Ways to prove that $int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x = 0$.
$begingroup$
I have managed to solve it in one way, but I became very interested in this failed attempt.
$$
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
= int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x
- int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x
$$
We only have to show that those two on the right are equal. And numerical evaluations seem to suggest that they both are in fact $-frac{pi}{4}$ but I don't know how to break these down.
I am currently really interested in proving this
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$
Anyway, here's my trivial solution using $u = frac1x$:
$$
begin{align}
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x & = int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x + int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = int_infty^1 frac{frac{1}{u^2} ln(frac1u)}{(1+frac{1}{u^2})^3} frac{-1}{u^2} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = -int_1^infty frac{ln(u)}{u(u+frac{1}{u})^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = - int_1^infty frac{u^2 ln(u)}{(1+u^2)^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = 0
end{align}
$$
I'm sure there are many more interesting methods for cracking this integral, since it's so closely related to the popular $int_0^infty frac{ln(x)}{1+x^2} {rm d}x = 0$. Please share them if you do come up with any.
calculus integration definite-integrals improper-integrals
$endgroup$
add a comment |
$begingroup$
I have managed to solve it in one way, but I became very interested in this failed attempt.
$$
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
= int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x
- int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x
$$
We only have to show that those two on the right are equal. And numerical evaluations seem to suggest that they both are in fact $-frac{pi}{4}$ but I don't know how to break these down.
I am currently really interested in proving this
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$
Anyway, here's my trivial solution using $u = frac1x$:
$$
begin{align}
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x & = int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x + int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = int_infty^1 frac{frac{1}{u^2} ln(frac1u)}{(1+frac{1}{u^2})^3} frac{-1}{u^2} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = -int_1^infty frac{ln(u)}{u(u+frac{1}{u})^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = - int_1^infty frac{u^2 ln(u)}{(1+u^2)^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = 0
end{align}
$$
I'm sure there are many more interesting methods for cracking this integral, since it's so closely related to the popular $int_0^infty frac{ln(x)}{1+x^2} {rm d}x = 0$. Please share them if you do come up with any.
calculus integration definite-integrals improper-integrals
$endgroup$
$begingroup$
Have you tried complex variable methods? Look at math.stackexchange.com/questions/385301/…
$endgroup$
– saulspatz
Dec 29 '18 at 18:13
add a comment |
$begingroup$
I have managed to solve it in one way, but I became very interested in this failed attempt.
$$
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
= int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x
- int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x
$$
We only have to show that those two on the right are equal. And numerical evaluations seem to suggest that they both are in fact $-frac{pi}{4}$ but I don't know how to break these down.
I am currently really interested in proving this
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$
Anyway, here's my trivial solution using $u = frac1x$:
$$
begin{align}
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x & = int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x + int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = int_infty^1 frac{frac{1}{u^2} ln(frac1u)}{(1+frac{1}{u^2})^3} frac{-1}{u^2} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = -int_1^infty frac{ln(u)}{u(u+frac{1}{u})^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = - int_1^infty frac{u^2 ln(u)}{(1+u^2)^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = 0
end{align}
$$
I'm sure there are many more interesting methods for cracking this integral, since it's so closely related to the popular $int_0^infty frac{ln(x)}{1+x^2} {rm d}x = 0$. Please share them if you do come up with any.
calculus integration definite-integrals improper-integrals
$endgroup$
I have managed to solve it in one way, but I became very interested in this failed attempt.
$$
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
= int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x
- int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x
$$
We only have to show that those two on the right are equal. And numerical evaluations seem to suggest that they both are in fact $-frac{pi}{4}$ but I don't know how to break these down.
I am currently really interested in proving this
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$
Anyway, here's my trivial solution using $u = frac1x$:
$$
begin{align}
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x & = int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x + int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = int_infty^1 frac{frac{1}{u^2} ln(frac1u)}{(1+frac{1}{u^2})^3} frac{-1}{u^2} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = -int_1^infty frac{ln(u)}{u(u+frac{1}{u})^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = - int_1^infty frac{u^2 ln(u)}{(1+u^2)^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = 0
end{align}
$$
I'm sure there are many more interesting methods for cracking this integral, since it's so closely related to the popular $int_0^infty frac{ln(x)}{1+x^2} {rm d}x = 0$. Please share them if you do come up with any.
calculus integration definite-integrals improper-integrals
calculus integration definite-integrals improper-integrals
asked Dec 29 '18 at 18:04
MintMint
5311417
5311417
$begingroup$
Have you tried complex variable methods? Look at math.stackexchange.com/questions/385301/…
$endgroup$
– saulspatz
Dec 29 '18 at 18:13
add a comment |
$begingroup$
Have you tried complex variable methods? Look at math.stackexchange.com/questions/385301/…
$endgroup$
– saulspatz
Dec 29 '18 at 18:13
$begingroup$
Have you tried complex variable methods? Look at math.stackexchange.com/questions/385301/…
$endgroup$
– saulspatz
Dec 29 '18 at 18:13
$begingroup$
Have you tried complex variable methods? Look at math.stackexchange.com/questions/385301/…
$endgroup$
– saulspatz
Dec 29 '18 at 18:13
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
For the first part of the question we can substitute $x=frac{1}{t}$ in order to get: $$I=int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=int^0_infty frac{lnleft(frac{1}{t}right)}{t^2left(1+frac{1}{t^2}right)^3}frac{-dt}{t^2}=int_0^infty frac{t^2 lnleft(frac{1}{t}right)}{(1+t^2)^3}dt=-I$$
So we just saw that $I=-IRightarrow I=0$
I am currently really interested in proving this
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$
Well now that we showed that both integrals are equal it's enough to compute only one of it. Of course it's more rational to take the one with the lower power.
$$Omega=int_0^infty frac{ln x}{(1+x^2)^2}dxoverset{x=tan t}=int_0^frac{pi}{2} ln(tan t)cos^2 t,mathrm dt =frac12int_0^frac{pi}{2} ln(tan t) (1+cos(2t))dt$$
Now we will split into two integrals and first we will show that the first one vanishes. I will do it directly using the following property of the definite integrals:
$$int_a^b f(x)=int_a^b f(a+b-x)dx$$
$$J=int_0^frac{pi}{2}ln(tan t)dt=int_0^frac{pi}{2} ln(cot t)dt=-int_0^frac{pi}{2} ln (tan t)dt=-JRightarrow J=0$$
$$Rightarrow Omega=frac12 int_0^frac{pi}{2}ln(tan t)cos (2t)mathrm dt=frac12 int_0^frac{pi}{2} ln(tan t)left(frac12 sin(2t)right)' mathrm dt=$$
$$=frac14 underbrace{ln(tan t)sin(2t)bigg|_0^frac{pi}{2}}_{=0}-frac14int_0^frac{pi}{2} frac{sec^2 t}{tan t}sin(2t)mathrm dt=-frac12 int_0^frac{pi}{2} dt=-frac{pi}{4}$$
$endgroup$
1
$begingroup$
Nice, much quicker. I should've just done that from the start.
$endgroup$
– Mint
Dec 29 '18 at 18:39
add a comment |
$begingroup$
$$int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dx stackrel{(*)}{=}frac{pi(1-alpha^2)}{16cosfrac{pi alpha}{2}} $$
$(*)$: we use the substitution $frac{1}{1+x^2}=u$, the Beta function and the reflection formula for the $Gamma$ function.
This holds for any $alpha$ such that $-3<text{Re}(alpha)<3$, and since the RHS is an even function, the origin is a stationary point, i.e.
$$color{red}{0}=frac{d}{dalpha}left.int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dxright|_{alpha=0}stackrel{text{DCT}}{=}int_{0}^{+infty}frac{x^{2}log x}{(1+x^2)^3},dx.$$
$endgroup$
add a comment |
$begingroup$
I found a way to directly evaluate both of those integrals!
We first use the well known result from $int_0^{infty}frac{ln x}{x^2+a^2}mathrm{d}x$ Evaluate Integral
$$
int_0^infty frac{ln(x)}{x^2 +alpha^2} {rm d}x = frac{pi}{2alpha} ln(alpha)
$$
and use differentiation under the integral sign.
$$
int_0^infty frac{-2alphaln(x)}{(x^2 +alpha^2)^2} {rm d}x
= frac{pi}{2} frac{1-ln(alpha)}{alpha^2} \
implies int_0^infty frac{ln(x)}{(x^2 +alpha^2)^2} {rm d}x
= frac{pi}{4alpha^3} (ln(alpha)-1)
$$
And again, to get
$$
int_0^infty frac{ln(x)}{(x^2 +alpha^2)^3} {rm d}x
= frac{pi}{16alpha^5}(3ln(alpha) - 4)
$$
And so setting $alpha = 1$ gives us the immediate result
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$
Another method to evaluate this is to use the integral from the 2015 MIT Integration Bee, and is also how I first came across this integral.
From this result (solved by using the substitution $u=frac1x$)
$$ int_0^infty frac{1}{(1+x^2)(1+x^alpha)} {rm d}x = fracpi4 $$
we will get, by differentiating with respect to $alpha$,
$$ int_0^infty frac{x^alpha ln(x)}{(1+x^2)(1+x^alpha)^2} {rm d}x = 0 $$
And finally setting $alpha = 2$.
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{Repars{mu} > - 1}$ and
$ds{Repars{nu} > 0}$:
begin{align}
I_{munu} & equiv
bbox[10px,#ffd]{int_{0}^{infty}{x^{mu}lnpars{x} over pars{1 + x^{2}}^{nu}},dd x}
,,,stackrel{x^{2} mapsto x}{=},,,
{1 over 4}int_{0}^{infty}
{x^{mu/2 - 1/2}lnpars{x} over pars{1 + x}^{nu}},dd x
\[5mm] & =
left.{1 over 4},partiald{}{alpha}int_{0}^{infty}
{x^{alpha + mu/2 - 1/2} over pars{1 + x}^{nu}},dd x
,rightvert_{ alpha = 0}
\[5mm] & stackrel{x + 1 mapsto x}{=},,,
left.{1 over 4},partiald{}{alpha}int_{1}^{infty}
{pars{x - 1}^{alpha + mu/2 - 1/2} over x^{nu}},dd x
,rightvert_{ alpha = 0}
\[5mm] & stackrel{x mapsto 1/x}{=},,,
left.{1 over 4},partiald{}{alpha}int_{1}^{0}
{pars{1/x - 1}^{alpha + mu/2 - 1/2} over pars{1/x}^{nu}},
pars{-,{dd x over x^{2}}}
rightvert_{ alpha = 0}
\[5mm] & =
left.{1 over 4},partiald{}{alpha}int_{0}^{1}
x^{nu - alpha - mu/2 - 3/2}pars{1 - x}^{alpha + mu/2 - 1/2},
dd x,rightvert_{ alpha = 0}
\[5mm] & =
{1 over 4},partiald{}{alpha}bracks{%
Gammapars{nu - alpha - mu/2 - 1/2}Gammapars{alpha + mu/2 + 1/2} over Gammapars{nu}}_{ alpha = 0}
\[5mm] & =
bbx{{Gammapars{mu/2 + 1/2}Gammapars{nu - mu/2 - 1/2} over
4Gammapars{nu}}
bracks{H_{mu/2 - 1/2} - H_{nu - mu/2 - 3/2}}}
end{align}
$ds{H_{z}}$ is a Harmonic Number.
$$
begin{array}{|c|c|}hline
ds{mu setminus nu} & ds{I_{munu}}
\ hline
ds{0 setminus 2} & ds{-,{pi over 4}}
\ hline
ds{0 setminus 3} & ds{-,{pi over 4}}
\ hline
end{array}
$$
$endgroup$
add a comment |
$begingroup$
$$int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=
int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x+
int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
$$
Then change in first integral $x=frac{1}{t}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056098%2fways-to-prove-that-int-0-infty-fracx2-lnx1x23-rm-dx-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For the first part of the question we can substitute $x=frac{1}{t}$ in order to get: $$I=int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=int^0_infty frac{lnleft(frac{1}{t}right)}{t^2left(1+frac{1}{t^2}right)^3}frac{-dt}{t^2}=int_0^infty frac{t^2 lnleft(frac{1}{t}right)}{(1+t^2)^3}dt=-I$$
So we just saw that $I=-IRightarrow I=0$
I am currently really interested in proving this
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$
Well now that we showed that both integrals are equal it's enough to compute only one of it. Of course it's more rational to take the one with the lower power.
$$Omega=int_0^infty frac{ln x}{(1+x^2)^2}dxoverset{x=tan t}=int_0^frac{pi}{2} ln(tan t)cos^2 t,mathrm dt =frac12int_0^frac{pi}{2} ln(tan t) (1+cos(2t))dt$$
Now we will split into two integrals and first we will show that the first one vanishes. I will do it directly using the following property of the definite integrals:
$$int_a^b f(x)=int_a^b f(a+b-x)dx$$
$$J=int_0^frac{pi}{2}ln(tan t)dt=int_0^frac{pi}{2} ln(cot t)dt=-int_0^frac{pi}{2} ln (tan t)dt=-JRightarrow J=0$$
$$Rightarrow Omega=frac12 int_0^frac{pi}{2}ln(tan t)cos (2t)mathrm dt=frac12 int_0^frac{pi}{2} ln(tan t)left(frac12 sin(2t)right)' mathrm dt=$$
$$=frac14 underbrace{ln(tan t)sin(2t)bigg|_0^frac{pi}{2}}_{=0}-frac14int_0^frac{pi}{2} frac{sec^2 t}{tan t}sin(2t)mathrm dt=-frac12 int_0^frac{pi}{2} dt=-frac{pi}{4}$$
$endgroup$
1
$begingroup$
Nice, much quicker. I should've just done that from the start.
$endgroup$
– Mint
Dec 29 '18 at 18:39
add a comment |
$begingroup$
For the first part of the question we can substitute $x=frac{1}{t}$ in order to get: $$I=int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=int^0_infty frac{lnleft(frac{1}{t}right)}{t^2left(1+frac{1}{t^2}right)^3}frac{-dt}{t^2}=int_0^infty frac{t^2 lnleft(frac{1}{t}right)}{(1+t^2)^3}dt=-I$$
So we just saw that $I=-IRightarrow I=0$
I am currently really interested in proving this
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$
Well now that we showed that both integrals are equal it's enough to compute only one of it. Of course it's more rational to take the one with the lower power.
