Elementary Separable Differential Equation with tricky integral












-1












$begingroup$


The problem is to solve the separable differential equation
$sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}$.



My work thus far:
$ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
\ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
\ int sqrt{y}~~ {dy}= int sqrt{frac{4-x}{x}}~~d x
\ frac{2}{3} y^{3/2} =int sqrt{frac{4-x}{x}}~~dx
\ frac{2}{3} y^{3/2} =int sqrt{frac 4 x - 1 }~~dx
$



The right side is a difficult integral to evaluate.



Is there an easier approach I have missed, or should I persist in trying to solve the integral.










share|cite|improve this question









$endgroup$

















    -1












    $begingroup$


    The problem is to solve the separable differential equation
    $sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}$.



    My work thus far:
    $ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
    \ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
    \ int sqrt{y}~~ {dy}= int sqrt{frac{4-x}{x}}~~d x
    \ frac{2}{3} y^{3/2} =int sqrt{frac{4-x}{x}}~~dx
    \ frac{2}{3} y^{3/2} =int sqrt{frac 4 x - 1 }~~dx
    $



    The right side is a difficult integral to evaluate.



    Is there an easier approach I have missed, or should I persist in trying to solve the integral.










    share|cite|improve this question









    $endgroup$















      -1












      -1








      -1





      $begingroup$


      The problem is to solve the separable differential equation
      $sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}$.



      My work thus far:
      $ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
      \ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
      \ int sqrt{y}~~ {dy}= int sqrt{frac{4-x}{x}}~~d x
      \ frac{2}{3} y^{3/2} =int sqrt{frac{4-x}{x}}~~dx
      \ frac{2}{3} y^{3/2} =int sqrt{frac 4 x - 1 }~~dx
      $



      The right side is a difficult integral to evaluate.



      Is there an easier approach I have missed, or should I persist in trying to solve the integral.










      share|cite|improve this question









      $endgroup$




      The problem is to solve the separable differential equation
      $sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}$.



      My work thus far:
      $ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
      \ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
      \ int sqrt{y}~~ {dy}= int sqrt{frac{4-x}{x}}~~d x
      \ frac{2}{3} y^{3/2} =int sqrt{frac{4-x}{x}}~~dx
      \ frac{2}{3} y^{3/2} =int sqrt{frac 4 x - 1 }~~dx
      $



      The right side is a difficult integral to evaluate.



      Is there an easier approach I have missed, or should I persist in trying to solve the integral.







      ordinary-differential-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 7 at 8:57









      johnjohn

      30518




      30518






















          4 Answers
          4






          active

          oldest

          votes


















          2












          $begingroup$

          Hint: Apply the substitution $u=frac{4}{x}$, then integrate by parts and then again look for a clever substitution to get to the form $intfrac{1}{t^2+1}dt=arctan(t)$.






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            Hint Sometimes an integral $int sqrt{f(x)} , dx$ can be resolved by rearranging $u = sqrt{f(x)}$ to give a reverse substitution (where we may need to restrict the domain of $f$).



            In our case, setting $u = sqrtfrac{4 - x}{x}$ and rearranging and differentiating yields the substitution
            $$x = frac{4}{u^2 + 1}, qquad dx = -frac{8 u, du}{(u^2 + 1)^2},$$
            which gives
            $$int sqrtfrac{4 - x}{x} dx = -8 int frac{u^2 ,du}{(u^2 + 1)^2} .$$
            The latter integrand is rational and so can be solved with standard techniques.




            The occurrence of the form $u^2 + 1$ in the denominator suggests the substitution $u = tan theta$, $du = sec^2 theta, dtheta$.







            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              Make the substitution $t = sqrt{x}$, then



              $$ int 2sqrt{4-x} frac{dx}{2sqrt{x}} = int 2sqrt{4-t^2} dt $$



              This is a standard trig substitution. Let $t = 2sin theta$



              begin{align}
              int 2sqrt{4-t^2}dt &= int 2cdot 2costhetacdot 2costheta dtheta \
              &= int 8 cos^2theta dtheta \
              &= int 4(1+cos2theta) dtheta \
              &= 4theta + 2sin2theta + C
              end{align}



              Going backwards



              begin{align}
              4theta + 2sin2theta + C &= 4theta + 4sinthetacos theta + C \
              &= 4arctanfrac{t}{2} + tsqrt{4-t^2} + C \
              &= 4arcsinfrac{sqrt{x}}{2} + sqrt{x}sqrt{4-x} + C
              end{align}






              share|cite|improve this answer









              $endgroup$





















                0












                $begingroup$

                Thankyou to the tips given. I will attempt to answer my question.
                $$ sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}
                \ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
                \ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
                \ int sqrt{y}~~ {dy}= int frac{ sqrt {4-x}}{sqrt x}~~dx
                \ frac{2}{3} y^{3/2} =int frac{ sqrt {4-x}}{sqrt x}~~dx
                \ text{ Make the substitution u = √x }
                \ frac{2}{3} y^{3/2} = 2int sqrt { 4- u^2} du
                \ \ text{ Substitute w = u/2 }
                \ frac{2}{3} y^{3/2} = 8 int sqrt{ 1 - w ^2} ~dw
                \ text{ using trig substitution}
                \ frac{2}{3} y^{3/2} = 4 w sqrt {1 -w^2}+4 arcsin left( w right) + C
                \ text{back substituting }
                \ frac{2}{3} y^{3/2} = 4 frac u 2 sqrt {1 -left( frac u 2 right) ^2}+4 arcsin left( frac u 2 right) + C
                \ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {sqrt x }{ 2} right) ^2}+4 arcsin left( frac {sqrt x }{ 2} right) + C
                \ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {x}{4} right)}+4 arcsin left( frac {sqrt x }{ 2} right) + C
                \ frac{2}{3} y^{3/2} = 2 sqrt x frac{ sqrt {4 -x }}{ sqrt{4} } +4 arcsin left( frac {sqrt x }{ 2} right) + C
                \ frac{2}{3} y^{3/2} = sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C
                \ y^{3/2} =frac{3}{2} left( sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C right)
                \ y^{3/2} = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + frac 3 2 C right)
                \ y = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + C right) ^{2/3}$$






                share|cite|improve this answer









                $endgroup$













                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064785%2felementary-separable-differential-equation-with-tricky-integral%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  2












                  $begingroup$

                  Hint: Apply the substitution $u=frac{4}{x}$, then integrate by parts and then again look for a clever substitution to get to the form $intfrac{1}{t^2+1}dt=arctan(t)$.






                  share|cite|improve this answer











                  $endgroup$


















                    2












                    $begingroup$

                    Hint: Apply the substitution $u=frac{4}{x}$, then integrate by parts and then again look for a clever substitution to get to the form $intfrac{1}{t^2+1}dt=arctan(t)$.






                    share|cite|improve this answer











                    $endgroup$
















                      2












                      2








                      2





                      $begingroup$

                      Hint: Apply the substitution $u=frac{4}{x}$, then integrate by parts and then again look for a clever substitution to get to the form $intfrac{1}{t^2+1}dt=arctan(t)$.






                      share|cite|improve this answer











                      $endgroup$



                      Hint: Apply the substitution $u=frac{4}{x}$, then integrate by parts and then again look for a clever substitution to get to the form $intfrac{1}{t^2+1}dt=arctan(t)$.







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jan 7 at 9:09

























                      answered Jan 7 at 9:04









                      EuxhenHEuxhenH

                      482210




                      482210























                          1












                          $begingroup$

                          Hint Sometimes an integral $int sqrt{f(x)} , dx$ can be resolved by rearranging $u = sqrt{f(x)}$ to give a reverse substitution (where we may need to restrict the domain of $f$).



                          In our case, setting $u = sqrtfrac{4 - x}{x}$ and rearranging and differentiating yields the substitution
                          $$x = frac{4}{u^2 + 1}, qquad dx = -frac{8 u, du}{(u^2 + 1)^2},$$
                          which gives
                          $$int sqrtfrac{4 - x}{x} dx = -8 int frac{u^2 ,du}{(u^2 + 1)^2} .$$
                          The latter integrand is rational and so can be solved with standard techniques.




                          The occurrence of the form $u^2 + 1$ in the denominator suggests the substitution $u = tan theta$, $du = sec^2 theta, dtheta$.







                          share|cite|improve this answer









                          $endgroup$


















                            1












                            $begingroup$

                            Hint Sometimes an integral $int sqrt{f(x)} , dx$ can be resolved by rearranging $u = sqrt{f(x)}$ to give a reverse substitution (where we may need to restrict the domain of $f$).



                            In our case, setting $u = sqrtfrac{4 - x}{x}$ and rearranging and differentiating yields the substitution
                            $$x = frac{4}{u^2 + 1}, qquad dx = -frac{8 u, du}{(u^2 + 1)^2},$$
                            which gives
                            $$int sqrtfrac{4 - x}{x} dx = -8 int frac{u^2 ,du}{(u^2 + 1)^2} .$$
                            The latter integrand is rational and so can be solved with standard techniques.




                            The occurrence of the form $u^2 + 1$ in the denominator suggests the substitution $u = tan theta$, $du = sec^2 theta, dtheta$.







                            share|cite|improve this answer









                            $endgroup$
















                              1












                              1








                              1





                              $begingroup$

                              Hint Sometimes an integral $int sqrt{f(x)} , dx$ can be resolved by rearranging $u = sqrt{f(x)}$ to give a reverse substitution (where we may need to restrict the domain of $f$).



                              In our case, setting $u = sqrtfrac{4 - x}{x}$ and rearranging and differentiating yields the substitution
                              $$x = frac{4}{u^2 + 1}, qquad dx = -frac{8 u, du}{(u^2 + 1)^2},$$
                              which gives
                              $$int sqrtfrac{4 - x}{x} dx = -8 int frac{u^2 ,du}{(u^2 + 1)^2} .$$
                              The latter integrand is rational and so can be solved with standard techniques.




                              The occurrence of the form $u^2 + 1$ in the denominator suggests the substitution $u = tan theta$, $du = sec^2 theta, dtheta$.







                              share|cite|improve this answer









                              $endgroup$



                              Hint Sometimes an integral $int sqrt{f(x)} , dx$ can be resolved by rearranging $u = sqrt{f(x)}$ to give a reverse substitution (where we may need to restrict the domain of $f$).



                              In our case, setting $u = sqrtfrac{4 - x}{x}$ and rearranging and differentiating yields the substitution
                              $$x = frac{4}{u^2 + 1}, qquad dx = -frac{8 u, du}{(u^2 + 1)^2},$$
                              which gives
                              $$int sqrtfrac{4 - x}{x} dx = -8 int frac{u^2 ,du}{(u^2 + 1)^2} .$$
                              The latter integrand is rational and so can be solved with standard techniques.




                              The occurrence of the form $u^2 + 1$ in the denominator suggests the substitution $u = tan theta$, $du = sec^2 theta, dtheta$.








                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Jan 7 at 9:10









                              TravisTravis

                              63.8k769151




                              63.8k769151























                                  1












                                  $begingroup$

                                  Make the substitution $t = sqrt{x}$, then



                                  $$ int 2sqrt{4-x} frac{dx}{2sqrt{x}} = int 2sqrt{4-t^2} dt $$



                                  This is a standard trig substitution. Let $t = 2sin theta$



                                  begin{align}
                                  int 2sqrt{4-t^2}dt &= int 2cdot 2costhetacdot 2costheta dtheta \
                                  &= int 8 cos^2theta dtheta \
                                  &= int 4(1+cos2theta) dtheta \
                                  &= 4theta + 2sin2theta + C
                                  end{align}



                                  Going backwards



                                  begin{align}
                                  4theta + 2sin2theta + C &= 4theta + 4sinthetacos theta + C \
                                  &= 4arctanfrac{t}{2} + tsqrt{4-t^2} + C \
                                  &= 4arcsinfrac{sqrt{x}}{2} + sqrt{x}sqrt{4-x} + C
                                  end{align}






                                  share|cite|improve this answer









                                  $endgroup$


















                                    1












                                    $begingroup$

                                    Make the substitution $t = sqrt{x}$, then



                                    $$ int 2sqrt{4-x} frac{dx}{2sqrt{x}} = int 2sqrt{4-t^2} dt $$



                                    This is a standard trig substitution. Let $t = 2sin theta$



                                    begin{align}
                                    int 2sqrt{4-t^2}dt &= int 2cdot 2costhetacdot 2costheta dtheta \
                                    &= int 8 cos^2theta dtheta \
                                    &= int 4(1+cos2theta) dtheta \
                                    &= 4theta + 2sin2theta + C
                                    end{align}



                                    Going backwards



                                    begin{align}
                                    4theta + 2sin2theta + C &= 4theta + 4sinthetacos theta + C \
                                    &= 4arctanfrac{t}{2} + tsqrt{4-t^2} + C \
                                    &= 4arcsinfrac{sqrt{x}}{2} + sqrt{x}sqrt{4-x} + C
                                    end{align}






                                    share|cite|improve this answer









                                    $endgroup$
















                                      1












                                      1








                                      1





                                      $begingroup$

                                      Make the substitution $t = sqrt{x}$, then



                                      $$ int 2sqrt{4-x} frac{dx}{2sqrt{x}} = int 2sqrt{4-t^2} dt $$



                                      This is a standard trig substitution. Let $t = 2sin theta$



                                      begin{align}
                                      int 2sqrt{4-t^2}dt &= int 2cdot 2costhetacdot 2costheta dtheta \
                                      &= int 8 cos^2theta dtheta \
                                      &= int 4(1+cos2theta) dtheta \
                                      &= 4theta + 2sin2theta + C
                                      end{align}



                                      Going backwards



                                      begin{align}
                                      4theta + 2sin2theta + C &= 4theta + 4sinthetacos theta + C \
                                      &= 4arctanfrac{t}{2} + tsqrt{4-t^2} + C \
                                      &= 4arcsinfrac{sqrt{x}}{2} + sqrt{x}sqrt{4-x} + C
                                      end{align}






                                      share|cite|improve this answer









                                      $endgroup$



                                      Make the substitution $t = sqrt{x}$, then



                                      $$ int 2sqrt{4-x} frac{dx}{2sqrt{x}} = int 2sqrt{4-t^2} dt $$



                                      This is a standard trig substitution. Let $t = 2sin theta$



                                      begin{align}
                                      int 2sqrt{4-t^2}dt &= int 2cdot 2costhetacdot 2costheta dtheta \
                                      &= int 8 cos^2theta dtheta \
                                      &= int 4(1+cos2theta) dtheta \
                                      &= 4theta + 2sin2theta + C
                                      end{align}



                                      Going backwards



                                      begin{align}
                                      4theta + 2sin2theta + C &= 4theta + 4sinthetacos theta + C \
                                      &= 4arctanfrac{t}{2} + tsqrt{4-t^2} + C \
                                      &= 4arcsinfrac{sqrt{x}}{2} + sqrt{x}sqrt{4-x} + C
                                      end{align}







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Jan 7 at 9:26









                                      DylanDylan

                                      14.1k31127




                                      14.1k31127























                                          0












                                          $begingroup$

                                          Thankyou to the tips given. I will attempt to answer my question.
                                          $$ sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}
                                          \ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
                                          \ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
                                          \ int sqrt{y}~~ {dy}= int frac{ sqrt {4-x}}{sqrt x}~~dx
                                          \ frac{2}{3} y^{3/2} =int frac{ sqrt {4-x}}{sqrt x}~~dx
                                          \ text{ Make the substitution u = √x }
                                          \ frac{2}{3} y^{3/2} = 2int sqrt { 4- u^2} du
                                          \ \ text{ Substitute w = u/2 }
                                          \ frac{2}{3} y^{3/2} = 8 int sqrt{ 1 - w ^2} ~dw
                                          \ text{ using trig substitution}
                                          \ frac{2}{3} y^{3/2} = 4 w sqrt {1 -w^2}+4 arcsin left( w right) + C
                                          \ text{back substituting }
                                          \ frac{2}{3} y^{3/2} = 4 frac u 2 sqrt {1 -left( frac u 2 right) ^2}+4 arcsin left( frac u 2 right) + C
                                          \ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {sqrt x }{ 2} right) ^2}+4 arcsin left( frac {sqrt x }{ 2} right) + C
                                          \ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {x}{4} right)}+4 arcsin left( frac {sqrt x }{ 2} right) + C
                                          \ frac{2}{3} y^{3/2} = 2 sqrt x frac{ sqrt {4 -x }}{ sqrt{4} } +4 arcsin left( frac {sqrt x }{ 2} right) + C
                                          \ frac{2}{3} y^{3/2} = sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C
                                          \ y^{3/2} =frac{3}{2} left( sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C right)
                                          \ y^{3/2} = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + frac 3 2 C right)
                                          \ y = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + C right) ^{2/3}$$






                                          share|cite|improve this answer









                                          $endgroup$


















                                            0












                                            $begingroup$

                                            Thankyou to the tips given. I will attempt to answer my question.
                                            $$ sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}
                                            \ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
                                            \ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
                                            \ int sqrt{y}~~ {dy}= int frac{ sqrt {4-x}}{sqrt x}~~dx
                                            \ frac{2}{3} y^{3/2} =int frac{ sqrt {4-x}}{sqrt x}~~dx
                                            \ text{ Make the substitution u = √x }
                                            \ frac{2}{3} y^{3/2} = 2int sqrt { 4- u^2} du
                                            \ \ text{ Substitute w = u/2 }
                                            \ frac{2}{3} y^{3/2} = 8 int sqrt{ 1 - w ^2} ~dw
                                            \ text{ using trig substitution}
                                            \ frac{2}{3} y^{3/2} = 4 w sqrt {1 -w^2}+4 arcsin left( w right) + C
                                            \ text{back substituting }
                                            \ frac{2}{3} y^{3/2} = 4 frac u 2 sqrt {1 -left( frac u 2 right) ^2}+4 arcsin left( frac u 2 right) + C
                                            \ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {sqrt x }{ 2} right) ^2}+4 arcsin left( frac {sqrt x }{ 2} right) + C
                                            \ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {x}{4} right)}+4 arcsin left( frac {sqrt x }{ 2} right) + C
                                            \ frac{2}{3} y^{3/2} = 2 sqrt x frac{ sqrt {4 -x }}{ sqrt{4} } +4 arcsin left( frac {sqrt x }{ 2} right) + C
                                            \ frac{2}{3} y^{3/2} = sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C
                                            \ y^{3/2} =frac{3}{2} left( sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C right)
                                            \ y^{3/2} = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + frac 3 2 C right)
                                            \ y = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + C right) ^{2/3}$$






                                            share|cite|improve this answer









                                            $endgroup$
















                                              0












                                              0








                                              0





                                              $begingroup$

                                              Thankyou to the tips given. I will attempt to answer my question.
                                              $$ sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}
                                              \ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
                                              \ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
                                              \ int sqrt{y}~~ {dy}= int frac{ sqrt {4-x}}{sqrt x}~~dx
                                              \ frac{2}{3} y^{3/2} =int frac{ sqrt {4-x}}{sqrt x}~~dx
                                              \ text{ Make the substitution u = √x }
                                              \ frac{2}{3} y^{3/2} = 2int sqrt { 4- u^2} du
                                              \ \ text{ Substitute w = u/2 }
                                              \ frac{2}{3} y^{3/2} = 8 int sqrt{ 1 - w ^2} ~dw
                                              \ text{ using trig substitution}
                                              \ frac{2}{3} y^{3/2} = 4 w sqrt {1 -w^2}+4 arcsin left( w right) + C
                                              \ text{back substituting }
                                              \ frac{2}{3} y^{3/2} = 4 frac u 2 sqrt {1 -left( frac u 2 right) ^2}+4 arcsin left( frac u 2 right) + C
                                              \ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {sqrt x }{ 2} right) ^2}+4 arcsin left( frac {sqrt x }{ 2} right) + C
                                              \ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {x}{4} right)}+4 arcsin left( frac {sqrt x }{ 2} right) + C
                                              \ frac{2}{3} y^{3/2} = 2 sqrt x frac{ sqrt {4 -x }}{ sqrt{4} } +4 arcsin left( frac {sqrt x }{ 2} right) + C
                                              \ frac{2}{3} y^{3/2} = sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C
                                              \ y^{3/2} =frac{3}{2} left( sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C right)
                                              \ y^{3/2} = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + frac 3 2 C right)
                                              \ y = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + C right) ^{2/3}$$






                                              share|cite|improve this answer









                                              $endgroup$



                                              Thankyou to the tips given. I will attempt to answer my question.
                                              $$ sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}
                                              \ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
                                              \ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
                                              \ int sqrt{y}~~ {dy}= int frac{ sqrt {4-x}}{sqrt x}~~dx
                                              \ frac{2}{3} y^{3/2} =int frac{ sqrt {4-x}}{sqrt x}~~dx
                                              \ text{ Make the substitution u = √x }
                                              \ frac{2}{3} y^{3/2} = 2int sqrt { 4- u^2} du
                                              \ \ text{ Substitute w = u/2 }
                                              \ frac{2}{3} y^{3/2} = 8 int sqrt{ 1 - w ^2} ~dw
                                              \ text{ using trig substitution}
                                              \ frac{2}{3} y^{3/2} = 4 w sqrt {1 -w^2}+4 arcsin left( w right) + C
                                              \ text{back substituting }
                                              \ frac{2}{3} y^{3/2} = 4 frac u 2 sqrt {1 -left( frac u 2 right) ^2}+4 arcsin left( frac u 2 right) + C
                                              \ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {sqrt x }{ 2} right) ^2}+4 arcsin left( frac {sqrt x }{ 2} right) + C
                                              \ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {x}{4} right)}+4 arcsin left( frac {sqrt x }{ 2} right) + C
                                              \ frac{2}{3} y^{3/2} = 2 sqrt x frac{ sqrt {4 -x }}{ sqrt{4} } +4 arcsin left( frac {sqrt x }{ 2} right) + C
                                              \ frac{2}{3} y^{3/2} = sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C
                                              \ y^{3/2} =frac{3}{2} left( sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C right)
                                              \ y^{3/2} = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + frac 3 2 C right)
                                              \ y = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + C right) ^{2/3}$$







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered Jan 7 at 9:51









                                              johnjohn

                                              30518




                                              30518






























                                                  draft saved

                                                  draft discarded




















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064785%2felementary-separable-differential-equation-with-tricky-integral%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Bressuire

                                                  Cabo Verde

                                                  Gyllenstierna