The goal is, given the field extension $,mathbb{Q}subsetmathbb{C}$, to find the minimal polynomial for the element
$$eta=cosleft(frac{2pi}{5}right)$$
I define the element
$$xi=cosleft(frac{2pi}{5}right)+isinleft(frac{2pi}{5}right)$$
and due to $,left|xiright|=1$, I rewrite $,eta,$ as
$$eta=frac{xi+overline{xi}}{2}=frac{1}{2}left(xi+frac{1}{xi}right)$$
The next step is to find $,b,cinmathbb{Q},$ such that $,fleft(etaright)=0$, where $,f(x)=x^2+bx+cinmathbb{Q}left[Xright].$ So, I am trying to solve (unsuccessfully) the following equation
$$frac{1}{4}left(xi+frac{1}{xi}right)^2+frac{b}{2}left(xi+frac{1}{xi}right)+c=0$$
I know the solution is $,b=frac{1}{2},,c=-frac{1}{4},$ but when it comes to obtaining those values myself, I fail again and again. HELP!
abstract-algebra cryptography
$endgroup$
add a comment |
$begingroup$
The goal is, given the field extension $,mathbb{Q}subsetmathbb{C}$, to find the minimal polynomial for the element
$$eta=cosleft(frac{2pi}{5}right)$$
I define the element
$$xi=cosleft(frac{2pi}{5}right)+isinleft(frac{2pi}{5}right)$$
and due to $,left|xiright|=1$, I rewrite $,eta,$ as
$$eta=frac{xi+overline{xi}}{2}=frac{1}{2}left(xi+frac{1}{xi}right)$$
The next step is to find $,b,cinmathbb{Q},$ such that $,fleft(etaright)=0$, where $,f(x)=x^2+bx+cinmathbb{Q}left[Xright].$ So, I am trying to solve (unsuccessfully) the following equation
$$frac{1}{4}left(xi+frac{1}{xi}right)^2+frac{b}{2}left(xi+frac{1}{xi}right)+c=0$$
I know the solution is $,b=frac{1}{2},,c=-frac{1}{4},$ but when it comes to obtaining those values myself, I fail again and again. HELP!
abstract-algebra cryptography
$endgroup$
$begingroup$
No finite fields in site. Removing the tag.
$endgroup$
– Jyrki Lahtonen
Dec 31 '18 at 12:09
add a comment |
$begingroup$
The goal is, given the field extension $,mathbb{Q}subsetmathbb{C}$, to find the minimal polynomial for the element
$$eta=cosleft(frac{2pi}{5}right)$$
I define the element
$$xi=cosleft(frac{2pi}{5}right)+isinleft(frac{2pi}{5}right)$$
and due to $,left|xiright|=1$, I rewrite $,eta,$ as
$$eta=frac{xi+overline{xi}}{2}=frac{1}{2}left(xi+frac{1}{xi}right)$$
The next step is to find $,b,cinmathbb{Q},$ such that $,fleft(etaright)=0$, where $,f(x)=x^2+bx+cinmathbb{Q}left[Xright].$ So, I am trying to solve (unsuccessfully) the following equation
$$frac{1}{4}left(xi+frac{1}{xi}right)^2+frac{b}{2}left(xi+frac{1}{xi}right)+c=0$$
I know the solution is $,b=frac{1}{2},,c=-frac{1}{4},$ but when it comes to obtaining those values myself, I fail again and again. HELP!
abstract-algebra cryptography
$endgroup$
The goal is, given the field extension $,mathbb{Q}subsetmathbb{C}$, to find the minimal polynomial for the element
$$eta=cosleft(frac{2pi}{5}right)$$
I define the element
$$xi=cosleft(frac{2pi}{5}right)+isinleft(frac{2pi}{5}right)$$
and due to $,left|xiright|=1$, I rewrite $,eta,$ as
$$eta=frac{xi+overline{xi}}{2}=frac{1}{2}left(xi+frac{1}{xi}right)$$
The next step is to find $,b,cinmathbb{Q},$ such that $,fleft(etaright)=0$, where $,f(x)=x^2+bx+cinmathbb{Q}left[Xright].$ So, I am trying to solve (unsuccessfully) the following equation
$$frac{1}{4}left(xi+frac{1}{xi}right)^2+frac{b}{2}left(xi+frac{1}{xi}right)+c=0$$
I know the solution is $,b=frac{1}{2},,c=-frac{1}{4},$ but when it comes to obtaining those values myself, I fail again and again. HELP!
abstract-algebra cryptography
abstract-algebra cryptography
edited Dec 31 '18 at 12:09
Jyrki Lahtonen
110k13171378
110k13171378
asked Dec 31 '18 at 10:52
CarlIOCarlIO
957
957
$begingroup$
No finite fields in site. Removing the tag.
$endgroup$
– Jyrki Lahtonen
Dec 31 '18 at 12:09
add a comment |
$begingroup$
No finite fields in site. Removing the tag.
$endgroup$
– Jyrki Lahtonen
Dec 31 '18 at 12:09
$begingroup$
No finite fields in site. Removing the tag.
$endgroup$
– Jyrki Lahtonen
Dec 31 '18 at 12:09
$begingroup$
No finite fields in site. Removing the tag.
$endgroup$
– Jyrki Lahtonen
Dec 31 '18 at 12:09
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Note $xi = e^{2ipi/5}$. Since $xi$ is a complex fifth root of unity, we know $xi^4 + xi^3 + xi^2 + xi + 1 = 0$. Now divide through by $xi^2$ to get $$xi^2 + xi + 1 + frac{1}{xi} + frac{1}{xi^2} = 0$$ Hence $$left(xi+ frac{1}{xi}right)^2 - 2 + left(xi + frac{1}{xi}right) + 1 = 0$$ and so $$4eta^2 + 2eta - 1 = 0$$ and since $etanotin mathbb{Q}$, the minimal polynomial of $eta$ is $4x^2 +2x - 1$, or making it monic $x^2 + frac{1}{2} x - frac{1}{4}$, as per your solution.
$endgroup$
$begingroup$
Thank you very much
$endgroup$
– CarlIO
Dec 31 '18 at 11:20
add a comment |
$begingroup$
Steps with CAS (Maple, Mathematica, Maxima, ...):
- $x=cosfrac{2pi}{5}$
- $arccos(x)=frac{2pi}{5}$
- $5arccos(x)=2pi$
- $cos(5arccos(x))=1$
- $5 x, {{left( 1-{{x}^{2}}right) }^{2}}+{{x}^{5}}-10 {{x}^{3}}, left( 1-{{x}^{2}}right) =1$
- $left( x-1right) , {{left( 4 {{x}^{2}}+2 x-1right) }^{2}}=0$
Then $x=cosfrac{2pi}{5}$ is solution of $4x^2+2x-1=0$.
This method can apply for other elements. For example, $x=cosfrac{2pi}{15}$ is solution of
$$16x^4-8x^3-16x^2+8x+1=0$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057598%2falgebraic-equation-find-b-and-c%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note $xi = e^{2ipi/5}$. Since $xi$ is a complex fifth root of unity, we know $xi^4 + xi^3 + xi^2 + xi + 1 = 0$. Now divide through by $xi^2$ to get $$xi^2 + xi + 1 + frac{1}{xi} + frac{1}{xi^2} = 0$$ Hence $$left(xi+ frac{1}{xi}right)^2 - 2 + left(xi + frac{1}{xi}right) + 1 = 0$$ and so $$4eta^2 + 2eta - 1 = 0$$ and since $etanotin mathbb{Q}$, the minimal polynomial of $eta$ is $4x^2 +2x - 1$, or making it monic $x^2 + frac{1}{2} x - frac{1}{4}$, as per your solution.
$endgroup$
$begingroup$
Thank you very much
$endgroup$
– CarlIO
Dec 31 '18 at 11:20
add a comment |
$begingroup$
Note $xi = e^{2ipi/5}$. Since $xi$ is a complex fifth root of unity, we know $xi^4 + xi^3 + xi^2 + xi + 1 = 0$. Now divide through by $xi^2$ to get $$xi^2 + xi + 1 + frac{1}{xi} + frac{1}{xi^2} = 0$$ Hence $$left(xi+ frac{1}{xi}right)^2 - 2 + left(xi + frac{1}{xi}right) + 1 = 0$$ and so $$4eta^2 + 2eta - 1 = 0$$ and since $etanotin mathbb{Q}$, the minimal polynomial of $eta$ is $4x^2 +2x - 1$, or making it monic $x^2 + frac{1}{2} x - frac{1}{4}$, as per your solution.
$endgroup$
$begingroup$
Thank you very much
$endgroup$
– CarlIO
Dec 31 '18 at 11:20
add a comment |
$begingroup$
Note $xi = e^{2ipi/5}$. Since $xi$ is a complex fifth root of unity, we know $xi^4 + xi^3 + xi^2 + xi + 1 = 0$. Now divide through by $xi^2$ to get $$xi^2 + xi + 1 + frac{1}{xi} + frac{1}{xi^2} = 0$$ Hence $$left(xi+ frac{1}{xi}right)^2 - 2 + left(xi + frac{1}{xi}right) + 1 = 0$$ and so $$4eta^2 + 2eta - 1 = 0$$ and since $etanotin mathbb{Q}$, the minimal polynomial of $eta$ is $4x^2 +2x - 1$, or making it monic $x^2 + frac{1}{2} x - frac{1}{4}$, as per your solution.
$endgroup$
Note $xi = e^{2ipi/5}$. Since $xi$ is a complex fifth root of unity, we know $xi^4 + xi^3 + xi^2 + xi + 1 = 0$. Now divide through by $xi^2$ to get $$xi^2 + xi + 1 + frac{1}{xi} + frac{1}{xi^2} = 0$$ Hence $$left(xi+ frac{1}{xi}right)^2 - 2 + left(xi + frac{1}{xi}right) + 1 = 0$$ and so $$4eta^2 + 2eta - 1 = 0$$ and since $etanotin mathbb{Q}$, the minimal polynomial of $eta$ is $4x^2 +2x - 1$, or making it monic $x^2 + frac{1}{2} x - frac{1}{4}$, as per your solution.
answered Dec 31 '18 at 11:08
ODFODF
1,486510
1,486510
$begingroup$
Thank you very much
$endgroup$
– CarlIO
Dec 31 '18 at 11:20
add a comment |
$begingroup$
Thank you very much
$endgroup$
– CarlIO
Dec 31 '18 at 11:20
$begingroup$
Thank you very much
$endgroup$
– CarlIO
Dec 31 '18 at 11:20
$begingroup$
Thank you very much
$endgroup$
– CarlIO
Dec 31 '18 at 11:20
add a comment |
$begingroup$
Steps with CAS (Maple, Mathematica, Maxima, ...):
- $x=cosfrac{2pi}{5}$
- $arccos(x)=frac{2pi}{5}$
- $5arccos(x)=2pi$
- $cos(5arccos(x))=1$
- $5 x, {{left( 1-{{x}^{2}}right) }^{2}}+{{x}^{5}}-10 {{x}^{3}}, left( 1-{{x}^{2}}right) =1$
- $left( x-1right) , {{left( 4 {{x}^{2}}+2 x-1right) }^{2}}=0$
Then $x=cosfrac{2pi}{5}$ is solution of $4x^2+2x-1=0$.
This method can apply for other elements. For example, $x=cosfrac{2pi}{15}$ is solution of
$$16x^4-8x^3-16x^2+8x+1=0$$
$endgroup$
add a comment |
$begingroup$
Steps with CAS (Maple, Mathematica, Maxima, ...):
- $x=cosfrac{2pi}{5}$
- $arccos(x)=frac{2pi}{5}$
- $5arccos(x)=2pi$
- $cos(5arccos(x))=1$
- $5 x, {{left( 1-{{x}^{2}}right) }^{2}}+{{x}^{5}}-10 {{x}^{3}}, left( 1-{{x}^{2}}right) =1$
- $left( x-1right) , {{left( 4 {{x}^{2}}+2 x-1right) }^{2}}=0$
Then $x=cosfrac{2pi}{5}$ is solution of $4x^2+2x-1=0$.
This method can apply for other elements. For example, $x=cosfrac{2pi}{15}$ is solution of
$$16x^4-8x^3-16x^2+8x+1=0$$
$endgroup$
add a comment |
$begingroup$
Steps with CAS (Maple, Mathematica, Maxima, ...):
- $x=cosfrac{2pi}{5}$
- $arccos(x)=frac{2pi}{5}$
- $5arccos(x)=2pi$
- $cos(5arccos(x))=1$
- $5 x, {{left( 1-{{x}^{2}}right) }^{2}}+{{x}^{5}}-10 {{x}^{3}}, left( 1-{{x}^{2}}right) =1$
- $left( x-1right) , {{left( 4 {{x}^{2}}+2 x-1right) }^{2}}=0$
Then $x=cosfrac{2pi}{5}$ is solution of $4x^2+2x-1=0$.
This method can apply for other elements. For example, $x=cosfrac{2pi}{15}$ is solution of
$$16x^4-8x^3-16x^2+8x+1=0$$
$endgroup$
Steps with CAS (Maple, Mathematica, Maxima, ...):
- $x=cosfrac{2pi}{5}$
- $arccos(x)=frac{2pi}{5}$
- $5arccos(x)=2pi$
- $cos(5arccos(x))=1$
- $5 x, {{left( 1-{{x}^{2}}right) }^{2}}+{{x}^{5}}-10 {{x}^{3}}, left( 1-{{x}^{2}}right) =1$
- $left( x-1right) , {{left( 4 {{x}^{2}}+2 x-1right) }^{2}}=0$
Then $x=cosfrac{2pi}{5}$ is solution of $4x^2+2x-1=0$.
This method can apply for other elements. For example, $x=cosfrac{2pi}{15}$ is solution of
$$16x^4-8x^3-16x^2+8x+1=0$$
answered Dec 31 '18 at 12:03
Aleksas DomarkasAleksas Domarkas
1,37216
1,37216
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057598%2falgebraic-equation-find-b-and-c%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
No finite fields in site. Removing the tag.
$endgroup$
– Jyrki Lahtonen
Dec 31 '18 at 12:09