Ways to prove that $int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x = 0$.












8












$begingroup$


I have managed to solve it in one way, but I became very interested in this failed attempt.



$$
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
= int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x
- int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x
$$



We only have to show that those two on the right are equal. And numerical evaluations seem to suggest that they both are in fact $-frac{pi}{4}$ but I don't know how to break these down.




I am currently really interested in proving this
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$




Anyway, here's my trivial solution using $u = frac1x$:



$$
begin{align}
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x & = int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x + int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = int_infty^1 frac{frac{1}{u^2} ln(frac1u)}{(1+frac{1}{u^2})^3} frac{-1}{u^2} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = -int_1^infty frac{ln(u)}{u(u+frac{1}{u})^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = - int_1^infty frac{u^2 ln(u)}{(1+u^2)^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = 0
end{align}
$$



I'm sure there are many more interesting methods for cracking this integral, since it's so closely related to the popular $int_0^infty frac{ln(x)}{1+x^2} {rm d}x = 0$. Please share them if you do come up with any.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Have you tried complex variable methods? Look at math.stackexchange.com/questions/385301/…
    $endgroup$
    – saulspatz
    Dec 29 '18 at 18:13


















8












$begingroup$


I have managed to solve it in one way, but I became very interested in this failed attempt.



$$
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
= int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x
- int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x
$$



We only have to show that those two on the right are equal. And numerical evaluations seem to suggest that they both are in fact $-frac{pi}{4}$ but I don't know how to break these down.




I am currently really interested in proving this
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$




Anyway, here's my trivial solution using $u = frac1x$:



$$
begin{align}
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x & = int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x + int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = int_infty^1 frac{frac{1}{u^2} ln(frac1u)}{(1+frac{1}{u^2})^3} frac{-1}{u^2} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = -int_1^infty frac{ln(u)}{u(u+frac{1}{u})^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = - int_1^infty frac{u^2 ln(u)}{(1+u^2)^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = 0
end{align}
$$



I'm sure there are many more interesting methods for cracking this integral, since it's so closely related to the popular $int_0^infty frac{ln(x)}{1+x^2} {rm d}x = 0$. Please share them if you do come up with any.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Have you tried complex variable methods? Look at math.stackexchange.com/questions/385301/…
    $endgroup$
    – saulspatz
    Dec 29 '18 at 18:13
















8












8








8


5



$begingroup$


I have managed to solve it in one way, but I became very interested in this failed attempt.



$$
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
= int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x
- int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x
$$



We only have to show that those two on the right are equal. And numerical evaluations seem to suggest that they both are in fact $-frac{pi}{4}$ but I don't know how to break these down.




I am currently really interested in proving this
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$




Anyway, here's my trivial solution using $u = frac1x$:



$$
begin{align}
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x & = int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x + int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = int_infty^1 frac{frac{1}{u^2} ln(frac1u)}{(1+frac{1}{u^2})^3} frac{-1}{u^2} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = -int_1^infty frac{ln(u)}{u(u+frac{1}{u})^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = - int_1^infty frac{u^2 ln(u)}{(1+u^2)^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = 0
end{align}
$$



I'm sure there are many more interesting methods for cracking this integral, since it's so closely related to the popular $int_0^infty frac{ln(x)}{1+x^2} {rm d}x = 0$. Please share them if you do come up with any.










share|cite|improve this question









$endgroup$




I have managed to solve it in one way, but I became very interested in this failed attempt.



$$
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
= int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x
- int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x
$$



We only have to show that those two on the right are equal. And numerical evaluations seem to suggest that they both are in fact $-frac{pi}{4}$ but I don't know how to break these down.




I am currently really interested in proving this
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$




Anyway, here's my trivial solution using $u = frac1x$:



$$
begin{align}
int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x & = int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x + int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = int_infty^1 frac{frac{1}{u^2} ln(frac1u)}{(1+frac{1}{u^2})^3} frac{-1}{u^2} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = -int_1^infty frac{ln(u)}{u(u+frac{1}{u})^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = - int_1^infty frac{u^2 ln(u)}{(1+u^2)^3} {rm d}u
+ int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x \
& = 0
end{align}
$$



I'm sure there are many more interesting methods for cracking this integral, since it's so closely related to the popular $int_0^infty frac{ln(x)}{1+x^2} {rm d}x = 0$. Please share them if you do come up with any.







calculus integration definite-integrals improper-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 29 '18 at 18:04









MintMint

5311417




5311417












  • $begingroup$
    Have you tried complex variable methods? Look at math.stackexchange.com/questions/385301/…
    $endgroup$
    – saulspatz
    Dec 29 '18 at 18:13




















  • $begingroup$
    Have you tried complex variable methods? Look at math.stackexchange.com/questions/385301/…
    $endgroup$
    – saulspatz
    Dec 29 '18 at 18:13


















$begingroup$
Have you tried complex variable methods? Look at math.stackexchange.com/questions/385301/…
$endgroup$
– saulspatz
Dec 29 '18 at 18:13






$begingroup$
Have you tried complex variable methods? Look at math.stackexchange.com/questions/385301/…
$endgroup$
– saulspatz
Dec 29 '18 at 18:13












5 Answers
5






active

oldest

votes


















9












$begingroup$

For the first part of the question we can substitute $x=frac{1}{t}$ in order to get: $$I=int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=int^0_infty frac{lnleft(frac{1}{t}right)}{t^2left(1+frac{1}{t^2}right)^3}frac{-dt}{t^2}=int_0^infty frac{t^2 lnleft(frac{1}{t}right)}{(1+t^2)^3}dt=-I$$
So we just saw that $I=-IRightarrow I=0$






I am currently really interested in proving this
$$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$




