Is it possible to prove $a+b'=b+a', c+d'=d+c' implies ac+bd+a'd'+b'c' = ad+bc+a'c'+b'd'$ without using...












1












$begingroup$


Suppose that we are restricted to addition $(+)$ and multiplication $(cdot)$, and are NOT allowed to use subtraction $(-)$ and division $(div)$. Moreover, addition $(+)$ and multiplication $(cdot)$ are defined only on $Bbb N$. For convenience, I write $ab$ instead of $acdot b$.




The reason that I am not allowed to appeal to subtraction $(-)$ is that I am defining multiplication over $Bbb Z$ from ONLY multiplication and addition defined on $Bbb N$. We are allowed to use all properties about addition and multiplication defined on $Bbb N$.




I would like to prove below theorem:




begin{equation}
left.begin{aligned}
a,b,c,d,a',b',c',d' in Bbb N\
a+b'=b+a'\
c+d'=d+c'
end{aligned}right} implies ac+bd+a'd'+b'c' = ad+bc+a'c'+b'd'
end{equation}




While it is easy to come up with the desired equation by using subtraction $(-)$ defined on $Bbb Z$, I have struggled but to no avail in not using subtraction $(-)$ defined on $Bbb Z$.



Please shed me some light. Thank you for your help!



I added my attempt in case subtraction defined on $Bbb Z$ is allowed:




$a+b'=b+a' iff a-b=a'-b'$ and $c+d'=d+c' iff c-d = c'-d'$. Multiply two equalities, we get $(a-b)(c-d) = (a'-b')(c'-d')$ or equivalently $ac-ad-bc+bd = a'c'-a'd'-b'c'+b'd'$ or equivalently $ac+bd+a'd'+b'c' = ad+bc+a'c'+b'd'$.











share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Well do you have the cancellation property?
    $endgroup$
    – Kenny Lau
    Dec 31 '18 at 10:11










  • $begingroup$
    Do you have any reasonable argument for not using -?
    $endgroup$
    – Martín Vacas Vignolo
    Dec 31 '18 at 10:12










  • $begingroup$
    @KennyLau, We are allowed to use all properties about addition and multiplication.
    $endgroup$
    – Akira
    Dec 31 '18 at 10:13






  • 3




    $begingroup$
    Then you can convert your proof using subtraction to a proof using cancellation.
    $endgroup$
    – Kenny Lau
    Dec 31 '18 at 10:13










  • $begingroup$
    @MartínVacasVignolo, I am defining multiplication over $Bbb Z$ from multiplication and addition over $Bbb N$.
    $endgroup$
    – Akira
    Dec 31 '18 at 10:15


















1












$begingroup$


Suppose that we are restricted to addition $(+)$ and multiplication $(cdot)$, and are NOT allowed to use subtraction $(-)$ and division $(div)$. Moreover, addition $(+)$ and multiplication $(cdot)$ are defined only on $Bbb N$. For convenience, I write $ab$ instead of $acdot b$.




The reason that I am not allowed to appeal to subtraction $(-)$ is that I am defining multiplication over $Bbb Z$ from ONLY multiplication and addition defined on $Bbb N$. We are allowed to use all properties about addition and multiplication defined on $Bbb N$.




I would like to prove below theorem:




begin{equation}
left.begin{aligned}
a,b,c,d,a',b',c',d' in Bbb N\
a+b'=b+a'\
c+d'=d+c'
end{aligned}right} implies ac+bd+a'd'+b'c' = ad+bc+a'c'+b'd'
end{equation}




While it is easy to come up with the desired equation by using subtraction $(-)$ defined on $Bbb Z$, I have struggled but to no avail in not using subtraction $(-)$ defined on $Bbb Z$.



Please shed me some light. Thank you for your help!



I added my attempt in case subtraction defined on $Bbb Z$ is allowed:




$a+b'=b+a' iff a-b=a'-b'$ and $c+d'=d+c' iff c-d = c'-d'$. Multiply two equalities, we get $(a-b)(c-d) = (a'-b')(c'-d')$ or equivalently $ac-ad-bc+bd = a'c'-a'd'-b'c'+b'd'$ or equivalently $ac+bd+a'd'+b'c' = ad+bc+a'c'+b'd'$.











share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Well do you have the cancellation property?
    $endgroup$
    – Kenny Lau
    Dec 31 '18 at 10:11










  • $begingroup$
    Do you have any reasonable argument for not using -?
    $endgroup$
    – Martín Vacas Vignolo
    Dec 31 '18 at 10:12










  • $begingroup$
    @KennyLau, We are allowed to use all properties about addition and multiplication.
    $endgroup$
    – Akira
    Dec 31 '18 at 10:13






  • 3




    $begingroup$
    Then you can convert your proof using subtraction to a proof using cancellation.
    $endgroup$
    – Kenny Lau
    Dec 31 '18 at 10:13










  • $begingroup$
    @MartínVacasVignolo, I am defining multiplication over $Bbb Z$ from multiplication and addition over $Bbb N$.
    $endgroup$
    – Akira
    Dec 31 '18 at 10:15
















1












1








1





$begingroup$


Suppose that we are restricted to addition $(+)$ and multiplication $(cdot)$, and are NOT allowed to use subtraction $(-)$ and division $(div)$. Moreover, addition $(+)$ and multiplication $(cdot)$ are defined only on $Bbb N$. For convenience, I write $ab$ instead of $acdot b$.




The reason that I am not allowed to appeal to subtraction $(-)$ is that I am defining multiplication over $Bbb Z$ from ONLY multiplication and addition defined on $Bbb N$. We are allowed to use all properties about addition and multiplication defined on $Bbb N$.




I would like to prove below theorem:




begin{equation}
left.begin{aligned}
a,b,c,d,a',b',c',d' in Bbb N\
a+b'=b+a'\
c+d'=d+c'
end{aligned}right} implies ac+bd+a'd'+b'c' = ad+bc+a'c'+b'd'
end{equation}




While it is easy to come up with the desired equation by using subtraction $(-)$ defined on $Bbb Z$, I have struggled but to no avail in not using subtraction $(-)$ defined on $Bbb Z$.



Please shed me some light. Thank you for your help!



I added my attempt in case subtraction defined on $Bbb Z$ is allowed:




$a+b'=b+a' iff a-b=a'-b'$ and $c+d'=d+c' iff c-d = c'-d'$. Multiply two equalities, we get $(a-b)(c-d) = (a'-b')(c'-d')$ or equivalently $ac-ad-bc+bd = a'c'-a'd'-b'c'+b'd'$ or equivalently $ac+bd+a'd'+b'c' = ad+bc+a'c'+b'd'$.











share|cite|improve this question











$endgroup$




Suppose that we are restricted to addition $(+)$ and multiplication $(cdot)$, and are NOT allowed to use subtraction $(-)$ and division $(div)$. Moreover, addition $(+)$ and multiplication $(cdot)$ are defined only on $Bbb N$. For convenience, I write $ab$ instead of $acdot b$.




The reason that I am not allowed to appeal to subtraction $(-)$ is that I am defining multiplication over $Bbb Z$ from ONLY multiplication and addition defined on $Bbb N$. We are allowed to use all properties about addition and multiplication defined on $Bbb N$.




I would like to prove below theorem:




begin{equation}
left.begin{aligned}
a,b,c,d,a',b',c',d' in Bbb N\
a+b'=b+a'\
c+d'=d+c'
end{aligned}right} implies ac+bd+a'd'+b'c' = ad+bc+a'c'+b'd'
end{equation}




While it is easy to come up with the desired equation by using subtraction $(-)$ defined on $Bbb Z$, I have struggled but to no avail in not using subtraction $(-)$ defined on $Bbb Z$.



Please shed me some light. Thank you for your help!



I added my attempt in case subtraction defined on $Bbb Z$ is allowed:




$a+b'=b+a' iff a-b=a'-b'$ and $c+d'=d+c' iff c-d = c'-d'$. Multiply two equalities, we get $(a-b)(c-d) = (a'-b')(c'-d')$ or equivalently $ac-ad-bc+bd = a'c'-a'd'-b'c'+b'd'$ or equivalently $ac+bd+a'd'+b'c' = ad+bc+a'c'+b'd'$.








algebra-precalculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 31 '18 at 11:45







Akira

















asked Dec 31 '18 at 10:08









AkiraAkira

21415




21415








  • 2




    $begingroup$
    Well do you have the cancellation property?
    $endgroup$
    – Kenny Lau
    Dec 31 '18 at 10:11










  • $begingroup$
    Do you have any reasonable argument for not using -?
    $endgroup$
    – Martín Vacas Vignolo
    Dec 31 '18 at 10:12










  • $begingroup$
    @KennyLau, We are allowed to use all properties about addition and multiplication.
    $endgroup$
    – Akira
    Dec 31 '18 at 10:13






  • 3




    $begingroup$
    Then you can convert your proof using subtraction to a proof using cancellation.
    $endgroup$
    – Kenny Lau
    Dec 31 '18 at 10:13










  • $begingroup$
    @MartínVacasVignolo, I am defining multiplication over $Bbb Z$ from multiplication and addition over $Bbb N$.
    $endgroup$
    – Akira
    Dec 31 '18 at 10:15
















  • 2




    $begingroup$
    Well do you have the cancellation property?
    $endgroup$
    – Kenny Lau
    Dec 31 '18 at 10:11










  • $begingroup$
    Do you have any reasonable argument for not using -?
    $endgroup$
    – Martín Vacas Vignolo
    Dec 31 '18 at 10:12










  • $begingroup$
    @KennyLau, We are allowed to use all properties about addition and multiplication.
    $endgroup$
    – Akira
    Dec 31 '18 at 10:13






  • 3




    $begingroup$
    Then you can convert your proof using subtraction to a proof using cancellation.
    $endgroup$
    – Kenny Lau
    Dec 31 '18 at 10:13










  • $begingroup$
    @MartínVacasVignolo, I am defining multiplication over $Bbb Z$ from multiplication and addition over $Bbb N$.
    $endgroup$
    – Akira
    Dec 31 '18 at 10:15










2




2




$begingroup$
Well do you have the cancellation property?
$endgroup$
– Kenny Lau
Dec 31 '18 at 10:11




$begingroup$
Well do you have the cancellation property?
$endgroup$
– Kenny Lau
Dec 31 '18 at 10:11












$begingroup$
Do you have any reasonable argument for not using -?
$endgroup$
– Martín Vacas Vignolo
Dec 31 '18 at 10:12




$begingroup$
Do you have any reasonable argument for not using -?
$endgroup$
– Martín Vacas Vignolo
Dec 31 '18 at 10:12












$begingroup$
@KennyLau, We are allowed to use all properties about addition and multiplication.
$endgroup$
– Akira
Dec 31 '18 at 10:13




$begingroup$
@KennyLau, We are allowed to use all properties about addition and multiplication.
$endgroup$
– Akira
Dec 31 '18 at 10:13




3




3




$begingroup$
Then you can convert your proof using subtraction to a proof using cancellation.
$endgroup$
– Kenny Lau
Dec 31 '18 at 10:13




$begingroup$
Then you can convert your proof using subtraction to a proof using cancellation.
$endgroup$
– Kenny Lau
Dec 31 '18 at 10:13












$begingroup$
@MartínVacasVignolo, I am defining multiplication over $Bbb Z$ from multiplication and addition over $Bbb N$.
$endgroup$
– Akira
Dec 31 '18 at 10:15






$begingroup$
@MartínVacasVignolo, I am defining multiplication over $Bbb Z$ from multiplication and addition over $Bbb N$.
$endgroup$
– Akira
Dec 31 '18 at 10:15












1 Answer
1






active

oldest

votes


















1












$begingroup$

I have figured out the proof and posted it here:





WLOG, we assume $a ge b$ and $c ge d$. Then $b' le a'$ and $d' le c'$.



It follows that there exist unique $overline b, overline {b'}, overline d, overline {d'}$ such that $a = b+overline b, a' = b' + overline {b'}, c = d + overline d, c' = d' + overline {d'}$.



Then $a+b'=b+a' iff (b+overline b) + b' = b + (b' + overline {b'}) iff overline b = overline {b'}$ and $c+d'=d+c' iff (d + overline d) + d' = d + (d' + overline {d'}) iff overline d = overline {d'}$.



Then $a = b+overline b, a' = b' + overline b, c = d + overline d, c' = d' + overline d$.



$LHS=ac+bd+a'd'+b'c' = (b+overline b) (d + overline d) +bd +(b' + overline b)d' + b'(d' + overline d) =bd+boverline d +overline b d+overline b overline d+bd+b'd'+overline bd'+b'd'+b'overline d=2(bd+b'd')+boverline d +overline b d+overline b overline d+overline bd'+b'overline d.$



$RHS=ad+bc+a'c'+b'd'=(b+overline b)d+b(d + overline d)+(b' + overline b)(d' + overline d)+b'd'=bd+overline b d+bd+boverline d +b'd'+b'overline d+overline b d'+overline boverline d+b'd'=2(bd+b'd')+boverline d +overline b d+overline b overline d+overline bd'+b'overline d.$



Thus $LHS=RHS$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057566%2fis-it-possible-to-prove-ab-ba-cd-dc-implies-acbdadbc-adbca%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    I have figured out the proof and posted it here:





    WLOG, we assume $a ge b$ and $c ge d$. Then $b' le a'$ and $d' le c'$.



    It follows that there exist unique $overline b, overline {b'}, overline d, overline {d'}$ such that $a = b+overline b, a' = b' + overline {b'}, c = d + overline d, c' = d' + overline {d'}$.



    Then $a+b'=b+a' iff (b+overline b) + b' = b + (b' + overline {b'}) iff overline b = overline {b'}$ and $c+d'=d+c' iff (d + overline d) + d' = d + (d' + overline {d'}) iff overline d = overline {d'}$.



    Then $a = b+overline b, a' = b' + overline b, c = d + overline d, c' = d' + overline d$.



    $LHS=ac+bd+a'd'+b'c' = (b+overline b) (d + overline d) +bd +(b' + overline b)d' + b'(d' + overline d) =bd+boverline d +overline b d+overline b overline d+bd+b'd'+overline bd'+b'd'+b'overline d=2(bd+b'd')+boverline d +overline b d+overline b overline d+overline bd'+b'overline d.$



    $RHS=ad+bc+a'c'+b'd'=(b+overline b)d+b(d + overline d)+(b' + overline b)(d' + overline d)+b'd'=bd+overline b d+bd+boverline d +b'd'+b'overline d+overline b d'+overline boverline d+b'd'=2(bd+b'd')+boverline d +overline b d+overline b overline d+overline bd'+b'overline d.$



    Thus $LHS=RHS$.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      I have figured out the proof and posted it here:





      WLOG, we assume $a ge b$ and $c ge d$. Then $b' le a'$ and $d' le c'$.



      It follows that there exist unique $overline b, overline {b'}, overline d, overline {d'}$ such that $a = b+overline b, a' = b' + overline {b'}, c = d + overline d, c' = d' + overline {d'}$.



      Then $a+b'=b+a' iff (b+overline b) + b' = b + (b' + overline {b'}) iff overline b = overline {b'}$ and $c+d'=d+c' iff (d + overline d) + d' = d + (d' + overline {d'}) iff overline d = overline {d'}$.



      Then $a = b+overline b, a' = b' + overline b, c = d + overline d, c' = d' + overline d$.



      $LHS=ac+bd+a'd'+b'c' = (b+overline b) (d + overline d) +bd +(b' + overline b)d' + b'(d' + overline d) =bd+boverline d +overline b d+overline b overline d+bd+b'd'+overline bd'+b'd'+b'overline d=2(bd+b'd')+boverline d +overline b d+overline b overline d+overline bd'+b'overline d.$



      $RHS=ad+bc+a'c'+b'd'=(b+overline b)d+b(d + overline d)+(b' + overline b)(d' + overline d)+b'd'=bd+overline b d+bd+boverline d +b'd'+b'overline d+overline b d'+overline boverline d+b'd'=2(bd+b'd')+boverline d +overline b d+overline b overline d+overline bd'+b'overline d.$



      Thus $LHS=RHS$.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        I have figured out the proof and posted it here:





        WLOG, we assume $a ge b$ and $c ge d$. Then $b' le a'$ and $d' le c'$.



        It follows that there exist unique $overline b, overline {b'}, overline d, overline {d'}$ such that $a = b+overline b, a' = b' + overline {b'}, c = d + overline d, c' = d' + overline {d'}$.



        Then $a+b'=b+a' iff (b+overline b) + b' = b + (b' + overline {b'}) iff overline b = overline {b'}$ and $c+d'=d+c' iff (d + overline d) + d' = d + (d' + overline {d'}) iff overline d = overline {d'}$.



        Then $a = b+overline b, a' = b' + overline b, c = d + overline d, c' = d' + overline d$.



        $LHS=ac+bd+a'd'+b'c' = (b+overline b) (d + overline d) +bd +(b' + overline b)d' + b'(d' + overline d) =bd+boverline d +overline b d+overline b overline d+bd+b'd'+overline bd'+b'd'+b'overline d=2(bd+b'd')+boverline d +overline b d+overline b overline d+overline bd'+b'overline d.$



        $RHS=ad+bc+a'c'+b'd'=(b+overline b)d+b(d + overline d)+(b' + overline b)(d' + overline d)+b'd'=bd+overline b d+bd+boverline d +b'd'+b'overline d+overline b d'+overline boverline d+b'd'=2(bd+b'd')+boverline d +overline b d+overline b overline d+overline bd'+b'overline d.$



        Thus $LHS=RHS$.






        share|cite|improve this answer









        $endgroup$



        I have figured out the proof and posted it here:





        WLOG, we assume $a ge b$ and $c ge d$. Then $b' le a'$ and $d' le c'$.



        It follows that there exist unique $overline b, overline {b'}, overline d, overline {d'}$ such that $a = b+overline b, a' = b' + overline {b'}, c = d + overline d, c' = d' + overline {d'}$.



        Then $a+b'=b+a' iff (b+overline b) + b' = b + (b' + overline {b'}) iff overline b = overline {b'}$ and $c+d'=d+c' iff (d + overline d) + d' = d + (d' + overline {d'}) iff overline d = overline {d'}$.



        Then $a = b+overline b, a' = b' + overline b, c = d + overline d, c' = d' + overline d$.



        $LHS=ac+bd+a'd'+b'c' = (b+overline b) (d + overline d) +bd +(b' + overline b)d' + b'(d' + overline d) =bd+boverline d +overline b d+overline b overline d+bd+b'd'+overline bd'+b'd'+b'overline d=2(bd+b'd')+boverline d +overline b d+overline b overline d+overline bd'+b'overline d.$



        $RHS=ad+bc+a'c'+b'd'=(b+overline b)d+b(d + overline d)+(b' + overline b)(d' + overline d)+b'd'=bd+overline b d+bd+boverline d +b'd'+b'overline d+overline b d'+overline boverline d+b'd'=2(bd+b'd')+boverline d +overline b d+overline b overline d+overline bd'+b'overline d.$



        Thus $LHS=RHS$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 1 at 2:58









        AkiraAkira

        21415




        21415






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057566%2fis-it-possible-to-prove-ab-ba-cd-dc-implies-acbdadbc-adbca%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna