Algebraic equation (find $b$ and $c$)












3












$begingroup$


The goal is, given the field extension $,mathbb{Q}subsetmathbb{C}$, to find the minimal polynomial for the element
$$eta=cosleft(frac{2pi}{5}right)$$





I define the element
$$xi=cosleft(frac{2pi}{5}right)+isinleft(frac{2pi}{5}right)$$
and due to $,left|xiright|=1$, I rewrite $,eta,$ as
$$eta=frac{xi+overline{xi}}{2}=frac{1}{2}left(xi+frac{1}{xi}right)$$
The next step is to find $,b,cinmathbb{Q},$ such that $,fleft(etaright)=0$, where $,f(x)=x^2+bx+cinmathbb{Q}left[Xright].$ So, I am trying to solve (unsuccessfully) the following equation
$$frac{1}{4}left(xi+frac{1}{xi}right)^2+frac{b}{2}left(xi+frac{1}{xi}right)+c=0$$



I know the solution is $,b=frac{1}{2},,c=-frac{1}{4},$ but when it comes to obtaining those values myself, I fail again and again. HELP!










share|cite|improve this question











$endgroup$












  • $begingroup$
    No finite fields in site. Removing the tag.
    $endgroup$
    – Jyrki Lahtonen
    Dec 31 '18 at 12:09
















3












$begingroup$


The goal is, given the field extension $,mathbb{Q}subsetmathbb{C}$, to find the minimal polynomial for the element
$$eta=cosleft(frac{2pi}{5}right)$$





I define the element
$$xi=cosleft(frac{2pi}{5}right)+isinleft(frac{2pi}{5}right)$$
and due to $,left|xiright|=1$, I rewrite $,eta,$ as
$$eta=frac{xi+overline{xi}}{2}=frac{1}{2}left(xi+frac{1}{xi}right)$$
The next step is to find $,b,cinmathbb{Q},$ such that $,fleft(etaright)=0$, where $,f(x)=x^2+bx+cinmathbb{Q}left[Xright].$ So, I am trying to solve (unsuccessfully) the following equation
$$frac{1}{4}left(xi+frac{1}{xi}right)^2+frac{b}{2}left(xi+frac{1}{xi}right)+c=0$$



I know the solution is $,b=frac{1}{2},,c=-frac{1}{4},$ but when it comes to obtaining those values myself, I fail again and again. HELP!










share|cite|improve this question











$endgroup$












  • $begingroup$
    No finite fields in site. Removing the tag.
    $endgroup$
    – Jyrki Lahtonen
    Dec 31 '18 at 12:09














3












3








3





$begingroup$


The goal is, given the field extension $,mathbb{Q}subsetmathbb{C}$, to find the minimal polynomial for the element
$$eta=cosleft(frac{2pi}{5}right)$$





I define the element
$$xi=cosleft(frac{2pi}{5}right)+isinleft(frac{2pi}{5}right)$$
and due to $,left|xiright|=1$, I rewrite $,eta,$ as
$$eta=frac{xi+overline{xi}}{2}=frac{1}{2}left(xi+frac{1}{xi}right)$$
The next step is to find $,b,cinmathbb{Q},$ such that $,fleft(etaright)=0$, where $,f(x)=x^2+bx+cinmathbb{Q}left[Xright].$ So, I am trying to solve (unsuccessfully) the following equation
$$frac{1}{4}left(xi+frac{1}{xi}right)^2+frac{b}{2}left(xi+frac{1}{xi}right)+c=0$$



I know the solution is $,b=frac{1}{2},,c=-frac{1}{4},$ but when it comes to obtaining those values myself, I fail again and again. HELP!










share|cite|improve this question











$endgroup$




The goal is, given the field extension $,mathbb{Q}subsetmathbb{C}$, to find the minimal polynomial for the element
$$eta=cosleft(frac{2pi}{5}right)$$





I define the element
$$xi=cosleft(frac{2pi}{5}right)+isinleft(frac{2pi}{5}right)$$
and due to $,left|xiright|=1$, I rewrite $,eta,$ as
$$eta=frac{xi+overline{xi}}{2}=frac{1}{2}left(xi+frac{1}{xi}right)$$
The next step is to find $,b,cinmathbb{Q},$ such that $,fleft(etaright)=0$, where $,f(x)=x^2+bx+cinmathbb{Q}left[Xright].$ So, I am trying to solve (unsuccessfully) the following equation
$$frac{1}{4}left(xi+frac{1}{xi}right)^2+frac{b}{2}left(xi+frac{1}{xi}right)+c=0$$



I know the solution is $,b=frac{1}{2},,c=-frac{1}{4},$ but when it comes to obtaining those values myself, I fail again and again. HELP!







abstract-algebra cryptography






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 31 '18 at 12:09









Jyrki Lahtonen

110k13171378




110k13171378










asked Dec 31 '18 at 10:52









CarlIOCarlIO

957




957












  • $begingroup$
    No finite fields in site. Removing the tag.
    $endgroup$
    – Jyrki Lahtonen
    Dec 31 '18 at 12:09


