Well now that we showed that both integrals are equal it's enough to compute only one of it. Of course it's more rational to take the one with the lower power.
$$Omega=int_0^infty frac{ln x}{(1+x^2)^2}dxoverset{x=tan t}=int_0^frac{pi}{2} ln(tan t)cos^2 t,mathrm dt =frac12int_0^frac{pi}{2} ln(tan t) (1+cos(2t))dt$$
Now we will split into two integrals and first we will show that the first one vanishes. I will do it directly using the following property of the definite integrals:
$$int_a^b f(x)=int_a^b f(a+b-x)dx$$
$$J=int_0^frac{pi}{2}ln(tan t)dt=int_0^frac{pi}{2} ln(cot t)dt=-int_0^frac{pi}{2} ln (tan t)dt=-JRightarrow J=0$$
$$Rightarrow Omega=frac12 int_0^frac{pi}{2}ln(tan t)cos (2t)mathrm dt=frac12 int_0^frac{pi}{2} ln(tan t)left(frac12 sin(2t)right)' mathrm dt=$$
$$=frac14 underbrace{ln(tan t)sin(2t)bigg|_0^frac{pi}{2}}_{=0}-frac14int_0^frac{pi}{2} frac{sec^2 t}{tan t}sin(2t)mathrm dt=-frac12 int_0^frac{pi}{2} dt=-frac{pi}{4}$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Nice, much quicker. I should've just done that from the start.
    $endgroup$
    – Mint
    Dec 29 '18 at 18:39



















6












$begingroup$

$$int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dx stackrel{(*)}{=}frac{pi(1-alpha^2)}{16cosfrac{pi alpha}{2}} $$
$(*)$: we use the substitution $frac{1}{1+x^2}=u$, the Beta function and the reflection formula for the $Gamma$ function.
This holds for any $alpha$ such that $-3<text{Re}(alpha)<3$, and since the RHS is an even function, the origin is a stationary point, i.e.
$$color{red}{0}=frac{d}{dalpha}left.int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dxright|_{alpha=0}stackrel{text{DCT}}{=}int_{0}^{+infty}frac{x^{2}log x}{(1+x^2)^3},dx.$$






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    I found a way to directly evaluate both of those integrals!



    We first use the well known result from $int_0^{infty}frac{ln x}{x^2+a^2}mathrm{d}x$ Evaluate Integral
    $$
    int_0^infty frac{ln(x)}{x^2 +alpha^2} {rm d}x = frac{pi}{2alpha} ln(alpha)
    $$

    and use differentiation under the integral sign.



    $$
    int_0^infty frac{-2alphaln(x)}{(x^2 +alpha^2)^2} {rm d}x
    = frac{pi}{2} frac{1-ln(alpha)}{alpha^2} \
    implies int_0^infty frac{ln(x)}{(x^2 +alpha^2)^2} {rm d}x
    = frac{pi}{4alpha^3} (ln(alpha)-1)
    $$



    And again, to get
    $$
    int_0^infty frac{ln(x)}{(x^2 +alpha^2)^3} {rm d}x
    = frac{pi}{16alpha^5}(3ln(alpha) - 4)
    $$




    And so setting $alpha = 1$ gives us the immediate result
    $$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$




    Another method to evaluate this is to use the integral from the 2015 MIT Integration Bee, and is also how I first came across this integral.



    From this result (solved by using the substitution $u=frac1x$)
    $$ int_0^infty frac{1}{(1+x^2)(1+x^alpha)} {rm d}x = fracpi4 $$



    we will get, by differentiating with respect to $alpha$,




    $$ int_0^infty frac{x^alpha ln(x)}{(1+x^2)(1+x^alpha)^2} {rm d}x = 0 $$




    And finally setting $alpha = 2$.






    share|cite|improve this answer









    $endgroup$





















      2












      $begingroup$

      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
      newcommand{dd}{mathrm{d}}
      newcommand{ds}[1]{displaystyle{#1}}
      newcommand{expo}[1]{,mathrm{e}^{#1},}
      newcommand{ic}{mathrm{i}}
      newcommand{mc}[1]{mathcal{#1}}
      newcommand{mrm}[1]{mathrm{#1}}
      newcommand{pars}[1]{left(,{#1},right)}
      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
      newcommand{verts}[1]{leftvert,{#1},rightvert}$




      With $ds{Repars{mu} > - 1}$ and
      $ds{Repars{nu} > 0}$:




      begin{align}
      I_{munu} & equiv
      bbox[10px,#ffd]{int_{0}^{infty}{x^{mu}lnpars{x} over pars{1 + x^{2}}^{nu}},dd x}
      ,,,stackrel{x^{2} mapsto x}{=},,,
      {1 over 4}int_{0}^{infty}
      {x^{mu/2 - 1/2}lnpars{x} over pars{1 + x}^{nu}},dd x
      \[5mm] & =
      left.{1 over 4},partiald{}{alpha}int_{0}^{infty}
      {x^{alpha + mu/2 - 1/2} over pars{1 + x}^{nu}},dd x
      ,rightvert_{ alpha = 0}
      \[5mm] & stackrel{x + 1 mapsto x}{=},,,
      left.{1 over 4},partiald{}{alpha}int_{1}^{infty}
      {pars{x - 1}^{alpha + mu/2 - 1/2} over x^{nu}},dd x
      ,rightvert_{ alpha = 0}
      \[5mm] & stackrel{x mapsto 1/x}{=},,,
      left.{1 over 4},partiald{}{alpha}int_{1}^{0}
      {pars{1/x - 1}^{alpha + mu/2 - 1/2} over pars{1/x}^{nu}},
      pars{-,{dd x over x^{2}}}
      rightvert_{ alpha = 0}
      \[5mm] & =
      left.{1 over 4},partiald{}{alpha}int_{0}^{1}
      x^{nu - alpha - mu/2 - 3/2}pars{1 - x}^{alpha + mu/2 - 1/2},
      dd x,rightvert_{ alpha = 0}
      \[5mm] & =
      {1 over 4},partiald{}{alpha}bracks{%
      Gammapars{nu - alpha - mu/2 - 1/2}Gammapars{alpha + mu/2 + 1/2} over Gammapars{nu}}_{ alpha = 0}
      \[5mm] & =
      bbx{{Gammapars{mu/2 + 1/2}Gammapars{nu - mu/2 - 1/2} over
      4Gammapars{nu}}
      bracks{H_{mu/2 - 1/2} - H_{nu - mu/2 - 3/2}}}
      end{align}




      $ds{H_{z}}$ is a Harmonic Number.







      $$
      begin{array}{|c|c|}hline
      ds{mu setminus nu} & ds{I_{munu}}
      \ hline
      ds{0 setminus 2} & ds{-,{pi over 4}}
      \ hline
      ds{0 setminus 3} & ds{-,{pi over 4}}
      \ hline
      end{array}
      $$





      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        $$int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=
        int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x+
        int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
        $$

        Then change in first integral $x=frac{1}{t}$.






        share|cite|improve this answer









        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056098%2fways-to-prove-that-int-0-infty-fracx2-lnx1x23-rm-dx-0%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          5 Answers
          5






          active

          oldest

          votes








          5 Answers
          5






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          9












          $begingroup$

          For the first part of the question we can substitute $x=frac{1}{t}$ in order to get: $$I=int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=int^0_infty frac{lnleft(frac{1}{t}right)}{t^2left(1+frac{1}{t^2}right)^3}frac{-dt}{t^2}=int_0^infty frac{t^2 lnleft(frac{1}{t}right)}{(1+t^2)^3}dt=-I$$
          So we just saw that $I=-IRightarrow I=0$






          I am currently really interested in proving this
          $$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$




          Well now that we showed that both integrals are equal it's enough to compute only one of it. Of course it's more rational to take the one with the lower power.
          $$Omega=int_0^infty frac{ln x}{(1+x^2)^2}dxoverset{x=tan t}=int_0^frac{pi}{2} ln(tan t)cos^2 t,mathrm dt =frac12int_0^frac{pi}{2} ln(tan t) (1+cos(2t))dt$$
          Now we will split into two integrals and first we will show that the first one vanishes. I will do it directly using the following property of the definite integrals:
          $$int_a^b f(x)=int_a^b f(a+b-x)dx$$
          $$J=int_0^frac{pi}{2}ln(tan t)dt=int_0^frac{pi}{2} ln(cot t)dt=-int_0^frac{pi}{2} ln (tan t)dt=-JRightarrow J=0$$
          $$Rightarrow Omega=frac12 int_0^frac{pi}{2}ln(tan t)cos (2t)mathrm dt=frac12 int_0^frac{pi}{2} ln(tan t)left(frac12 sin(2t)right)' mathrm dt=$$
          $$=frac14 underbrace{ln(tan t)sin(2t)bigg|_0^frac{pi}{2}}_{=0}-frac14int_0^frac{pi}{2} frac{sec^2 t}{tan t}sin(2t)mathrm dt=-frac12 int_0^frac{pi}{2} dt=-frac{pi}{4}$$






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Nice, much quicker. I should've just done that from the start.
            $endgroup$
            – Mint
            Dec 29 '18 at 18:39
















          9












          $begingroup$

          For the first part of the question we can substitute $x=frac{1}{t}$ in order to get: $$I=int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=int^0_infty frac{lnleft(frac{1}{t}right)}{t^2left(1+frac{1}{t^2}right)^3}frac{-dt}{t^2}=int_0^infty frac{t^2 lnleft(frac{1}{t}right)}{(1+t^2)^3}dt=-I$$
          So we just saw that $I=-IRightarrow I=0$






          I am currently really interested in proving this
          $$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$




          Well now that we showed that both integrals are equal it's enough to compute only one of it. Of course it's more rational to take the one with the lower power.
          $$Omega=int_0^infty frac{ln x}{(1+x^2)^2}dxoverset{x=tan t}=int_0^frac{pi}{2} ln(tan t)cos^2 t,mathrm dt =frac12int_0^frac{pi}{2} ln(tan t) (1+cos(2t))dt$$
          Now we will split into two integrals and first we will show that the first one vanishes. I will do it directly using the following property of the definite integrals:
          $$int_a^b f(x)=int_a^b f(a+b-x)dx$$
          $$J=int_0^frac{pi}{2}ln(tan t)dt=int_0^frac{pi}{2} ln(cot t)dt=-int_0^frac{pi}{2} ln (tan t)dt=-JRightarrow J=0$$
          $$Rightarrow Omega=frac12 int_0^frac{pi}{2}ln(tan t)cos (2t)mathrm dt=frac12 int_0^frac{pi}{2} ln(tan t)left(frac12 sin(2t)right)' mathrm dt=$$
          $$=frac14 underbrace{ln(tan t)sin(2t)bigg|_0^frac{pi}{2}}_{=0}-frac14int_0^frac{pi}{2} frac{sec^2 t}{tan t}sin(2t)mathrm dt=-frac12 int_0^frac{pi}{2} dt=-frac{pi}{4}$$






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Nice, much quicker. I should've just done that from the start.
            $endgroup$
            – Mint
            Dec 29 '18 at 18:39














          9












          9








          9





          $begingroup$

          For the first part of the question we can substitute $x=frac{1}{t}$ in order to get: $$I=int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=int^0_infty frac{lnleft(frac{1}{t}right)}{t^2left(1+frac{1}{t^2}right)^3}frac{-dt}{t^2}=int_0^infty frac{t^2 lnleft(frac{1}{t}right)}{(1+t^2)^3}dt=-I$$
          So we just saw that $I=-IRightarrow I=0$






          I am currently really interested in proving this
          $$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$




          Well now that we showed that both integrals are equal it's enough to compute only one of it. Of course it's more rational to take the one with the lower power.
          $$Omega=int_0^infty frac{ln x}{(1+x^2)^2}dxoverset{x=tan t}=int_0^frac{pi}{2} ln(tan t)cos^2 t,mathrm dt =frac12int_0^frac{pi}{2} ln(tan t) (1+cos(2t))dt$$
          Now we will split into two integrals and first we will show that the first one vanishes. I will do it directly using the following property of the definite integrals:
          $$int_a^b f(x)=int_a^b f(a+b-x)dx$$
          $$J=int_0^frac{pi}{2}ln(tan t)dt=int_0^frac{pi}{2} ln(cot t)dt=-int_0^frac{pi}{2} ln (tan t)dt=-JRightarrow J=0$$
          $$Rightarrow Omega=frac12 int_0^frac{pi}{2}ln(tan t)cos (2t)mathrm dt=frac12 int_0^frac{pi}{2} ln(tan t)left(frac12 sin(2t)right)' mathrm dt=$$
          $$=frac14 underbrace{ln(tan t)sin(2t)bigg|_0^frac{pi}{2}}_{=0}-frac14int_0^frac{pi}{2} frac{sec^2 t}{tan t}sin(2t)mathrm dt=-frac12 int_0^frac{pi}{2} dt=-frac{pi}{4}$$






          share|cite|improve this answer











          $endgroup$



          For the first part of the question we can substitute $x=frac{1}{t}$ in order to get: $$I=int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=int^0_infty frac{lnleft(frac{1}{t}right)}{t^2left(1+frac{1}{t^2}right)^3}frac{-dt}{t^2}=int_0^infty frac{t^2 lnleft(frac{1}{t}right)}{(1+t^2)^3}dt=-I$$
          So we just saw that $I=-IRightarrow I=0$






          I am currently really interested in proving this
          $$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$




          Well now that we showed that both integrals are equal it's enough to compute only one of it. Of course it's more rational to take the one with the lower power.
          $$Omega=int_0^infty frac{ln x}{(1+x^2)^2}dxoverset{x=tan t}=int_0^frac{pi}{2} ln(tan t)cos^2 t,mathrm dt =frac12int_0^frac{pi}{2} ln(tan t) (1+cos(2t))dt$$
          Now we will split into two integrals and first we will show that the first one vanishes. I will do it directly using the following property of the definite integrals:
          $$int_a^b f(x)=int_a^b f(a+b-x)dx$$
          $$J=int_0^frac{pi}{2}ln(tan t)dt=int_0^frac{pi}{2} ln(cot t)dt=-int_0^frac{pi}{2} ln (tan t)dt=-JRightarrow J=0$$
          $$Rightarrow Omega=frac12 int_0^frac{pi}{2}ln(tan t)cos (2t)mathrm dt=frac12 int_0^frac{pi}{2} ln(tan t)left(frac12 sin(2t)right)' mathrm dt=$$
          $$=frac14 underbrace{ln(tan t)sin(2t)bigg|_0^frac{pi}{2}}_{=0}-frac14int_0^frac{pi}{2} frac{sec^2 t}{tan t}sin(2t)mathrm dt=-frac12 int_0^frac{pi}{2} dt=-frac{pi}{4}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 29 '18 at 19:15

























          answered Dec 29 '18 at 18:37









          ZackyZacky

          6,9401961




          6,9401961








          • 1




            $begingroup$
            Nice, much quicker. I should've just done that from the start.
            $endgroup$
            – Mint
            Dec 29 '18 at 18:39














          • 1




            $begingroup$
            Nice, much quicker. I should've just done that from the start.
            $endgroup$
            – Mint
            Dec 29 '18 at 18:39








          1




          1




          $begingroup$
          Nice, much quicker. I should've just done that from the start.
          $endgroup$
          – Mint
          Dec 29 '18 at 18:39




          $begingroup$
          Nice, much quicker. I should've just done that from the start.
          $endgroup$
          – Mint
          Dec 29 '18 at 18:39











          6












          $begingroup$

          $$int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dx stackrel{(*)}{=}frac{pi(1-alpha^2)}{16cosfrac{pi alpha}{2}} $$
          $(*)$: we use the substitution $frac{1}{1+x^2}=u$, the Beta function and the reflection formula for the $Gamma$ function.
          This holds for any $alpha$ such that $-3<text{Re}(alpha)<3$, and since the RHS is an even function, the origin is a stationary point, i.e.
          $$color{red}{0}=frac{d}{dalpha}left.int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dxright|_{alpha=0}stackrel{text{DCT}}{=}int_{0}^{+infty}frac{x^{2}log x}{(1+x^2)^3},dx.$$






          share|cite|improve this answer









          $endgroup$


















            6












            $begingroup$

            $$int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dx stackrel{(*)}{=}frac{pi(1-alpha^2)}{16cosfrac{pi alpha}{2}} $$
            $(*)$: we use the substitution $frac{1}{1+x^2}=u$, the Beta function and the reflection formula for the $Gamma$ function.
            This holds for any $alpha$ such that $-3<text{Re}(alpha)<3$, and since the RHS is an even function, the origin is a stationary point, i.e.
            $$color{red}{0}=frac{d}{dalpha}left.int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dxright|_{alpha=0}stackrel{text{DCT}}{=}int_{0}^{+infty}frac{x^{2}log x}{(1+x^2)^3},dx.$$






            share|cite|improve this answer









            $endgroup$
















              6












              6








              6





              $begingroup$

              $$int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dx stackrel{(*)}{=}frac{pi(1-alpha^2)}{16cosfrac{pi alpha}{2}} $$
              $(*)$: we use the substitution $frac{1}{1+x^2}=u$, the Beta function and the reflection formula for the $Gamma$ function.
              This holds for any $alpha$ such that $-3<text{Re}(alpha)<3$, and since the RHS is an even function, the origin is a stationary point, i.e.
              $$color{red}{0}=frac{d}{dalpha}left.int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dxright|_{alpha=0}stackrel{text{DCT}}{=}int_{0}^{+infty}frac{x^{2}log x}{(1+x^2)^3},dx.$$






              share|cite|improve this answer









              $endgroup$



              $$int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dx stackrel{(*)}{=}frac{pi(1-alpha^2)}{16cosfrac{pi alpha}{2}} $$
              $(*)$: we use the substitution $frac{1}{1+x^2}=u$, the Beta function and the reflection formula for the $Gamma$ function.
              This holds for any $alpha$ such that $-3<text{Re}(alpha)<3$, and since the RHS is an even function, the origin is a stationary point, i.e.
              $$color{red}{0}=frac{d}{dalpha}left.int_{0}^{+infty}frac{x^{2+alpha}}{(1+x^2)^3},dxright|_{alpha=0}stackrel{text{DCT}}{=}int_{0}^{+infty}frac{x^{2}log x}{(1+x^2)^3},dx.$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Dec 29 '18 at 18:33









              Jack D'AurizioJack D'Aurizio

              290k33282663




              290k33282663























                  3












                  $begingroup$

                  I found a way to directly evaluate both of those integrals!



                  We first use the well known result from $int_0^{infty}frac{ln x}{x^2+a^2}mathrm{d}x$ Evaluate Integral
                  $$
                  int_0^infty frac{ln(x)}{x^2 +alpha^2} {rm d}x = frac{pi}{2alpha} ln(alpha)
                  $$

                  and use differentiation under the integral sign.



                  $$
                  int_0^infty frac{-2alphaln(x)}{(x^2 +alpha^2)^2} {rm d}x
                  = frac{pi}{2} frac{1-ln(alpha)}{alpha^2} \
                  implies int_0^infty frac{ln(x)}{(x^2 +alpha^2)^2} {rm d}x
                  = frac{pi}{4alpha^3} (ln(alpha)-1)
                  $$



                  And again, to get
                  $$
                  int_0^infty frac{ln(x)}{(x^2 +alpha^2)^3} {rm d}x
                  = frac{pi}{16alpha^5}(3ln(alpha) - 4)
                  $$




                  And so setting $alpha = 1$ gives us the immediate result
                  $$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$




                  Another method to evaluate this is to use the integral from the 2015 MIT Integration Bee, and is also how I first came across this integral.



                  From this result (solved by using the substitution $u=frac1x$)
                  $$ int_0^infty frac{1}{(1+x^2)(1+x^alpha)} {rm d}x = fracpi4 $$



                  we will get, by differentiating with respect to $alpha$,




                  $$ int_0^infty frac{x^alpha ln(x)}{(1+x^2)(1+x^alpha)^2} {rm d}x = 0 $$




                  And finally setting $alpha = 2$.






                  share|cite|improve this answer









                  $endgroup$


















                    3












                    $begingroup$

                    I found a way to directly evaluate both of those integrals!



                    We first use the well known result from $int_0^{infty}frac{ln x}{x^2+a^2}mathrm{d}x$ Evaluate Integral
                    $$
                    int_0^infty frac{ln(x)}{x^2 +alpha^2} {rm d}x = frac{pi}{2alpha} ln(alpha)
                    $$

                    and use differentiation under the integral sign.



                    $$
                    int_0^infty frac{-2alphaln(x)}{(x^2 +alpha^2)^2} {rm d}x
                    = frac{pi}{2} frac{1-ln(alpha)}{alpha^2} \
                    implies int_0^infty frac{ln(x)}{(x^2 +alpha^2)^2} {rm d}x
                    = frac{pi}{4alpha^3} (ln(alpha)-1)
                    $$



                    And again, to get
                    $$
                    int_0^infty frac{ln(x)}{(x^2 +alpha^2)^3} {rm d}x
                    = frac{pi}{16alpha^5}(3ln(alpha) - 4)
                    $$




                    And so setting $alpha = 1$ gives us the immediate result
                    $$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$




                    Another method to evaluate this is to use the integral from the 2015 MIT Integration Bee, and is also how I first came across this integral.



                    From this result (solved by using the substitution $u=frac1x$)
                    $$ int_0^infty frac{1}{(1+x^2)(1+x^alpha)} {rm d}x = fracpi4 $$



                    we will get, by differentiating with respect to $alpha$,




                    $$ int_0^infty frac{x^alpha ln(x)}{(1+x^2)(1+x^alpha)^2} {rm d}x = 0 $$




                    And finally setting $alpha = 2$.






                    share|cite|improve this answer









                    $endgroup$
















                      3












                      3








                      3





                      $begingroup$

                      I found a way to directly evaluate both of those integrals!



                      We first use the well known result from $int_0^{infty}frac{ln x}{x^2+a^2}mathrm{d}x$ Evaluate Integral
                      $$
                      int_0^infty frac{ln(x)}{x^2 +alpha^2} {rm d}x = frac{pi}{2alpha} ln(alpha)
                      $$

                      and use differentiation under the integral sign.



                      $$
                      int_0^infty frac{-2alphaln(x)}{(x^2 +alpha^2)^2} {rm d}x
                      = frac{pi}{2} frac{1-ln(alpha)}{alpha^2} \
                      implies int_0^infty frac{ln(x)}{(x^2 +alpha^2)^2} {rm d}x
                      = frac{pi}{4alpha^3} (ln(alpha)-1)
                      $$



                      And again, to get
                      $$
                      int_0^infty frac{ln(x)}{(x^2 +alpha^2)^3} {rm d}x
                      = frac{pi}{16alpha^5}(3ln(alpha) - 4)
                      $$




                      And so setting $alpha = 1$ gives us the immediate result
                      $$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$




                      Another method to evaluate this is to use the integral from the 2015 MIT Integration Bee, and is also how I first came across this integral.



                      From this result (solved by using the substitution $u=frac1x$)
                      $$ int_0^infty frac{1}{(1+x^2)(1+x^alpha)} {rm d}x = fracpi4 $$



                      we will get, by differentiating with respect to $alpha$,




                      $$ int_0^infty frac{x^alpha ln(x)}{(1+x^2)(1+x^alpha)^2} {rm d}x = 0 $$




                      And finally setting $alpha = 2$.






                      share|cite|improve this answer









                      $endgroup$



                      I found a way to directly evaluate both of those integrals!



                      We first use the well known result from $int_0^{infty}frac{ln x}{x^2+a^2}mathrm{d}x$ Evaluate Integral
                      $$
                      int_0^infty frac{ln(x)}{x^2 +alpha^2} {rm d}x = frac{pi}{2alpha} ln(alpha)
                      $$

                      and use differentiation under the integral sign.



                      $$
                      int_0^infty frac{-2alphaln(x)}{(x^2 +alpha^2)^2} {rm d}x
                      = frac{pi}{2} frac{1-ln(alpha)}{alpha^2} \
                      implies int_0^infty frac{ln(x)}{(x^2 +alpha^2)^2} {rm d}x
                      = frac{pi}{4alpha^3} (ln(alpha)-1)
                      $$



                      And again, to get
                      $$
                      int_0^infty frac{ln(x)}{(x^2 +alpha^2)^3} {rm d}x
                      = frac{pi}{16alpha^5}(3ln(alpha) - 4)
                      $$




                      And so setting $alpha = 1$ gives us the immediate result
                      $$ int_0^infty frac{ln(x)}{(1+x^2)^2} {rm d}x = int_0^infty frac{ln(x)}{(1+x^2)^3} {rm d}x = -frac{pi}{4} $$




                      Another method to evaluate this is to use the integral from the 2015 MIT Integration Bee, and is also how I first came across this integral.



                      From this result (solved by using the substitution $u=frac1x$)
                      $$ int_0^infty frac{1}{(1+x^2)(1+x^alpha)} {rm d}x = fracpi4 $$



                      we will get, by differentiating with respect to $alpha$,




                      $$ int_0^infty frac{x^alpha ln(x)}{(1+x^2)(1+x^alpha)^2} {rm d}x = 0 $$




                      And finally setting $alpha = 2$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Dec 30 '18 at 13:13









                      MintMint

                      5311417




                      5311417























                          2












                          $begingroup$

                          $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                          newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                          newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                          newcommand{dd}{mathrm{d}}
                          newcommand{ds}[1]{displaystyle{#1}}
                          newcommand{expo}[1]{,mathrm{e}^{#1},}
                          newcommand{ic}{mathrm{i}}
                          newcommand{mc}[1]{mathcal{#1}}
                          newcommand{mrm}[1]{mathrm{#1}}
                          newcommand{pars}[1]{left(,{#1},right)}
                          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                          newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                          newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                          newcommand{verts}[1]{leftvert,{#1},rightvert}$




                          With $ds{Repars{mu} > - 1}$ and
                          $ds{Repars{nu} > 0}$:




                          begin{align}
                          I_{munu} & equiv
                          bbox[10px,#ffd]{int_{0}^{infty}{x^{mu}lnpars{x} over pars{1 + x^{2}}^{nu}},dd x}
                          ,,,stackrel{x^{2} mapsto x}{=},,,
                          {1 over 4}int_{0}^{infty}
                          {x^{mu/2 - 1/2}lnpars{x} over pars{1 + x}^{nu}},dd x
                          \[5mm] & =
                          left.{1 over 4},partiald{}{alpha}int_{0}^{infty}
                          {x^{alpha + mu/2 - 1/2} over pars{1 + x}^{nu}},dd x
                          ,rightvert_{ alpha = 0}
                          \[5mm] & stackrel{x + 1 mapsto x}{=},,,
                          left.{1 over 4},partiald{}{alpha}int_{1}^{infty}
                          {pars{x - 1}^{alpha + mu/2 - 1/2} over x^{nu}},dd x
                          ,rightvert_{ alpha = 0}
                          \[5mm] & stackrel{x mapsto 1/x}{=},,,
                          left.{1 over 4},partiald{}{alpha}int_{1}^{0}
                          {pars{1/x - 1}^{alpha + mu/2 - 1/2} over pars{1/x}^{nu}},
                          pars{-,{dd x over x^{2}}}
                          rightvert_{ alpha = 0}
                          \[5mm] & =
                          left.{1 over 4},partiald{}{alpha}int_{0}^{1}
                          x^{nu - alpha - mu/2 - 3/2}pars{1 - x}^{alpha + mu/2 - 1/2},
                          dd x,rightvert_{ alpha = 0}
                          \[5mm] & =
                          {1 over 4},partiald{}{alpha}bracks{%
                          Gammapars{nu - alpha - mu/2 - 1/2}Gammapars{alpha + mu/2 + 1/2} over Gammapars{nu}}_{ alpha = 0}
                          \[5mm] & =
                          bbx{{Gammapars{mu/2 + 1/2}Gammapars{nu - mu/2 - 1/2} over
                          4Gammapars{nu}}
                          bracks{H_{mu/2 - 1/2} - H_{nu - mu/2 - 3/2}}}
                          end{align}




                          $ds{H_{z}}$ is a Harmonic Number.







                          $$
                          begin{array}{|c|c|}hline
                          ds{mu setminus nu} & ds{I_{munu}}
                          \ hline
                          ds{0 setminus 2} & ds{-,{pi over 4}}
                          \ hline
                          ds{0 setminus 3} & ds{-,{pi over 4}}
                          \ hline
                          end{array}
                          $$





                          share|cite|improve this answer









                          $endgroup$


















                            2












                            $begingroup$

                            $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                            newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                            newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                            newcommand{dd}{mathrm{d}}
                            newcommand{ds}[1]{displaystyle{#1}}
                            newcommand{expo}[1]{,mathrm{e}^{#1},}
                            newcommand{ic}{mathrm{i}}
                            newcommand{mc}[1]{mathcal{#1}}
                            newcommand{mrm}[1]{mathrm{#1}}
                            newcommand{pars}[1]{left(,{#1},right)}
                            newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                            newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                            newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                            newcommand{verts}[1]{leftvert,{#1},rightvert}$




                            With $ds{Repars{mu} > - 1}$ and
                            $ds{Repars{nu} > 0}$:




                            begin{align}
                            I_{munu} & equiv
                            bbox[10px,#ffd]{int_{0}^{infty}{x^{mu}lnpars{x} over pars{1 + x^{2}}^{nu}},dd x}
                            ,,,stackrel{x^{2} mapsto x}{=},,,
                            {1 over 4}int_{0}^{infty}
                            {x^{mu/2 - 1/2}lnpars{x} over pars{1 + x}^{nu}},dd x
                            \[5mm] & =
                            left.{1 over 4},partiald{}{alpha}int_{0}^{infty}
                            {x^{alpha + mu/2 - 1/2} over pars{1 + x}^{nu}},dd x
                            ,rightvert_{ alpha = 0}
                            \[5mm] & stackrel{x + 1 mapsto x}{=},,,
                            left.{1 over 4},partiald{}{alpha}int_{1}^{infty}
                            {pars{x - 1}^{alpha + mu/2 - 1/2} over x^{nu}},dd x
                            ,rightvert_{ alpha = 0}
                            \[5mm] & stackrel{x mapsto 1/x}{=},,,
                            left.{1 over 4},partiald{}{alpha}int_{1}^{0}
                            {pars{1/x - 1}^{alpha + mu/2 - 1/2} over pars{1/x}^{nu}},
                            pars{-,{dd x over x^{2}}}
                            rightvert_{ alpha = 0}
                            \[5mm] & =
                            left.{1 over 4},partiald{}{alpha}int_{0}^{1}
                            x^{nu - alpha - mu/2 - 3/2}pars{1 - x}^{alpha + mu/2 - 1/2},
                            dd x,rightvert_{ alpha = 0}
                            \[5mm] & =
                            {1 over 4},partiald{}{alpha}bracks{%
                            Gammapars{nu - alpha - mu/2 - 1/2}Gammapars{alpha + mu/2 + 1/2} over Gammapars{nu}}_{ alpha = 0}
                            \[5mm] & =
                            bbx{{Gammapars{mu/2 + 1/2}Gammapars{nu - mu/2 - 1/2} over
                            4Gammapars{nu}}
                            bracks{H_{mu/2 - 1/2} - H_{nu - mu/2 - 3/2}}}
                            end{align}




                            $ds{H_{z}}$ is a Harmonic Number.







                            $$
                            begin{array}{|c|c|}hline
                            ds{mu setminus nu} & ds{I_{munu}}
                            \ hline
                            ds{0 setminus 2} & ds{-,{pi over 4}}
                            \ hline
                            ds{0 setminus 3} & ds{-,{pi over 4}}
                            \ hline
                            end{array}
                            $$





                            share|cite|improve this answer









                            $endgroup$
















                              2












                              2








                              2





                              $begingroup$

                              $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                              newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                              newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                              newcommand{dd}{mathrm{d}}
                              newcommand{ds}[1]{displaystyle{#1}}
                              newcommand{expo}[1]{,mathrm{e}^{#1},}
                              newcommand{ic}{mathrm{i}}
                              newcommand{mc}[1]{mathcal{#1}}
                              newcommand{mrm}[1]{mathrm{#1}}
                              newcommand{pars}[1]{left(,{#1},right)}
                              newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                              newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                              newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                              newcommand{verts}[1]{leftvert,{#1},rightvert}$




                              With $ds{Repars{mu} > - 1}$ and
                              $ds{Repars{nu} > 0}$:




                              begin{align}
                              I_{munu} & equiv
                              bbox[10px,#ffd]{int_{0}^{infty}{x^{mu}lnpars{x} over pars{1 + x^{2}}^{nu}},dd x}
                              ,,,stackrel{x^{2} mapsto x}{=},,,
                              {1 over 4}int_{0}^{infty}
                              {x^{mu/2 - 1/2}lnpars{x} over pars{1 + x}^{nu}},dd x
                              \[5mm] & =
                              left.{1 over 4},partiald{}{alpha}int_{0}^{infty}
                              {x^{alpha + mu/2 - 1/2} over pars{1 + x}^{nu}},dd x
                              ,rightvert_{ alpha = 0}
                              \[5mm] & stackrel{x + 1 mapsto x}{=},,,
                              left.{1 over 4},partiald{}{alpha}int_{1}^{infty}
                              {pars{x - 1}^{alpha + mu/2 - 1/2} over x^{nu}},dd x
                              ,rightvert_{ alpha = 0}
                              \[5mm] & stackrel{x mapsto 1/x}{=},,,
                              left.{1 over 4},partiald{}{alpha}int_{1}^{0}
                              {pars{1/x - 1}^{alpha + mu/2 - 1/2} over pars{1/x}^{nu}},
                              pars{-,{dd x over x^{2}}}
                              rightvert_{ alpha = 0}
                              \[5mm] & =
                              left.{1 over 4},partiald{}{alpha}int_{0}^{1}
                              x^{nu - alpha - mu/2 - 3/2}pars{1 - x}^{alpha + mu/2 - 1/2},
                              dd x,rightvert_{ alpha = 0}
                              \[5mm] & =
                              {1 over 4},partiald{}{alpha}bracks{%
                              Gammapars{nu - alpha - mu/2 - 1/2}Gammapars{alpha + mu/2 + 1/2} over Gammapars{nu}}_{ alpha = 0}
                              \[5mm] & =
                              bbx{{Gammapars{mu/2 + 1/2}Gammapars{nu - mu/2 - 1/2} over
                              4Gammapars{nu}}
                              bracks{H_{mu/2 - 1/2} - H_{nu - mu/2 - 3/2}}}
                              end{align}




                              $ds{H_{z}}$ is a Harmonic Number.







                              $$
                              begin{array}{|c|c|}hline
                              ds{mu setminus nu} & ds{I_{munu}}
                              \ hline
                              ds{0 setminus 2} & ds{-,{pi over 4}}
                              \ hline
                              ds{0 setminus 3} & ds{-,{pi over 4}}
                              \ hline
                              end{array}
                              $$





                              share|cite|improve this answer









                              $endgroup$



                              $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                              newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                              newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                              newcommand{dd}{mathrm{d}}
                              newcommand{ds}[1]{displaystyle{#1}}
                              newcommand{expo}[1]{,mathrm{e}^{#1},}
                              newcommand{ic}{mathrm{i}}
                              newcommand{mc}[1]{mathcal{#1}}
                              newcommand{mrm}[1]{mathrm{#1}}
                              newcommand{pars}[1]{left(,{#1},right)}
                              newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                              newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                              newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                              newcommand{verts}[1]{leftvert,{#1},rightvert}$




                              With $ds{Repars{mu} > - 1}$ and
                              $ds{Repars{nu} > 0}$:




                              begin{align}
                              I_{munu} & equiv
                              bbox[10px,#ffd]{int_{0}^{infty}{x^{mu}lnpars{x} over pars{1 + x^{2}}^{nu}},dd x}
                              ,,,stackrel{x^{2} mapsto x}{=},,,
                              {1 over 4}int_{0}^{infty}
                              {x^{mu/2 - 1/2}lnpars{x} over pars{1 + x}^{nu}},dd x
                              \[5mm] & =
                              left.{1 over 4},partiald{}{alpha}int_{0}^{infty}
                              {x^{alpha + mu/2 - 1/2} over pars{1 + x}^{nu}},dd x
                              ,rightvert_{ alpha = 0}
                              \[5mm] & stackrel{x + 1 mapsto x}{=},,,
                              left.{1 over 4},partiald{}{alpha}int_{1}^{infty}
                              {pars{x - 1}^{alpha + mu/2 - 1/2} over x^{nu}},dd x
                              ,rightvert_{ alpha = 0}
                              \[5mm] & stackrel{x mapsto 1/x}{=},,,
                              left.{1 over 4},partiald{}{alpha}int_{1}^{0}
                              {pars{1/x - 1}^{alpha + mu/2 - 1/2} over pars{1/x}^{nu}},
                              pars{-,{dd x over x^{2}}}
                              rightvert_{ alpha = 0}
                              \[5mm] & =
                              left.{1 over 4},partiald{}{alpha}int_{0}^{1}
                              x^{nu - alpha - mu/2 - 3/2}pars{1 - x}^{alpha + mu/2 - 1/2},
                              dd x,rightvert_{ alpha = 0}
                              \[5mm] & =
                              {1 over 4},partiald{}{alpha}bracks{%
                              Gammapars{nu - alpha - mu/2 - 1/2}Gammapars{alpha + mu/2 + 1/2} over Gammapars{nu}}_{ alpha = 0}
                              \[5mm] & =
                              bbx{{Gammapars{mu/2 + 1/2}Gammapars{nu - mu/2 - 1/2} over
                              4Gammapars{nu}}
                              bracks{H_{mu/2 - 1/2} - H_{nu - mu/2 - 3/2}}}
                              end{align}




                              $ds{H_{z}}$ is a Harmonic Number.







                              $$
                              begin{array}{|c|c|}hline
                              ds{mu setminus nu} & ds{I_{munu}}
                              \ hline
                              ds{0 setminus 2} & ds{-,{pi over 4}}
                              \ hline
                              ds{0 setminus 3} & ds{-,{pi over 4}}
                              \ hline
                              end{array}
                              $$






                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Jan 2 at 23:29









                              Felix MarinFelix Marin

                              68.1k7109143




                              68.1k7109143























                                  0












                                  $begingroup$

                                  $$int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=
                                  int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x+
                                  int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
                                  $$

                                  Then change in first integral $x=frac{1}{t}$.






                                  share|cite|improve this answer









                                  $endgroup$


















                                    0












                                    $begingroup$

                                    $$int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=
                                    int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x+
                                    int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
                                    $$

                                    Then change in first integral $x=frac{1}{t}$.






                                    share|cite|improve this answer









                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      $$int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=
                                      int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x+
                                      int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
                                      $$

                                      Then change in first integral $x=frac{1}{t}$.






                                      share|cite|improve this answer









                                      $endgroup$



                                      $$int_0^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x=
                                      int_0^1 frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x+
                                      int_1^infty frac{x^2 ln(x)}{(1+x^2)^3} {rm d}x
                                      $$

                                      Then change in first integral $x=frac{1}{t}$.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Dec 29 '18 at 18:57









                                      Aleksas DomarkasAleksas Domarkas

                                      1,33716




                                      1,33716






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056098%2fways-to-prove-that-int-0-infty-fracx2-lnx1x23-rm-dx-0%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Bressuire

                                          Cabo Verde

                                          Gyllenstierna