$$Omega=int_0^infty frac{ln x}{(1+x^2)^2}dxoverset{x=tan t}=int_0^frac{pi}{2} ln(tan t)cos^2 t,mathrm dt =frac12int_0^frac{pi}{2} ln(tan t) (1+cos(2t))dt$$
Now we will split into two integrals and first we will show that the first one vanishes. I will do it directly using the following property of the definite integrals:
$$int_a^b f(x)=int_a^b f(a+b-x)dx$$
$$J=int_0^frac{pi}{2}ln(tan t)dt=int_0^frac{pi}{2} ln(cot t)dt=-int_0^frac{pi}{2} ln (tan t)dt=-JRightarrow J=0$$
$$Rightarrow Omega=frac12 int_0^frac{pi}{2}ln(tan t)cos (2t)mathrm dt=frac12 int_0^frac{pi}{2} ln(tan t)left(frac12 sin(2t)right)' mathrm dt=$$
$$=frac14 underbrace{ln(tan t)sin(2t)bigg|_0^frac{pi}{2}}_{=0}-frac14int_0^frac{pi}{2} frac{sec^2 t}{tan t}sin(2t)mathrm dt=-frac12 int_0^frac{pi}{2} dt=-frac{pi}{4}$$
$endgroup$
1
$begingroup$
Nice, much quicker. I should've just done that from the start.
$endgroup$
– Mint
Dec 29 '18 at 18:39
add a comment |
$begingroup$
For the first part of the question we can substitute $x=frac{1}{t}$ in order to get: $$I=int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=int^0_infty frac{lnleft(frac{1}{t}right)}{t^2left(1+frac{1}{t^2}right)^3}frac{-dt}{t^2}=int_0^infty frac{t^2 lnleft(frac{1}{t}right)}{(1+t^2)^3}dt=-I$$
So we just saw that $I=-IRightarrow I=0$
I am currently really interested in proving this
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$
Well now that we showed that both integrals are equal it's enough to compute only one of it. Of course it's more rational to take the one with the lower power.
$$Omega=int_0^infty frac{ln x}{(1+x^2)^2}dxoverset{x=tan t}=int_0^frac{pi}{2} ln(tan t)cos^2 t,mathrm dt =frac12int_0^frac{pi}{2} ln(tan t) (1+cos(2t))dt$$
Now we will split into two integrals and first we will show that the first one vanishes. I will do it directly using the following property of the definite integrals:
$$int_a^b f(x)=int_a^b f(a+b-x)dx$$
$$J=int_0^frac{pi}{2}ln(tan t)dt=int_0^frac{pi}{2} ln(cot t)dt=-int_0^frac{pi}{2} ln (tan t)dt=-JRightarrow J=0$$
$$Rightarrow Omega=frac12 int_0^frac{pi}{2}ln(tan t)cos (2t)mathrm dt=frac12 int_0^frac{pi}{2} ln(tan t)left(frac12 sin(2t)right)' mathrm dt=$$
$$=frac14 underbrace{ln(tan t)sin(2t)bigg|_0^frac{pi}{2}}_{=0}-frac14int_0^frac{pi}{2} frac{sec^2 t}{tan t}sin(2t)mathrm dt=-frac12 int_0^frac{pi}{2} dt=-frac{pi}{4}$$
$endgroup$
For the first part of the question we can substitute $x=frac{1}{t}$ in order to get: $$I=int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=int^0_infty frac{lnleft(frac{1}{t}right)}{t^2left(1+frac{1}{t^2}right)^3}frac{-dt}{t^2}=int_0^infty frac{t^2 lnleft(frac{1}{t}right)}{(1+t^2)^3}dt=-I$$
So we just saw that $I=-IRightarrow I=0$
I am currently really interested in proving this
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$
Well now that we showed that both integrals are equal it's enough to compute only one of it. Of course it's more rational to take the one with the lower power.
$$Omega=int_0^infty frac{ln x}{(1+x^2)^2}dxoverset{x=tan t}=int_0^frac{pi}{2} ln(tan t)cos^2 t,mathrm dt =frac12int_0^frac{pi}{2} ln(tan t) (1+cos(2t))dt$$
Now we will split into two integrals and first we will show that the first one vanishes. I will do it directly using the following property of the definite integrals:
$$int_a^b f(x)=int_a^b f(a+b-x)dx$$
$$J=int_0^frac{pi}{2}ln(tan t)dt=int_0^frac{pi}{2} ln(cot t)dt=-int_0^frac{pi}{2} ln (tan t)dt=-JRightarrow J=0$$
$$Rightarrow Omega=frac12 int_0^frac{pi}{2}ln(tan t)cos (2t)mathrm dt=frac12 int_0^frac{pi}{2} ln(tan t)left(frac12 sin(2t)right)' mathrm dt=$$
$$=frac14 underbrace{ln(tan t)sin(2t)bigg|_0^frac{pi}{2}}_{=0}-frac14int_0^frac{pi}{2} frac{sec^2 t}{tan t}sin(2t)mathrm dt=-frac12 int_0^frac{pi}{2} dt=-frac{pi}{4}$$
edited Dec 29 '18 at 19:15
answered Dec 29 '18 at 18:37
ZackyZacky
6,9401961
6,9401961
1
$begingroup$
Nice, much quicker. I should've just done that from the start.
$endgroup$
– Mint
Dec 29 '18 at 18:39
add a comment |
1
$begingroup$
Nice, much quicker. I should've just done that from the start.
$endgroup$
– Mint
Dec 29 '18 at 18:39
1
1
$begingroup$
Nice, much quicker. I should've just done that from the start.
$endgroup$
– Mint
Dec 29 '18 at 18:39
$begingroup$
Nice, much quicker. I should've just done that from the start.
$endgroup$
– Mint
Dec 29 '18 at 18:39
add a comment |
$begingroup$
$$int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dx stackrel{(*)}{=}frac{pi(1-alpha^2)}{16cosfrac{pi alpha}{2}} $$
$(*)$: we use the substitution $frac{1}{1+x^2}=u$, the Beta function and the reflection formula for the $Gamma$ function.
This holds for any $alpha$ such that $-3<text{Re}(alpha)<3$, and since the RHS is an even function, the origin is a stationary point, i.e.
$$color{red}{0}=frac{d}{dalpha}left.int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dxright|_{alpha=0}stackrel{text{DCT}}{=}int_{0}^{+infty}frac{x^{2}log x}{(1+x^2)^3},dx.$$
$endgroup$
add a comment |
$begingroup$
$$int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dx stackrel{(*)}{=}frac{pi(1-alpha^2)}{16cosfrac{pi alpha}{2}} $$
$(*)$: we use the substitution $frac{1}{1+x^2}=u$, the Beta function and the reflection formula for the $Gamma$ function.
This holds for any $alpha$ such that $-3<text{Re}(alpha)<3$, and since the RHS is an even function, the origin is a stationary point, i.e.
$$color{red}{0}=frac{d}{dalpha}left.int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dxright|_{alpha=0}stackrel{text{DCT}}{=}int_{0}^{+infty}frac{x^{2}log x}{(1+x^2)^3},dx.$$
$endgroup$
add a comment |
$begingroup$
$$int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dx stackrel{(*)}{=}frac{pi(1-alpha^2)}{16cosfrac{pi alpha}{2}} $$
$(*)$: we use the substitution $frac{1}{1+x^2}=u$, the Beta function and the reflection formula for the $Gamma$ function.
This holds for any $alpha$ such that $-3<text{Re}(alpha)<3$, and since the RHS is an even function, the origin is a stationary point, i.e.
$$color{red}{0}=frac{d}{dalpha}left.int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dxright|_{alpha=0}stackrel{text{DCT}}{=}int_{0}^{+infty}frac{x^{2}log x}{(1+x^2)^3},dx.$$
$endgroup$
$$int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dx stackrel{(*)}{=}frac{pi(1-alpha^2)}{16cosfrac{pi alpha}{2}} $$
$(*)$: we use the substitution $frac{1}{1+x^2}=u$, the Beta function and the reflection formula for the $Gamma$ function.
This holds for any $alpha$ such that $-3<text{Re}(alpha)<3$, and since the RHS is an even function, the origin is a stationary point, i.e.
$$color{red}{0}=frac{d}{dalpha}left.int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dxright|_{alpha=0}stackrel{text{DCT}}{=}int_{0}^{+infty}frac{x^{2}log x}{(1+x^2)^3},dx.$$
answered Dec 29 '18 at 18:33
Jack D'AurizioJack D'Aurizio
290k33282663
290k33282663
add a comment |
add a comment |
$begingroup$
I found a way to directly evaluate both of those integrals!
We first use the well known result from $int_0^{infty}frac{ln x}{x^2+a^2}mathrm{d}x$ Evaluate Integral
$$
int_0^infty frac{ln(x)}{x^2 +alpha^2} {rm d}x = frac{pi}{2alpha} ln(alpha)
$$
and use differentiation under the integral sign.
$$
int_0^infty frac{-2alphaln(x)}{(x^2 +alpha^2)^2} {rm d}x
= frac{pi}{2} frac{1-ln(alpha)}{alpha^2} \
implies int_0^infty frac{ln(x)}{(x^2 +alpha^2)^2} {rm d}x
= frac{pi}{4alpha^3} (ln(alpha)-1)
$$
And again, to get
$$
int_0^infty frac{ln(x)}{(x^2 +alpha^2)^3} {rm d}x
= frac{pi}{16alpha^5}(3ln(alpha) - 4)
$$
And so setting $alpha = 1$ gives us the immediate result
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$
Another method to evaluate this is to use the integral from the 2015 MIT Integration Bee, and is also how I first came across this integral.
From this result (solved by using the substitution $u=frac1x$)
$$ int_0^infty frac{1}{(1+x^2)(1+x^alpha)} {rm d}x = fracpi4 $$
we will get, by differentiating with respect to $alpha$,
$$ int_0^infty frac{x^alpha ln(x)}{(1+x^2)(1+x^alpha)^2} {rm d}x = 0 $$
And finally setting $alpha = 2$.
$endgroup$
add a comment |
$begingroup$
I found a way to directly evaluate both of those integrals!
We first use the well known result from $int_0^{infty}frac{ln x}{x^2+a^2}mathrm{d}x$ Evaluate Integral
$$
int_0^infty frac{ln(x)}{x^2 +alpha^2} {rm d}x = frac{pi}{2alpha} ln(alpha)
$$
and use differentiation under the integral sign.
$$
int_0^infty frac{-2alphaln(x)}{(x^2 +alpha^2)^2} {rm d}x
= frac{pi}{2} frac{1-ln(alpha)}{alpha^2} \
implies int_0^infty frac{ln(x)}{(x^2 +alpha^2)^2} {rm d}x
= frac{pi}{4alpha^3} (ln(alpha)-1)
$$
And again, to get
$$
int_0^infty frac{ln(x)}{(x^2 +alpha^2)^3} {rm d}x
= frac{pi}{16alpha^5}(3ln(alpha) - 4)
$$
And so setting $alpha = 1$ gives us the immediate result
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$
Another method to evaluate this is to use the integral from the 2015 MIT Integration Bee, and is also how I first came across this integral.
From this result (solved by using the substitution $u=frac1x$)
$$ int_0^infty frac{1}{(1+x^2)(1+x^alpha)} {rm d}x = fracpi4 $$
we will get, by differentiating with respect to $alpha$,
$$ int_0^infty frac{x^alpha ln(x)}{(1+x^2)(1+x^alpha)^2} {rm d}x = 0 $$
And finally setting $alpha = 2$.
$endgroup$
add a comment |
$begingroup$
I found a way to directly evaluate both of those integrals!
We first use the well known result from $int_0^{infty}frac{ln x}{x^2+a^2}mathrm{d}x$ Evaluate Integral
$$
int_0^infty frac{ln(x)}{x^2 +alpha^2} {rm d}x = frac{pi}{2alpha} ln(alpha)
$$
and use differentiation under the integral sign.
$$
int_0^infty frac{-2alphaln(x)}{(x^2 +alpha^2)^2} {rm d}x
= frac{pi}{2} frac{1-ln(alpha)}{alpha^2} \
implies int_0^infty frac{ln(x)}{(x^2 +alpha^2)^2} {rm d}x
= frac{pi}{4alpha^3} (ln(alpha)-1)
$$
And again, to get
$$
int_0^infty frac{ln(x)}{(x^2 +alpha^2)^3} {rm d}x
= frac{pi}{16alpha^5}(3ln(alpha) - 4)
$$
And so setting $alpha = 1$ gives us the immediate result
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$
Another method to evaluate this is to use the integral from the 2015 MIT Integration Bee, and is also how I first came across this integral.
From this result (solved by using the substitution $u=frac1x$)
$$ int_0^infty frac{1}{(1+x^2)(1+x^alpha)} {rm d}x = fracpi4 $$
we will get, by differentiating with respect to $alpha$,
$$ int_0^infty frac{x^alpha ln(x)}{(1+x^2)(1+x^alpha)^2} {rm d}x = 0 $$
And finally setting $alpha = 2$.
$endgroup$
I found a way to directly evaluate both of those integrals!
We first use the well known result from $int_0^{infty}frac{ln x}{x^2+a^2}mathrm{d}x$ Evaluate Integral
$$
int_0^infty frac{ln(x)}{x^2 +alpha^2} {rm d}x = frac{pi}{2alpha} ln(alpha)
$$
and use differentiation under the integral sign.
$$
int_0^infty frac{-2alphaln(x)}{(x^2 +alpha^2)^2} {rm d}x
= frac{pi}{2} frac{1-ln(alpha)}{alpha^2} \
implies int_0^infty frac{ln(x)}{(x^2 +alpha^2)^2} {rm d}x
= frac{pi}{4alpha^3} (ln(alpha)-1)
$$
And again, to get
$$
int_0^infty frac{ln(x)}{(x^2 +alpha^2)^3} {rm d}x
= frac{pi}{16alpha^5}(3ln(alpha) - 4)
$$
And so setting $alpha = 1$ gives us the immediate result
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$
Another method to evaluate this is to use the integral from the 2015 MIT Integration Bee, and is also how I first came across this integral.
From this result (solved by using the substitution $u=frac1x$)
$$ int_0^infty frac{1}{(1+x^2)(1+x^alpha)} {rm d}x = fracpi4 $$
we will get, by differentiating with respect to $alpha$,
$$ int_0^infty frac{x^alpha ln(x)}{(1+x^2)(1+x^alpha)^2} {rm d}x = 0 $$
And finally setting $alpha = 2$.
answered Dec 30 '18 at 13:13
MintMint
5311417
5311417
add a comment |
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{Repars{mu} > - 1}$ and
$ds{Repars{nu} > 0}$:
begin{align}
I_{munu} & equiv
bbox[10px,#ffd]{int_{0}^{infty}{x^{mu}lnpars{x} over pars{1 + x^{2}}^{nu}},dd x}
,,,stackrel{x^{2} mapsto x}{=},,,
{1 over 4}int_{0}^{infty}
{x^{mu/2 - 1/2}lnpars{x} over pars{1 + x}^{nu}},dd x
\[5mm] & =
left.{1 over 4},partiald{}{alpha}int_{0}^{infty}
{x^{alpha + mu/2 - 1/2} over pars{1 + x}^{nu}},dd x
,rightvert_{ alpha = 0}
\[5mm] & stackrel{x + 1 mapsto x}{=},,,
left.{1 over 4},partiald{}{alpha}int_{1}^{infty}
{pars{x - 1}^{alpha + mu/2 - 1/2} over x^{nu}},dd x
,rightvert_{ alpha = 0}
\[5mm] & stackrel{x mapsto 1/x}{=},,,
left.{1 over 4},partiald{}{alpha}int_{1}^{0}
{pars{1/x - 1}^{alpha + mu/2 - 1/2} over pars{1/x}^{nu}},
pars{-,{dd x over x^{2}}}
rightvert_{ alpha = 0}
\[5mm] & =
left.{1 over 4},partiald{}{alpha}int_{0}^{1}
x^{nu - alpha - mu/2 - 3/2}pars{1 - x}^{alpha + mu/2 - 1/2},
dd x,rightvert_{ alpha = 0}
\[5mm] & =
{1 over 4},partiald{}{alpha}bracks{%
Gammapars{nu - alpha - mu/2 - 1/2}Gammapars{alpha + mu/2 + 1/2} over Gammapars{nu}}_{ alpha = 0}
\[5mm] & =
bbx{{Gammapars{mu/2 + 1/2}Gammapars{nu - mu/2 - 1/2} over
4Gammapars{nu}}
bracks{H_{mu/2 - 1/2} - H_{nu - mu/2 - 3/2}}}
end{align}
$ds{H_{z}}$ is a Harmonic Number.
$$
begin{array}{|c|c|}hline
ds{mu setminus nu} & ds{I_{munu}}
\ hline
ds{0 setminus 2} & ds{-,{pi over 4}}
\ hline
ds{0 setminus 3} & ds{-,{pi over 4}}
\ hline
end{array}
$$
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{Repars{mu} > - 1}$ and
$ds{Repars{nu} > 0}$:
begin{align}
I_{munu} & equiv
bbox[10px,#ffd]{int_{0}^{infty}{x^{mu}lnpars{x} over pars{1 + x^{2}}^{nu}},dd x}
,,,stackrel{x^{2} mapsto x}{=},,,
{1 over 4}int_{0}^{infty}
{x^{mu/2 - 1/2}lnpars{x} over pars{1 + x}^{nu}},dd x
\[5mm] & =
left.{1 over 4},partiald{}{alpha}int_{0}^{infty}
{x^{alpha + mu/2 - 1/2} over pars{1 + x}^{nu}},dd x
,rightvert_{ alpha = 0}
\[5mm] & stackrel{x + 1 mapsto x}{=},,,
left.{1 over 4},partiald{}{alpha}int_{1}^{infty}
{pars{x - 1}^{alpha + mu/2 - 1/2} over x^{nu}},dd x
,rightvert_{ alpha = 0}
\[5mm] & stackrel{x mapsto 1/x}{=},,,
left.{1 over 4},partiald{}{alpha}int_{1}^{0}
{pars{1/x - 1}^{alpha + mu/2 - 1/2} over pars{1/x}^{nu}},
pars{-,{dd x over x^{2}}}
rightvert_{ alpha = 0}
\[5mm] & =
left.{1 over 4},partiald{}{alpha}int_{0}^{1}
x^{nu - alpha - mu/2 - 3/2}pars{1 - x}^{alpha + mu/2 - 1/2},
dd x,rightvert_{ alpha = 0}
\[5mm] & =
{1 over 4},partiald{}{alpha}bracks{%
Gammapars{nu - alpha - mu/2 - 1/2}Gammapars{alpha + mu/2 + 1/2} over Gammapars{nu}}_{ alpha = 0}
\[5mm] & =
bbx{{Gammapars{mu/2 + 1/2}Gammapars{nu - mu/2 - 1/2} over
4Gammapars{nu}}
bracks{H_{mu/2 - 1/2} - H_{nu - mu/2 - 3/2}}}
end{align}
$ds{H_{z}}$ is a Harmonic Number.
$$
begin{array}{|c|c|}hline
ds{mu setminus nu} & ds{I_{munu}}
\ hline
ds{0 setminus 2} & ds{-,{pi over 4}}
\ hline
ds{0 setminus 3} & ds{-,{pi over 4}}
\ hline
end{array}
$$
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{Repars{mu} > - 1}$ and
$ds{Repars{nu} > 0}$:
begin{align}
I_{munu} & equiv
bbox[10px,#ffd]{int_{0}^{infty}{x^{mu}lnpars{x} over pars{1 + x^{2}}^{nu}},dd x}
,,,stackrel{x^{2} mapsto x}{=},,,
{1 over 4}int_{0}^{infty}
{x^{mu/2 - 1/2}lnpars{x} over pars{1 + x}^{nu}},dd x
\[5mm] & =
left.{1 over 4},partiald{}{alpha}int_{0}^{infty}
{x^{alpha + mu/2 - 1/2} over pars{1 + x}^{nu}},dd x
,rightvert_{ alpha = 0}
\[5mm] & stackrel{x + 1 mapsto x}{=},,,
left.{1 over 4},partiald{}{alpha}int_{1}^{infty}
{pars{x - 1}^{alpha + mu/2 - 1/2} over x^{nu}},dd x
,rightvert_{ alpha = 0}
\[5mm] & stackrel{x mapsto 1/x}{=},,,
left.{1 over 4},partiald{}{alpha}int_{1}^{0}
{pars{1/x - 1}^{alpha + mu/2 - 1/2} over pars{1/x}^{nu}},
pars{-,{dd x over x^{2}}}
rightvert_{ alpha = 0}
\[5mm] & =
left.{1 over 4},partiald{}{alpha}int_{0}^{1}
x^{nu - alpha - mu/2 - 3/2}pars{1 - x}^{alpha + mu/2 - 1/2},
dd x,rightvert_{ alpha = 0}
\[5mm] & =
{1 over 4},partiald{}{alpha}bracks{%
Gammapars{nu - alpha - mu/2 - 1/2}Gammapars{alpha + mu/2 + 1/2} over Gammapars{nu}}_{ alpha = 0}
\[5mm] & =
bbx{{Gammapars{mu/2 + 1/2}Gammapars{nu - mu/2 - 1/2} over
4Gammapars{nu}}
bracks{H_{mu/2 - 1/2} - H_{nu - mu/2 - 3/2}}}
end{align}
$ds{H_{z}}$ is a Harmonic Number.
$$
begin{array}{|c|c|}hline
ds{mu setminus nu} & ds{I_{munu}}
\ hline
ds{0 setminus 2} & ds{-,{pi over 4}}
\ hline
ds{0 setminus 3} & ds{-,{pi over 4}}
\ hline
end{array}
$$
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{Repars{mu} > - 1}$ and
$ds{Repars{nu} > 0}$:
begin{align}
I_{munu} & equiv
bbox[10px,#ffd]{int_{0}^{infty}{x^{mu}lnpars{x} over pars{1 + x^{2}}^{nu}},dd x}
,,,stackrel{x^{2} mapsto x}{=},,,
{1 over 4}int_{0}^{infty}
{x^{mu/2 - 1/2}lnpars{x} over pars{1 + x}^{nu}},dd x
\[5mm] & =
left.{1 over 4},partiald{}{alpha}int_{0}^{infty}
{x^{alpha + mu/2 - 1/2} over pars{1 + x}^{nu}},dd x
,rightvert_{ alpha = 0}
\[5mm] & stackrel{x + 1 mapsto x}{=},,,
left.{1 over 4},partiald{}{alpha}int_{1}^{infty}
{pars{x - 1}^{alpha + mu/2 - 1/2} over x^{nu}},dd x
,rightvert_{ alpha = 0}
\[5mm] & stackrel{x mapsto 1/x}{=},,,
left.{1 over 4},partiald{}{alpha}int_{1}^{0}
{pars{1/x - 1}^{alpha + mu/2 - 1/2} over pars{1/x}^{nu}},
pars{-,{dd x over x^{2}}}
rightvert_{ alpha = 0}
\[5mm] & =
left.{1 over 4},partiald{}{alpha}int_{0}^{1}
x^{nu - alpha - mu/2 - 3/2}pars{1 - x}^{alpha + mu/2 - 1/2},
dd x,rightvert_{ alpha = 0}
\[5mm] & =
{1 over 4},partiald{}{alpha}bracks{%
Gammapars{nu - alpha - mu/2 - 1/2}Gammapars{alpha + mu/2 + 1/2} over Gammapars{nu}}_{ alpha = 0}
\[5mm] & =
bbx{{Gammapars{mu/2 + 1/2}Gammapars{nu - mu/2 - 1/2} over
4Gammapars{nu}}
bracks{H_{mu/2 - 1/2} - H_{nu - mu/2 - 3/2}}}
end{align}
$ds{H_{z}}$ is a Harmonic Number.
$$
begin{array}{|c|c|}hline
ds{mu setminus nu} & ds{I_{munu}}
\ hline
ds{0 setminus 2} & ds{-,{pi over 4}}
\ hline
ds{0 setminus 3} & ds{-,{pi over 4}}
\ hline
end{array}
$$
answered Jan 2 at 23:29
Felix MarinFelix Marin
68.1k7109143
68.1k7109143
add a comment |
add a comment |
$begingroup$
$$int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=
int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x+
int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
$$
Then change in first integral $x=frac{1}{t}$.
$endgroup$
add a comment |
$begingroup$
$$int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=
int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x+
int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
$$
Then change in first integral $x=frac{1}{t}$.
$endgroup$
add a comment |
$begingroup$
$$int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=
int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x+
int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
$$
Then change in first integral $x=frac{1}{t}$.
$endgroup$
$$int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=
int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x+
int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
$$
Then change in first integral $x=frac{1}{t}$.
answered Dec 29 '18 at 18:57
Aleksas DomarkasAleksas Domarkas
1,33716
1,33716
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056098%2fways-to-prove-that-int-0-infty-fracx2-lnx1x23-rm-dx-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Have you tried complex variable methods? Look at math.stackexchange.com/questions/385301/…
$endgroup$
– saulspatz
Dec 29 '18 at 18:13