  • $begingroup$
    No finite fields in site. Removing the tag.
    $endgroup$
    – Jyrki Lahtonen
    Dec 31 '18 at 12:09
















$begingroup$
No finite fields in site. Removing the tag.
$endgroup$
– Jyrki Lahtonen
Dec 31 '18 at 12:09




$begingroup$
No finite fields in site. Removing the tag.
$endgroup$
– Jyrki Lahtonen
Dec 31 '18 at 12:09










2 Answers
2






active

oldest

votes


















4












$begingroup$

Note $xi = e^{2ipi/5}$. Since $xi$ is a complex fifth root of unity, we know $xi^4 + xi^3 + xi^2 + xi + 1 = 0$. Now divide through by $xi^2$ to get $$xi^2 + xi + 1 + frac{1}{xi} + frac{1}{xi^2} = 0$$ Hence $$left(xi+ frac{1}{xi}right)^2 - 2 + left(xi + frac{1}{xi}right) + 1 = 0$$ and so $$4eta^2 + 2eta - 1 = 0$$ and since $etanotin mathbb{Q}$, the minimal polynomial of $eta$ is $4x^2 +2x - 1$, or making it monic $x^2 + frac{1}{2} x - frac{1}{4}$, as per your solution.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you very much
    $endgroup$
    – CarlIO
    Dec 31 '18 at 11:20





















-1












$begingroup$

Steps with CAS (Maple, Mathematica, Maxima, ...):




  • $x=cosfrac{2pi}{5}$

  • $arccos(x)=frac{2pi}{5}$

  • $5arccos(x)=2pi$

  • $cos(5arccos(x))=1$

  • $5 x, {{left( 1-{{x}^{2}}right) }^{2}}+{{x}^{5}}-10 {{x}^{3}}, left( 1-{{x}^{2}}right) =1$

  • $left( x-1right) , {{left( 4 {{x}^{2}}+2 x-1right) }^{2}}=0$


Then $x=cosfrac{2pi}{5}$ is solution of $4x^2+2x-1=0$.



This method can apply for other elements. For example, $x=cosfrac{2pi}{15}$ is solution of



$$16x^4-8x^3-16x^2+8x+1=0$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057598%2falgebraic-equation-find-b-and-c%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Note $xi = e^{2ipi/5}$. Since $xi$ is a complex fifth root of unity, we know $xi^4 + xi^3 + xi^2 + xi + 1 = 0$. Now divide through by $xi^2$ to get $$xi^2 + xi + 1 + frac{1}{xi} + frac{1}{xi^2} = 0$$ Hence $$left(xi+ frac{1}{xi}right)^2 - 2 + left(xi + frac{1}{xi}right) + 1 = 0$$ and so $$4eta^2 + 2eta - 1 = 0$$ and since $etanotin mathbb{Q}$, the minimal polynomial of $eta$ is $4x^2 +2x - 1$, or making it monic $x^2 + frac{1}{2} x - frac{1}{4}$, as per your solution.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thank you very much
      $endgroup$
      – CarlIO
      Dec 31 '18 at 11:20


















    4












    $begingroup$

    Note $xi = e^{2ipi/5}$. Since $xi$ is a complex fifth root of unity, we know $xi^4 + xi^3 + xi^2 + xi + 1 = 0$. Now divide through by $xi^2$ to get $$xi^2 + xi + 1 + frac{1}{xi} + frac{1}{xi^2} = 0$$ Hence $$left(xi+ frac{1}{xi}right)^2 - 2 + left(xi + frac{1}{xi}right) + 1 = 0$$ and so $$4eta^2 + 2eta - 1 = 0$$ and since $etanotin mathbb{Q}$, the minimal polynomial of $eta$ is $4x^2 +2x - 1$, or making it monic $x^2 + frac{1}{2} x - frac{1}{4}$, as per your solution.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thank you very much
      $endgroup$
      – CarlIO
      Dec 31 '18 at 11:20
















    4












    4








    4





    $begingroup$

    Note $xi = e^{2ipi/5}$. Since $xi$ is a complex fifth root of unity, we know $xi^4 + xi^3 + xi^2 + xi + 1 = 0$. Now divide through by $xi^2$ to get $$xi^2 + xi + 1 + frac{1}{xi} + frac{1}{xi^2} = 0$$ Hence $$left(xi+ frac{1}{xi}right)^2 - 2 + left(xi + frac{1}{xi}right) + 1 = 0$$ and so $$4eta^2 + 2eta - 1 = 0$$ and since $etanotin mathbb{Q}$, the minimal polynomial of $eta$ is $4x^2 +2x - 1$, or making it monic $x^2 + frac{1}{2} x - frac{1}{4}$, as per your solution.






    share|cite|improve this answer









    $endgroup$



    Note $xi = e^{2ipi/5}$. Since $xi$ is a complex fifth root of unity, we know $xi^4 + xi^3 + xi^2 + xi + 1 = 0$. Now divide through by $xi^2$ to get $$xi^2 + xi + 1 + frac{1}{xi} + frac{1}{xi^2} = 0$$ Hence $$left(xi+ frac{1}{xi}right)^2 - 2 + left(xi + frac{1}{xi}right) + 1 = 0$$ and so $$4eta^2 + 2eta - 1 = 0$$ and since $etanotin mathbb{Q}$, the minimal polynomial of $eta$ is $4x^2 +2x - 1$, or making it monic $x^2 + frac{1}{2} x - frac{1}{4}$, as per your solution.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 31 '18 at 11:08









    ODFODF

    1,486510




    1,486510












    • $begingroup$
      Thank you very much
      $endgroup$
      – CarlIO
      Dec 31 '18 at 11:20




















    • $begingroup$
      Thank you very much
      $endgroup$
      – CarlIO
      Dec 31 '18 at 11:20


















    $begingroup$
    Thank you very much
    $endgroup$
    – CarlIO
    Dec 31 '18 at 11:20






    $begingroup$
    Thank you very much
    $endgroup$
    – CarlIO
    Dec 31 '18 at 11:20













    -1












    $begingroup$

    Steps with CAS (Maple, Mathematica, Maxima, ...):




    • $x=cosfrac{2pi}{5}$

    • $arccos(x)=frac{2pi}{5}$

    • $5arccos(x)=2pi$

    • $cos(5arccos(x))=1$

    • $5 x, {{left( 1-{{x}^{2}}right) }^{2}}+{{x}^{5}}-10 {{x}^{3}}, left( 1-{{x}^{2}}right) =1$

    • $left( x-1right) , {{left( 4 {{x}^{2}}+2 x-1right) }^{2}}=0$


    Then $x=cosfrac{2pi}{5}$ is solution of $4x^2+2x-1=0$.



    This method can apply for other elements. For example, $x=cosfrac{2pi}{15}$ is solution of



    $$16x^4-8x^3-16x^2+8x+1=0$$






    share|cite|improve this answer









    $endgroup$


















      -1












      $begingroup$

      Steps with CAS (Maple, Mathematica, Maxima, ...):




      • $x=cosfrac{2pi}{5}$

      • $arccos(x)=frac{2pi}{5}$

      • $5arccos(x)=2pi$

      • $cos(5arccos(x))=1$

      • $5 x, {{left( 1-{{x}^{2}}right) }^{2}}+{{x}^{5}}-10 {{x}^{3}}, left( 1-{{x}^{2}}right) =1$

      • $left( x-1right) , {{left( 4 {{x}^{2}}+2 x-1right) }^{2}}=0$


      Then $x=cosfrac{2pi}{5}$ is solution of $4x^2+2x-1=0$.



      This method can apply for other elements. For example, $x=cosfrac{2pi}{15}$ is solution of



      $$16x^4-8x^3-16x^2+8x+1=0$$






      share|cite|improve this answer









      $endgroup$
















        -1












        -1








        -1





        $begingroup$

        Steps with CAS (Maple, Mathematica, Maxima, ...):




        • $x=cosfrac{2pi}{5}$

        • $arccos(x)=frac{2pi}{5}$

        • $5arccos(x)=2pi$

        • $cos(5arccos(x))=1$

        • $5 x, {{left( 1-{{x}^{2}}right) }^{2}}+{{x}^{5}}-10 {{x}^{3}}, left( 1-{{x}^{2}}right) =1$

        • $left( x-1right) , {{left( 4 {{x}^{2}}+2 x-1right) }^{2}}=0$


        Then $x=cosfrac{2pi}{5}$ is solution of $4x^2+2x-1=0$.



        This method can apply for other elements. For example, $x=cosfrac{2pi}{15}$ is solution of



        $$16x^4-8x^3-16x^2+8x+1=0$$






        share|cite|improve this answer









        $endgroup$



        Steps with CAS (Maple, Mathematica, Maxima, ...):




        • $x=cosfrac{2pi}{5}$

        • $arccos(x)=frac{2pi}{5}$

        • $5arccos(x)=2pi$

        • $cos(5arccos(x))=1$

        • $5 x, {{left( 1-{{x}^{2}}right) }^{2}}+{{x}^{5}}-10 {{x}^{3}}, left( 1-{{x}^{2}}right) =1$

        • $left( x-1right) , {{left( 4 {{x}^{2}}+2 x-1right) }^{2}}=0$


        Then $x=cosfrac{2pi}{5}$ is solution of $4x^2+2x-1=0$.



        This method can apply for other elements. For example, $x=cosfrac{2pi}{15}$ is solution of



        $$16x^4-8x^3-16x^2+8x+1=0$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 31 '18 at 12:03









        Aleksas DomarkasAleksas Domarkas

        1,37216




        1,37216






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057598%2falgebraic-equation-find-b-and-c%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna