Solve $argmin_{x in mathbb{R}^n} I_C(x) + alpha sum_i left|y_i -x right|_2^2$, where $I_C(x)$: indicator...
$begingroup$
I have a problem on hand that I am not sure how to handle it. Can you please help/guide me to solve this optimization problem?
begin{align}
argmin_{x in mathbb{R}^n} I_C(x) + alpha sum_i left|y_i -x right|_2^2 ,
end{align}
where $I_C(x)$ is an indicator or characteristic function and the set $C$ can be a norm-2 ball, i.e., $C = left{x in mathbb{R}^n : left|x - c right|_2^2 leq rright}$, $y_i, c in mathbb{R}^n$ are given, and $r in mathbb{R}$.
My partial attempt:
The above problem can be rewritten as
begin{equation} label{eqn:weighted_projection_problem_definition_3}
begin{aligned}
& underset{x}{text{minimize}}
& & alpha sum_i left|y_i -x right|_2^2 \
& text{subject to}
& & left|x - c right|_2^2 leq r ,\
%&&& X succeq 0.
end{aligned}
end{equation}
Right?
If yes, then I think it is possible to solve in the closed form.
optimization convex-optimization
$endgroup$
add a comment |
$begingroup$
I have a problem on hand that I am not sure how to handle it. Can you please help/guide me to solve this optimization problem?
begin{align}
argmin_{x in mathbb{R}^n} I_C(x) + alpha sum_i left|y_i -x right|_2^2 ,
end{align}
where $I_C(x)$ is an indicator or characteristic function and the set $C$ can be a norm-2 ball, i.e., $C = left{x in mathbb{R}^n : left|x - c right|_2^2 leq rright}$, $y_i, c in mathbb{R}^n$ are given, and $r in mathbb{R}$.
My partial attempt:
The above problem can be rewritten as
begin{equation} label{eqn:weighted_projection_problem_definition_3}
begin{aligned}
& underset{x}{text{minimize}}
& & alpha sum_i left|y_i -x right|_2^2 \
& text{subject to}
& & left|x - c right|_2^2 leq r ,\
%&&& X succeq 0.
end{aligned}
end{equation}
Right?
If yes, then I think it is possible to solve in the closed form.
optimization convex-optimization
$endgroup$
add a comment |
$begingroup$
I have a problem on hand that I am not sure how to handle it. Can you please help/guide me to solve this optimization problem?
begin{align}
argmin_{x in mathbb{R}^n} I_C(x) + alpha sum_i left|y_i -x right|_2^2 ,
end{align}
where $I_C(x)$ is an indicator or characteristic function and the set $C$ can be a norm-2 ball, i.e., $C = left{x in mathbb{R}^n : left|x - c right|_2^2 leq rright}$, $y_i, c in mathbb{R}^n$ are given, and $r in mathbb{R}$.
My partial attempt:
The above problem can be rewritten as
begin{equation} label{eqn:weighted_projection_problem_definition_3}
begin{aligned}
& underset{x}{text{minimize}}
& & alpha sum_i left|y_i -x right|_2^2 \
& text{subject to}
& & left|x - c right|_2^2 leq r ,\
%&&& X succeq 0.
end{aligned}
end{equation}
Right?
If yes, then I think it is possible to solve in the closed form.
optimization convex-optimization
$endgroup$
I have a problem on hand that I am not sure how to handle it. Can you please help/guide me to solve this optimization problem?
begin{align}
argmin_{x in mathbb{R}^n} I_C(x) + alpha sum_i left|y_i -x right|_2^2 ,
end{align}
where $I_C(x)$ is an indicator or characteristic function and the set $C$ can be a norm-2 ball, i.e., $C = left{x in mathbb{R}^n : left|x - c right|_2^2 leq rright}$, $y_i, c in mathbb{R}^n$ are given, and $r in mathbb{R}$.
My partial attempt:
The above problem can be rewritten as
begin{equation} label{eqn:weighted_projection_problem_definition_3}
begin{aligned}
& underset{x}{text{minimize}}
& & alpha sum_i left|y_i -x right|_2^2 \
& text{subject to}
& & left|x - c right|_2^2 leq r ,\
%&&& X succeq 0.
end{aligned}
end{equation}
Right?
If yes, then I think it is possible to solve in the closed form.
optimization convex-optimization
optimization convex-optimization
edited Dec 31 '18 at 11:43
user550103
asked Dec 31 '18 at 9:20
user550103user550103
7581315
7581315
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let's complete the square: $| y_i - x |^2 = |y_i|^2 - 2 langle y_i, x rangle + |x|^2$, so
begin{align}
sum_{i=1}^N |y_i - x |^2 &= -2 left langle sum_{i=1}^N y_i, x rightrangle + N |x|^2 + ldots \
&=N left(-2 left langle frac{1}{N}sum_{i=1}^N y_i, x rightrangle + |x|^2 right) + ldots \
&= N left|x - frac{1}{N} sum_{i=1}^N y_i right|^2 + ldots
end{align}
where the ellipses ($ldots$) indicate terms that do not depend on $x$. It follows that
begin{align}
argmin_x , I_C(x) + alpha sum_{i=1}^N |y_i - x |^2&=
argmin_x I_C(x) + alpha N left|x - frac{1}{N} sum_{i=1}^N y_i right|^2 \
&= text{projection of } frac{1}{N} sum_{i=1}^N y_i text{ onto } C.
end{align}
$endgroup$
$begingroup$
Thank you so much. I was thinking that it should boil down to projection problem...
$endgroup$
– user550103
Dec 31 '18 at 13:16
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057538%2fsolve-arg-min-x-in-mathbbrn-i-cx-alpha-sum-i-left-y-i-x-right%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let's complete the square: $| y_i - x |^2 = |y_i|^2 - 2 langle y_i, x rangle + |x|^2$, so
begin{align}
sum_{i=1}^N |y_i - x |^2 &= -2 left langle sum_{i=1}^N y_i, x rightrangle + N |x|^2 + ldots \
&=N left(-2 left langle frac{1}{N}sum_{i=1}^N y_i, x rightrangle + |x|^2 right) + ldots \
&= N left|x - frac{1}{N} sum_{i=1}^N y_i right|^2 + ldots
end{align}
where the ellipses ($ldots$) indicate terms that do not depend on $x$. It follows that
begin{align}
argmin_x , I_C(x) + alpha sum_{i=1}^N |y_i - x |^2&=
argmin_x I_C(x) + alpha N left|x - frac{1}{N} sum_{i=1}^N y_i right|^2 \
&= text{projection of } frac{1}{N} sum_{i=1}^N y_i text{ onto } C.
end{align}
$endgroup$
$begingroup$
Thank you so much. I was thinking that it should boil down to projection problem...
$endgroup$
– user550103
Dec 31 '18 at 13:16
add a comment |
$begingroup$
Let's complete the square: $| y_i - x |^2 = |y_i|^2 - 2 langle y_i, x rangle + |x|^2$, so
begin{align}
sum_{i=1}^N |y_i - x |^2 &= -2 left langle sum_{i=1}^N y_i, x rightrangle + N |x|^2 + ldots \
&=N left(-2 left langle frac{1}{N}sum_{i=1}^N y_i, x rightrangle + |x|^2 right) + ldots \
&= N left|x - frac{1}{N} sum_{i=1}^N y_i right|^2 + ldots
end{align}
where the ellipses ($ldots$) indicate terms that do not depend on $x$. It follows that
begin{align}
argmin_x , I_C(x) + alpha sum_{i=1}^N |y_i - x |^2&=
argmin_x I_C(x) + alpha N left|x - frac{1}{N} sum_{i=1}^N y_i right|^2 \
&= text{projection of } frac{1}{N} sum_{i=1}^N y_i text{ onto } C.
end{align}
$endgroup$
$begingroup$
Thank you so much. I was thinking that it should boil down to projection problem...
$endgroup$
– user550103
Dec 31 '18 at 13:16
add a comment |
$begingroup$
Let's complete the square: $| y_i - x |^2 = |y_i|^2 - 2 langle y_i, x rangle + |x|^2$, so
begin{align}
sum_{i=1}^N |y_i - x |^2 &= -2 left langle sum_{i=1}^N y_i, x rightrangle + N |x|^2 + ldots \
&=N left(-2 left langle frac{1}{N}sum_{i=1}^N y_i, x rightrangle + |x|^2 right) + ldots \
&= N left|x - frac{1}{N} sum_{i=1}^N y_i right|^2 + ldots
end{align}
where the ellipses ($ldots$) indicate terms that do not depend on $x$. It follows that
begin{align}
argmin_x , I_C(x) + alpha sum_{i=1}^N |y_i - x |^2&=
argmin_x I_C(x) + alpha N left|x - frac{1}{N} sum_{i=1}^N y_i right|^2 \
&= text{projection of } frac{1}{N} sum_{i=1}^N y_i text{ onto } C.
end{align}
$endgroup$
Let's complete the square: $| y_i - x |^2 = |y_i|^2 - 2 langle y_i, x rangle + |x|^2$, so
begin{align}
sum_{i=1}^N |y_i - x |^2 &= -2 left langle sum_{i=1}^N y_i, x rightrangle + N |x|^2 + ldots \
&=N left(-2 left langle frac{1}{N}sum_{i=1}^N y_i, x rightrangle + |x|^2 right) + ldots \
&= N left|x - frac{1}{N} sum_{i=1}^N y_i right|^2 + ldots
end{align}
where the ellipses ($ldots$) indicate terms that do not depend on $x$. It follows that
begin{align}
argmin_x , I_C(x) + alpha sum_{i=1}^N |y_i - x |^2&=
argmin_x I_C(x) + alpha N left|x - frac{1}{N} sum_{i=1}^N y_i right|^2 \
&= text{projection of } frac{1}{N} sum_{i=1}^N y_i text{ onto } C.
end{align}
edited Dec 31 '18 at 12:06
answered Dec 31 '18 at 12:00
littleOlittleO
29.9k646110
29.9k646110
$begingroup$
Thank you so much. I was thinking that it should boil down to projection problem...
$endgroup$
– user550103
Dec 31 '18 at 13:16
add a comment |
$begingroup$
Thank you so much. I was thinking that it should boil down to projection problem...
$endgroup$
– user550103
Dec 31 '18 at 13:16
$begingroup$
Thank you so much. I was thinking that it should boil down to projection problem...
$endgroup$
– user550103
Dec 31 '18 at 13:16
$begingroup$
Thank you so much. I was thinking that it should boil down to projection problem...
$endgroup$
– user550103
Dec 31 '18 at 13:16
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057538%2fsolve-arg-min-x-in-mathbbrn-i-cx-alpha-sum-i-left-y-i-x-right%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown