Elementary Separable Differential Equation with tricky integral
$begingroup$
The problem is to solve the separable differential equation
$sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}$.
My work thus far:
$ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
\ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
\ int sqrt{y}~~ {dy}= int sqrt{frac{4-x}{x}}~~d x
\ frac{2}{3} y^{3/2} =int sqrt{frac{4-x}{x}}~~dx
\ frac{2}{3} y^{3/2} =int sqrt{frac 4 x - 1 }~~dx
$
The right side is a difficult integral to evaluate.
Is there an easier approach I have missed, or should I persist in trying to solve the integral.
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
The problem is to solve the separable differential equation
$sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}$.
My work thus far:
$ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
\ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
\ int sqrt{y}~~ {dy}= int sqrt{frac{4-x}{x}}~~d x
\ frac{2}{3} y^{3/2} =int sqrt{frac{4-x}{x}}~~dx
\ frac{2}{3} y^{3/2} =int sqrt{frac 4 x - 1 }~~dx
$
The right side is a difficult integral to evaluate.
Is there an easier approach I have missed, or should I persist in trying to solve the integral.
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
The problem is to solve the separable differential equation
$sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}$.
My work thus far:
$ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
\ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
\ int sqrt{y}~~ {dy}= int sqrt{frac{4-x}{x}}~~d x
\ frac{2}{3} y^{3/2} =int sqrt{frac{4-x}{x}}~~dx
\ frac{2}{3} y^{3/2} =int sqrt{frac 4 x - 1 }~~dx
$
The right side is a difficult integral to evaluate.
Is there an easier approach I have missed, or should I persist in trying to solve the integral.
ordinary-differential-equations
$endgroup$
The problem is to solve the separable differential equation
$sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}$.
My work thus far:
$ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
\ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
\ int sqrt{y}~~ {dy}= int sqrt{frac{4-x}{x}}~~d x
\ frac{2}{3} y^{3/2} =int sqrt{frac{4-x}{x}}~~dx
\ frac{2}{3} y^{3/2} =int sqrt{frac 4 x - 1 }~~dx
$
The right side is a difficult integral to evaluate.
Is there an easier approach I have missed, or should I persist in trying to solve the integral.
ordinary-differential-equations
ordinary-differential-equations
asked Jan 7 at 8:57
johnjohn
30518
30518
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Hint: Apply the substitution $u=frac{4}{x}$, then integrate by parts and then again look for a clever substitution to get to the form $intfrac{1}{t^2+1}dt=arctan(t)$.
$endgroup$
add a comment |
$begingroup$
Hint Sometimes an integral $int sqrt{f(x)} , dx$ can be resolved by rearranging $u = sqrt{f(x)}$ to give a reverse substitution (where we may need to restrict the domain of $f$).
In our case, setting $u = sqrtfrac{4 - x}{x}$ and rearranging and differentiating yields the substitution
$$x = frac{4}{u^2 + 1}, qquad dx = -frac{8 u, du}{(u^2 + 1)^2},$$
which gives
$$int sqrtfrac{4 - x}{x} dx = -8 int frac{u^2 ,du}{(u^2 + 1)^2} .$$
The latter integrand is rational and so can be solved with standard techniques.
The occurrence of the form $u^2 + 1$ in the denominator suggests the substitution $u = tan theta$, $du = sec^2 theta, dtheta$.
$endgroup$
add a comment |
$begingroup$
Make the substitution $t = sqrt{x}$, then
$$ int 2sqrt{4-x} frac{dx}{2sqrt{x}} = int 2sqrt{4-t^2} dt $$
This is a standard trig substitution. Let $t = 2sin theta$
begin{align}
int 2sqrt{4-t^2}dt &= int 2cdot 2costhetacdot 2costheta dtheta \
&= int 8 cos^2theta dtheta \
&= int 4(1+cos2theta) dtheta \
&= 4theta + 2sin2theta + C
end{align}
Going backwards
begin{align}
4theta + 2sin2theta + C &= 4theta + 4sinthetacos theta + C \
&= 4arctanfrac{t}{2} + tsqrt{4-t^2} + C \
&= 4arcsinfrac{sqrt{x}}{2} + sqrt{x}sqrt{4-x} + C
end{align}
$endgroup$
add a comment |
$begingroup$
Thankyou to the tips given. I will attempt to answer my question.
$$ sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}
\ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
\ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
\ int sqrt{y}~~ {dy}= int frac{ sqrt {4-x}}{sqrt x}~~dx
\ frac{2}{3} y^{3/2} =int frac{ sqrt {4-x}}{sqrt x}~~dx
\ text{ Make the substitution u = √x }
\ frac{2}{3} y^{3/2} = 2int sqrt { 4- u^2} du
\ \ text{ Substitute w = u/2 }
\ frac{2}{3} y^{3/2} = 8 int sqrt{ 1 - w ^2} ~dw
\ text{ using trig substitution}
\ frac{2}{3} y^{3/2} = 4 w sqrt {1 -w^2}+4 arcsin left( w right) + C
\ text{back substituting }
\ frac{2}{3} y^{3/2} = 4 frac u 2 sqrt {1 -left( frac u 2 right) ^2}+4 arcsin left( frac u 2 right) + C
\ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {sqrt x }{ 2} right) ^2}+4 arcsin left( frac {sqrt x }{ 2} right) + C
\ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {x}{4} right)}+4 arcsin left( frac {sqrt x }{ 2} right) + C
\ frac{2}{3} y^{3/2} = 2 sqrt x frac{ sqrt {4 -x }}{ sqrt{4} } +4 arcsin left( frac {sqrt x }{ 2} right) + C
\ frac{2}{3} y^{3/2} = sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C
\ y^{3/2} =frac{3}{2} left( sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C right)
\ y^{3/2} = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + frac 3 2 C right)
\ y = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + C right) ^{2/3}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064785%2felementary-separable-differential-equation-with-tricky-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Apply the substitution $u=frac{4}{x}$, then integrate by parts and then again look for a clever substitution to get to the form $intfrac{1}{t^2+1}dt=arctan(t)$.
$endgroup$
add a comment |
$begingroup$
Hint: Apply the substitution $u=frac{4}{x}$, then integrate by parts and then again look for a clever substitution to get to the form $intfrac{1}{t^2+1}dt=arctan(t)$.
$endgroup$
add a comment |
$begingroup$
Hint: Apply the substitution $u=frac{4}{x}$, then integrate by parts and then again look for a clever substitution to get to the form $intfrac{1}{t^2+1}dt=arctan(t)$.
$endgroup$
Hint: Apply the substitution $u=frac{4}{x}$, then integrate by parts and then again look for a clever substitution to get to the form $intfrac{1}{t^2+1}dt=arctan(t)$.
edited Jan 7 at 9:09
answered Jan 7 at 9:04
EuxhenHEuxhenH
482210
482210
add a comment |
add a comment |
$begingroup$
Hint Sometimes an integral $int sqrt{f(x)} , dx$ can be resolved by rearranging $u = sqrt{f(x)}$ to give a reverse substitution (where we may need to restrict the domain of $f$).
In our case, setting $u = sqrtfrac{4 - x}{x}$ and rearranging and differentiating yields the substitution
$$x = frac{4}{u^2 + 1}, qquad dx = -frac{8 u, du}{(u^2 + 1)^2},$$
which gives
$$int sqrtfrac{4 - x}{x} dx = -8 int frac{u^2 ,du}{(u^2 + 1)^2} .$$
The latter integrand is rational and so can be solved with standard techniques.
The occurrence of the form $u^2 + 1$ in the denominator suggests the substitution $u = tan theta$, $du = sec^2 theta, dtheta$.
$endgroup$
add a comment |
$begingroup$
Hint Sometimes an integral $int sqrt{f(x)} , dx$ can be resolved by rearranging $u = sqrt{f(x)}$ to give a reverse substitution (where we may need to restrict the domain of $f$).
In our case, setting $u = sqrtfrac{4 - x}{x}$ and rearranging and differentiating yields the substitution
$$x = frac{4}{u^2 + 1}, qquad dx = -frac{8 u, du}{(u^2 + 1)^2},$$
which gives
$$int sqrtfrac{4 - x}{x} dx = -8 int frac{u^2 ,du}{(u^2 + 1)^2} .$$
The latter integrand is rational and so can be solved with standard techniques.
The occurrence of the form $u^2 + 1$ in the denominator suggests the substitution $u = tan theta$, $du = sec^2 theta, dtheta$.
$endgroup$
add a comment |
$begingroup$
Hint Sometimes an integral $int sqrt{f(x)} , dx$ can be resolved by rearranging $u = sqrt{f(x)}$ to give a reverse substitution (where we may need to restrict the domain of $f$).
In our case, setting $u = sqrtfrac{4 - x}{x}$ and rearranging and differentiating yields the substitution
$$x = frac{4}{u^2 + 1}, qquad dx = -frac{8 u, du}{(u^2 + 1)^2},$$
which gives
$$int sqrtfrac{4 - x}{x} dx = -8 int frac{u^2 ,du}{(u^2 + 1)^2} .$$
The latter integrand is rational and so can be solved with standard techniques.
The occurrence of the form $u^2 + 1$ in the denominator suggests the substitution $u = tan theta$, $du = sec^2 theta, dtheta$.
$endgroup$
Hint Sometimes an integral $int sqrt{f(x)} , dx$ can be resolved by rearranging $u = sqrt{f(x)}$ to give a reverse substitution (where we may need to restrict the domain of $f$).
In our case, setting $u = sqrtfrac{4 - x}{x}$ and rearranging and differentiating yields the substitution
$$x = frac{4}{u^2 + 1}, qquad dx = -frac{8 u, du}{(u^2 + 1)^2},$$
which gives
$$int sqrtfrac{4 - x}{x} dx = -8 int frac{u^2 ,du}{(u^2 + 1)^2} .$$
The latter integrand is rational and so can be solved with standard techniques.
The occurrence of the form $u^2 + 1$ in the denominator suggests the substitution $u = tan theta$, $du = sec^2 theta, dtheta$.
answered Jan 7 at 9:10
TravisTravis
63.8k769151
63.8k769151
add a comment |
add a comment |
$begingroup$
Make the substitution $t = sqrt{x}$, then
$$ int 2sqrt{4-x} frac{dx}{2sqrt{x}} = int 2sqrt{4-t^2} dt $$
This is a standard trig substitution. Let $t = 2sin theta$
begin{align}
int 2sqrt{4-t^2}dt &= int 2cdot 2costhetacdot 2costheta dtheta \
&= int 8 cos^2theta dtheta \
&= int 4(1+cos2theta) dtheta \
&= 4theta + 2sin2theta + C
end{align}
Going backwards
begin{align}
4theta + 2sin2theta + C &= 4theta + 4sinthetacos theta + C \
&= 4arctanfrac{t}{2} + tsqrt{4-t^2} + C \
&= 4arcsinfrac{sqrt{x}}{2} + sqrt{x}sqrt{4-x} + C
end{align}
$endgroup$
add a comment |
$begingroup$
Make the substitution $t = sqrt{x}$, then
$$ int 2sqrt{4-x} frac{dx}{2sqrt{x}} = int 2sqrt{4-t^2} dt $$
This is a standard trig substitution. Let $t = 2sin theta$
begin{align}
int 2sqrt{4-t^2}dt &= int 2cdot 2costhetacdot 2costheta dtheta \
&= int 8 cos^2theta dtheta \
&= int 4(1+cos2theta) dtheta \
&= 4theta + 2sin2theta + C
end{align}
Going backwards
begin{align}
4theta + 2sin2theta + C &= 4theta + 4sinthetacos theta + C \
&= 4arctanfrac{t}{2} + tsqrt{4-t^2} + C \
&= 4arcsinfrac{sqrt{x}}{2} + sqrt{x}sqrt{4-x} + C
end{align}
$endgroup$
add a comment |
$begingroup$
Make the substitution $t = sqrt{x}$, then
$$ int 2sqrt{4-x} frac{dx}{2sqrt{x}} = int 2sqrt{4-t^2} dt $$
This is a standard trig substitution. Let $t = 2sin theta$
begin{align}
int 2sqrt{4-t^2}dt &= int 2cdot 2costhetacdot 2costheta dtheta \
&= int 8 cos^2theta dtheta \
&= int 4(1+cos2theta) dtheta \
&= 4theta + 2sin2theta + C
end{align}
Going backwards
begin{align}
4theta + 2sin2theta + C &= 4theta + 4sinthetacos theta + C \
&= 4arctanfrac{t}{2} + tsqrt{4-t^2} + C \
&= 4arcsinfrac{sqrt{x}}{2} + sqrt{x}sqrt{4-x} + C
end{align}
$endgroup$
Make the substitution $t = sqrt{x}$, then
$$ int 2sqrt{4-x} frac{dx}{2sqrt{x}} = int 2sqrt{4-t^2} dt $$
This is a standard trig substitution. Let $t = 2sin theta$
begin{align}
int 2sqrt{4-t^2}dt &= int 2cdot 2costhetacdot 2costheta dtheta \
&= int 8 cos^2theta dtheta \
&= int 4(1+cos2theta) dtheta \
&= 4theta + 2sin2theta + C
end{align}
Going backwards
begin{align}
4theta + 2sin2theta + C &= 4theta + 4sinthetacos theta + C \
&= 4arctanfrac{t}{2} + tsqrt{4-t^2} + C \
&= 4arcsinfrac{sqrt{x}}{2} + sqrt{x}sqrt{4-x} + C
end{align}
answered Jan 7 at 9:26
DylanDylan
14.1k31127
14.1k31127
add a comment |
add a comment |
$begingroup$
Thankyou to the tips given. I will attempt to answer my question.
$$ sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}
\ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
\ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
\ int sqrt{y}~~ {dy}= int frac{ sqrt {4-x}}{sqrt x}~~dx
\ frac{2}{3} y^{3/2} =int frac{ sqrt {4-x}}{sqrt x}~~dx
\ text{ Make the substitution u = √x }
\ frac{2}{3} y^{3/2} = 2int sqrt { 4- u^2} du
\ \ text{ Substitute w = u/2 }
\ frac{2}{3} y^{3/2} = 8 int sqrt{ 1 - w ^2} ~dw
\ text{ using trig substitution}
\ frac{2}{3} y^{3/2} = 4 w sqrt {1 -w^2}+4 arcsin left( w right) + C
\ text{back substituting }
\ frac{2}{3} y^{3/2} = 4 frac u 2 sqrt {1 -left( frac u 2 right) ^2}+4 arcsin left( frac u 2 right) + C
\ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {sqrt x }{ 2} right) ^2}+4 arcsin left( frac {sqrt x }{ 2} right) + C
\ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {x}{4} right)}+4 arcsin left( frac {sqrt x }{ 2} right) + C
\ frac{2}{3} y^{3/2} = 2 sqrt x frac{ sqrt {4 -x }}{ sqrt{4} } +4 arcsin left( frac {sqrt x }{ 2} right) + C
\ frac{2}{3} y^{3/2} = sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C
\ y^{3/2} =frac{3}{2} left( sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C right)
\ y^{3/2} = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + frac 3 2 C right)
\ y = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + C right) ^{2/3}$$
$endgroup$
add a comment |
$begingroup$
Thankyou to the tips given. I will attempt to answer my question.
$$ sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}
\ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
\ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
\ int sqrt{y}~~ {dy}= int frac{ sqrt {4-x}}{sqrt x}~~dx
\ frac{2}{3} y^{3/2} =int frac{ sqrt {4-x}}{sqrt x}~~dx
\ text{ Make the substitution u = √x }
\ frac{2}{3} y^{3/2} = 2int sqrt { 4- u^2} du
\ \ text{ Substitute w = u/2 }
\ frac{2}{3} y^{3/2} = 8 int sqrt{ 1 - w ^2} ~dw
\ text{ using trig substitution}
\ frac{2}{3} y^{3/2} = 4 w sqrt {1 -w^2}+4 arcsin left( w right) + C
\ text{back substituting }
\ frac{2}{3} y^{3/2} = 4 frac u 2 sqrt {1 -left( frac u 2 right) ^2}+4 arcsin left( frac u 2 right) + C
\ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {sqrt x }{ 2} right) ^2}+4 arcsin left( frac {sqrt x }{ 2} right) + C
\ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {x}{4} right)}+4 arcsin left( frac {sqrt x }{ 2} right) + C
\ frac{2}{3} y^{3/2} = 2 sqrt x frac{ sqrt {4 -x }}{ sqrt{4} } +4 arcsin left( frac {sqrt x }{ 2} right) + C
\ frac{2}{3} y^{3/2} = sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C
\ y^{3/2} =frac{3}{2} left( sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C right)
\ y^{3/2} = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + frac 3 2 C right)
\ y = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + C right) ^{2/3}$$
$endgroup$
add a comment |
$begingroup$
Thankyou to the tips given. I will attempt to answer my question.
$$ sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}
\ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
\ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
\ int sqrt{y}~~ {dy}= int frac{ sqrt {4-x}}{sqrt x}~~dx
\ frac{2}{3} y^{3/2} =int frac{ sqrt {4-x}}{sqrt x}~~dx
\ text{ Make the substitution u = √x }
\ frac{2}{3} y^{3/2} = 2int sqrt { 4- u^2} du
\ \ text{ Substitute w = u/2 }
\ frac{2}{3} y^{3/2} = 8 int sqrt{ 1 - w ^2} ~dw
\ text{ using trig substitution}
\ frac{2}{3} y^{3/2} = 4 w sqrt {1 -w^2}+4 arcsin left( w right) + C
\ text{back substituting }
\ frac{2}{3} y^{3/2} = 4 frac u 2 sqrt {1 -left( frac u 2 right) ^2}+4 arcsin left( frac u 2 right) + C
\ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {sqrt x }{ 2} right) ^2}+4 arcsin left( frac {sqrt x }{ 2} right) + C
\ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {x}{4} right)}+4 arcsin left( frac {sqrt x }{ 2} right) + C
\ frac{2}{3} y^{3/2} = 2 sqrt x frac{ sqrt {4 -x }}{ sqrt{4} } +4 arcsin left( frac {sqrt x }{ 2} right) + C
\ frac{2}{3} y^{3/2} = sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C
\ y^{3/2} =frac{3}{2} left( sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C right)
\ y^{3/2} = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + frac 3 2 C right)
\ y = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + C right) ^{2/3}$$
$endgroup$
Thankyou to the tips given. I will attempt to answer my question.
$$ sqrt{xy}~~frac{dy}{dx}=sqrt{4-x}
\ sqrt{xy}~~ {dy}=sqrt{4-x}~~dx
\ sqrt{y}~~ {dy}=sqrt{frac{4-x}{x}}~~dx
\ int sqrt{y}~~ {dy}= int frac{ sqrt {4-x}}{sqrt x}~~dx
\ frac{2}{3} y^{3/2} =int frac{ sqrt {4-x}}{sqrt x}~~dx
\ text{ Make the substitution u = √x }
\ frac{2}{3} y^{3/2} = 2int sqrt { 4- u^2} du
\ \ text{ Substitute w = u/2 }
\ frac{2}{3} y^{3/2} = 8 int sqrt{ 1 - w ^2} ~dw
\ text{ using trig substitution}
\ frac{2}{3} y^{3/2} = 4 w sqrt {1 -w^2}+4 arcsin left( w right) + C
\ text{back substituting }
\ frac{2}{3} y^{3/2} = 4 frac u 2 sqrt {1 -left( frac u 2 right) ^2}+4 arcsin left( frac u 2 right) + C
\ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {sqrt x }{ 2} right) ^2}+4 arcsin left( frac {sqrt x }{ 2} right) + C
\ frac{2}{3} y^{3/2} = 2 sqrt x sqrt {1 -left( frac {x}{4} right)}+4 arcsin left( frac {sqrt x }{ 2} right) + C
\ frac{2}{3} y^{3/2} = 2 sqrt x frac{ sqrt {4 -x }}{ sqrt{4} } +4 arcsin left( frac {sqrt x }{ 2} right) + C
\ frac{2}{3} y^{3/2} = sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C
\ y^{3/2} =frac{3}{2} left( sqrt x sqrt {4 -x } +4 arcsin left( frac {sqrt x }{ 2} right) + C right)
\ y^{3/2} = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + frac 3 2 C right)
\ y = left( frac{3}{2} sqrt x sqrt {4 -x } + 6 arcsin left( frac {sqrt x }{ 2} right) + C right) ^{2/3}$$
answered Jan 7 at 9:51
johnjohn
30518
30518
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064785%2felementary-separable-differential-equation-with-tricky-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown