Functional derivative of integral with boundary contribution
$begingroup$
What is the functional derivative of a functional $F$ that is expressed as a volume integral over a region $Omegasubsetmathbb R^3$ plus a surface integral over the boundary $partialOmega$?
An example for such a functional is
$$
F[c] = int_Omega f(c, nabla c) , mathrm{d}V + oint_{partialOmega} g(c) , mathrm{d} S
;.
$$
I think that inside the domain the functional derivative reads
$$
frac{delta F}{delta c} = frac{partial f}{partial c}
- nabla frac{partial f}{partial (nabla c)}
;,
$$
but I do not know how to deal with the boundary. I'm not even sure whether the problem is well-posed (even assuming reasonably nice properties of $Omega$, $f$, and $g$).
My more general question therefore is how one deals with functionals of the aforementioned structure.
functional-analysis
$endgroup$
add a comment |
$begingroup$
What is the functional derivative of a functional $F$ that is expressed as a volume integral over a region $Omegasubsetmathbb R^3$ plus a surface integral over the boundary $partialOmega$?
An example for such a functional is
$$
F[c] = int_Omega f(c, nabla c) , mathrm{d}V + oint_{partialOmega} g(c) , mathrm{d} S
;.
$$
I think that inside the domain the functional derivative reads
$$
frac{delta F}{delta c} = frac{partial f}{partial c}
- nabla frac{partial f}{partial (nabla c)}
;,
$$
but I do not know how to deal with the boundary. I'm not even sure whether the problem is well-posed (even assuming reasonably nice properties of $Omega$, $f$, and $g$).
My more general question therefore is how one deals with functionals of the aforementioned structure.
functional-analysis
$endgroup$
add a comment |
$begingroup$
What is the functional derivative of a functional $F$ that is expressed as a volume integral over a region $Omegasubsetmathbb R^3$ plus a surface integral over the boundary $partialOmega$?
An example for such a functional is
$$
F[c] = int_Omega f(c, nabla c) , mathrm{d}V + oint_{partialOmega} g(c) , mathrm{d} S
;.
$$
I think that inside the domain the functional derivative reads
$$
frac{delta F}{delta c} = frac{partial f}{partial c}
- nabla frac{partial f}{partial (nabla c)}
;,
$$
but I do not know how to deal with the boundary. I'm not even sure whether the problem is well-posed (even assuming reasonably nice properties of $Omega$, $f$, and $g$).
My more general question therefore is how one deals with functionals of the aforementioned structure.
functional-analysis
$endgroup$
What is the functional derivative of a functional $F$ that is expressed as a volume integral over a region $Omegasubsetmathbb R^3$ plus a surface integral over the boundary $partialOmega$?
An example for such a functional is
$$
F[c] = int_Omega f(c, nabla c) , mathrm{d}V + oint_{partialOmega} g(c) , mathrm{d} S
;.
$$
I think that inside the domain the functional derivative reads
$$
frac{delta F}{delta c} = frac{partial f}{partial c}
- nabla frac{partial f}{partial (nabla c)}
;,
$$
but I do not know how to deal with the boundary. I'm not even sure whether the problem is well-posed (even assuming reasonably nice properties of $Omega$, $f$, and $g$).
My more general question therefore is how one deals with functionals of the aforementioned structure.
functional-analysis
functional-analysis
asked Nov 2 '18 at 9:24
David ZwickerDavid Zwicker
488
488
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Generally speaking, the boundary terms in a functional only contributes to the boundary conditions, and would not lead changes to the variational derivative.
For your example, repeat the derivation of the classical Euler-Lagrange equation, and
begin{align}
delta F&=int_{Omega}delta f(c,nabla c),{rm d}V+int_{partialOmega}delta g(c),{rm d}S\
&=int_{Omega}left(frac{partial f}{partial c}delta c+frac{partial f}{partialleft(nabla cright)}cdotnabladelta cright){rm d}V+int_{partialOmega}g'(c)delta c,{rm d}S\
&=int_{Omega}left(frac{partial f}{partial c}delta c+nablacdotleft(frac{partial f}{partialleft(nabla cright)},delta cright)-nablacdotleft(frac{partial f}{partialleft(nabla cright)}right)delta cright){rm d}V+int_{partialOmega}g'(c)delta c,{rm d}S\
&=int_{Omega}left(frac{partial f}{partial c}-nablacdotleft(frac{partial f}{partialleft(nabla cright)}right)right)delta c,{rm d}V+int_{partialOmega}left(frac{partial f}{partialleft(nabla cright)}cdot n+g'(c)right)delta c,{rm d}S,
end{align}
where $n$ denotes the outward unit normal vector on $partialOmega$.
Therefore, the $c$ that minimizes $F$ must satisfy
begin{align}
frac{partial f}{partial c}-nablacdotleft(frac{partial f}{partialleft(nabla cright)}right)&=0quadtext{in }Omega,\
frac{partial f}{partialleft(nabla cright)}cdot n+g'(c)&=0quadtext{on }partialOmega
end{align}
due to the arbitrariness of $delta c$.
$endgroup$
add a comment |
$begingroup$
The problem can be solved by calculating the first variation of the functional from scratch.
Here, the first variation reads $delta F
= lim_{epsilon rightarrow 0}(F[c + delta c] - F[c])$ with $delta c =epsilon phi$ and $phi$ is a arbitrary function.
We thus have
begin{align}
F[c + epsilon phi] &=
int_Omega f(c + epsilonphi, nabla c + epsilon nabla phi) mathrm{d}^3 r
+
oint_{partialOmega} g(c + epsilonphi) mathrm{d}^2 r
end{align}
which can be expanded to first order in $epsilon$,
begin{align}
F[c + epsilon phi] &=
int_Omegaleft[
f(c, nabla c)
+ frac{partial f}{partial c}epsilonphi
+ frac{partial f}{partial (nabla c)}epsilon nabla phi
right] mathrm{d}^3 r
+
oint_{partialOmega} left[
g(c)
+ g'(c)epsilonphi)
right] mathrm{d}^2 r
;.
end{align}
We thus obtain for the first variation
begin{align}
delta F &=
int_Omegaleft[
frac{partial f}{partial c}delta c
+ frac{partial f}{partial (nabla c)} nabla delta c
right] mathrm{d}^3 r +
oint_{partialOmega} !!! g'(c)delta c , mathrm{d}^2 r
end{align}
Using integration by parts
begin{align}
delta F &=
int_Omegaleft[
frac{partial f}{partial c}delta c
- delta cnablafrac{partial f}{partial(nabla c)}
right] mathrm{d}^3 r
+
oint_{partialOmega}left[
frac{partial f}{partial (partial_alpha c)} n_alpha delta c
+ g'(c)delta c
right] mathrm{d}^2 r
;,
end{align}
where $n_alpha$ is the normal vector of the boundary.
In particular, the associated Euler-Lagrange equations read
begin{align}
0 &= frac{partial f}{partial c} - nablafrac{partial f}{partial (nabla c)}
\
0 &= frac{partial f}{partial(partial_alpha c)} n_alpha + g'(c)
label{eqn:stationary_point_boundary}
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2981503%2ffunctional-derivative-of-integral-with-boundary-contribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Generally speaking, the boundary terms in a functional only contributes to the boundary conditions, and would not lead changes to the variational derivative.
For your example, repeat the derivation of the classical Euler-Lagrange equation, and
begin{align}
delta F&=int_{Omega}delta f(c,nabla c),{rm d}V+int_{partialOmega}delta g(c),{rm d}S\
&=int_{Omega}left(frac{partial f}{partial c}delta c+frac{partial f}{partialleft(nabla cright)}cdotnabladelta cright){rm d}V+int_{partialOmega}g'(c)delta c,{rm d}S\
&=int_{Omega}left(frac{partial f}{partial c}delta c+nablacdotleft(frac{partial f}{partialleft(nabla cright)},delta cright)-nablacdotleft(frac{partial f}{partialleft(nabla cright)}right)delta cright){rm d}V+int_{partialOmega}g'(c)delta c,{rm d}S\
&=int_{Omega}left(frac{partial f}{partial c}-nablacdotleft(frac{partial f}{partialleft(nabla cright)}right)right)delta c,{rm d}V+int_{partialOmega}left(frac{partial f}{partialleft(nabla cright)}cdot n+g'(c)right)delta c,{rm d}S,
end{align}
where $n$ denotes the outward unit normal vector on $partialOmega$.
Therefore, the $c$ that minimizes $F$ must satisfy
begin{align}
frac{partial f}{partial c}-nablacdotleft(frac{partial f}{partialleft(nabla cright)}right)&=0quadtext{in }Omega,\
frac{partial f}{partialleft(nabla cright)}cdot n+g'(c)&=0quadtext{on }partialOmega
end{align}
due to the arbitrariness of $delta c$.
$endgroup$
add a comment |
$begingroup$
Generally speaking, the boundary terms in a functional only contributes to the boundary conditions, and would not lead changes to the variational derivative.
For your example, repeat the derivation of the classical Euler-Lagrange equation, and
begin{align}
delta F&=int_{Omega}delta f(c,nabla c),{rm d}V+int_{partialOmega}delta g(c),{rm d}S\
&=int_{Omega}left(frac{partial f}{partial c}delta c+frac{partial f}{partialleft(nabla cright)}cdotnabladelta cright){rm d}V+int_{partialOmega}g'(c)delta c,{rm d}S\
&=int_{Omega}left(frac{partial f}{partial c}delta c+nablacdotleft(frac{partial f}{partialleft(nabla cright)},delta cright)-nablacdotleft(frac{partial f}{partialleft(nabla cright)}right)delta cright){rm d}V+int_{partialOmega}g'(c)delta c,{rm d}S\
&=int_{Omega}left(frac{partial f}{partial c}-nablacdotleft(frac{partial f}{partialleft(nabla cright)}right)right)delta c,{rm d}V+int_{partialOmega}left(frac{partial f}{partialleft(nabla cright)}cdot n+g'(c)right)delta c,{rm d}S,
end{align}
where $n$ denotes the outward unit normal vector on $partialOmega$.
Therefore, the $c$ that minimizes $F$ must satisfy
begin{align}
frac{partial f}{partial c}-nablacdotleft(frac{partial f}{partialleft(nabla cright)}right)&=0quadtext{in }Omega,\
frac{partial f}{partialleft(nabla cright)}cdot n+g'(c)&=0quadtext{on }partialOmega
end{align}
due to the arbitrariness of $delta c$.
$endgroup$
add a comment |
$begingroup$
Generally speaking, the boundary terms in a functional only contributes to the boundary conditions, and would not lead changes to the variational derivative.
For your example, repeat the derivation of the classical Euler-Lagrange equation, and
begin{align}
delta F&=int_{Omega}delta f(c,nabla c),{rm d}V+int_{partialOmega}delta g(c),{rm d}S\
&=int_{Omega}left(frac{partial f}{partial c}delta c+frac{partial f}{partialleft(nabla cright)}cdotnabladelta cright){rm d}V+int_{partialOmega}g'(c)delta c,{rm d}S\
&=int_{Omega}left(frac{partial f}{partial c}delta c+nablacdotleft(frac{partial f}{partialleft(nabla cright)},delta cright)-nablacdotleft(frac{partial f}{partialleft(nabla cright)}right)delta cright){rm d}V+int_{partialOmega}g'(c)delta c,{rm d}S\
&=int_{Omega}left(frac{partial f}{partial c}-nablacdotleft(frac{partial f}{partialleft(nabla cright)}right)right)delta c,{rm d}V+int_{partialOmega}left(frac{partial f}{partialleft(nabla cright)}cdot n+g'(c)right)delta c,{rm d}S,
end{align}
where $n$ denotes the outward unit normal vector on $partialOmega$.
Therefore, the $c$ that minimizes $F$ must satisfy
begin{align}
frac{partial f}{partial c}-nablacdotleft(frac{partial f}{partialleft(nabla cright)}right)&=0quadtext{in }Omega,\
frac{partial f}{partialleft(nabla cright)}cdot n+g'(c)&=0quadtext{on }partialOmega
end{align}
due to the arbitrariness of $delta c$.
$endgroup$
Generally speaking, the boundary terms in a functional only contributes to the boundary conditions, and would not lead changes to the variational derivative.
For your example, repeat the derivation of the classical Euler-Lagrange equation, and
begin{align}
delta F&=int_{Omega}delta f(c,nabla c),{rm d}V+int_{partialOmega}delta g(c),{rm d}S\
&=int_{Omega}left(frac{partial f}{partial c}delta c+frac{partial f}{partialleft(nabla cright)}cdotnabladelta cright){rm d}V+int_{partialOmega}g'(c)delta c,{rm d}S\
&=int_{Omega}left(frac{partial f}{partial c}delta c+nablacdotleft(frac{partial f}{partialleft(nabla cright)},delta cright)-nablacdotleft(frac{partial f}{partialleft(nabla cright)}right)delta cright){rm d}V+int_{partialOmega}g'(c)delta c,{rm d}S\
&=int_{Omega}left(frac{partial f}{partial c}-nablacdotleft(frac{partial f}{partialleft(nabla cright)}right)right)delta c,{rm d}V+int_{partialOmega}left(frac{partial f}{partialleft(nabla cright)}cdot n+g'(c)right)delta c,{rm d}S,
end{align}
where $n$ denotes the outward unit normal vector on $partialOmega$.
Therefore, the $c$ that minimizes $F$ must satisfy
begin{align}
frac{partial f}{partial c}-nablacdotleft(frac{partial f}{partialleft(nabla cright)}right)&=0quadtext{in }Omega,\
frac{partial f}{partialleft(nabla cright)}cdot n+g'(c)&=0quadtext{on }partialOmega
end{align}
due to the arbitrariness of $delta c$.
answered Jan 7 at 9:53
hypernovahypernova
4,999414
4,999414
add a comment |
add a comment |
$begingroup$
The problem can be solved by calculating the first variation of the functional from scratch.
Here, the first variation reads $delta F
= lim_{epsilon rightarrow 0}(F[c + delta c] - F[c])$ with $delta c =epsilon phi$ and $phi$ is a arbitrary function.
We thus have
begin{align}
F[c + epsilon phi] &=
int_Omega f(c + epsilonphi, nabla c + epsilon nabla phi) mathrm{d}^3 r
+
oint_{partialOmega} g(c + epsilonphi) mathrm{d}^2 r
end{align}
which can be expanded to first order in $epsilon$,
begin{align}
F[c + epsilon phi] &=
int_Omegaleft[
f(c, nabla c)
+ frac{partial f}{partial c}epsilonphi
+ frac{partial f}{partial (nabla c)}epsilon nabla phi
right] mathrm{d}^3 r
+
oint_{partialOmega} left[
g(c)
+ g'(c)epsilonphi)
right] mathrm{d}^2 r
;.
end{align}
We thus obtain for the first variation
begin{align}
delta F &=
int_Omegaleft[
frac{partial f}{partial c}delta c
+ frac{partial f}{partial (nabla c)} nabla delta c
right] mathrm{d}^3 r +
oint_{partialOmega} !!! g'(c)delta c , mathrm{d}^2 r
end{align}
Using integration by parts
begin{align}
delta F &=
int_Omegaleft[
frac{partial f}{partial c}delta c
- delta cnablafrac{partial f}{partial(nabla c)}
right] mathrm{d}^3 r
+
oint_{partialOmega}left[
frac{partial f}{partial (partial_alpha c)} n_alpha delta c
+ g'(c)delta c
right] mathrm{d}^2 r
;,
end{align}
where $n_alpha$ is the normal vector of the boundary.
In particular, the associated Euler-Lagrange equations read
begin{align}
0 &= frac{partial f}{partial c} - nablafrac{partial f}{partial (nabla c)}
\
0 &= frac{partial f}{partial(partial_alpha c)} n_alpha + g'(c)
label{eqn:stationary_point_boundary}
end{align}
$endgroup$
add a comment |
$begingroup$
The problem can be solved by calculating the first variation of the functional from scratch.
Here, the first variation reads $delta F
= lim_{epsilon rightarrow 0}(F[c + delta c] - F[c])$ with $delta c =epsilon phi$ and $phi$ is a arbitrary function.
We thus have
begin{align}
F[c + epsilon phi] &=
int_Omega f(c + epsilonphi, nabla c + epsilon nabla phi) mathrm{d}^3 r
+
oint_{partialOmega} g(c + epsilonphi) mathrm{d}^2 r
end{align}
which can be expanded to first order in $epsilon$,
begin{align}
F[c + epsilon phi] &=
int_Omegaleft[
f(c, nabla c)
+ frac{partial f}{partial c}epsilonphi
+ frac{partial f}{partial (nabla c)}epsilon nabla phi
right] mathrm{d}^3 r
+
oint_{partialOmega} left[
g(c)
+ g'(c)epsilonphi)
right] mathrm{d}^2 r
;.
end{align}
We thus obtain for the first variation
begin{align}
delta F &=
int_Omegaleft[
frac{partial f}{partial c}delta c
+ frac{partial f}{partial (nabla c)} nabla delta c
right] mathrm{d}^3 r +
oint_{partialOmega} !!! g'(c)delta c , mathrm{d}^2 r
end{align}
Using integration by parts
begin{align}
delta F &=
int_Omegaleft[
frac{partial f}{partial c}delta c
- delta cnablafrac{partial f}{partial(nabla c)}
right] mathrm{d}^3 r
+
oint_{partialOmega}left[
frac{partial f}{partial (partial_alpha c)} n_alpha delta c
+ g'(c)delta c
right] mathrm{d}^2 r
;,
end{align}
where $n_alpha$ is the normal vector of the boundary.
In particular, the associated Euler-Lagrange equations read
begin{align}
0 &= frac{partial f}{partial c} - nablafrac{partial f}{partial (nabla c)}
\
0 &= frac{partial f}{partial(partial_alpha c)} n_alpha + g'(c)
label{eqn:stationary_point_boundary}
end{align}
$endgroup$
add a comment |
$begingroup$
The problem can be solved by calculating the first variation of the functional from scratch.
Here, the first variation reads $delta F
= lim_{epsilon rightarrow 0}(F[c + delta c] - F[c])$ with $delta c =epsilon phi$ and $phi$ is a arbitrary function.
We thus have
begin{align}
F[c + epsilon phi] &=
int_Omega f(c + epsilonphi, nabla c + epsilon nabla phi) mathrm{d}^3 r
+
oint_{partialOmega} g(c + epsilonphi) mathrm{d}^2 r
end{align}
which can be expanded to first order in $epsilon$,
begin{align}
F[c + epsilon phi] &=
int_Omegaleft[
f(c, nabla c)
+ frac{partial f}{partial c}epsilonphi
+ frac{partial f}{partial (nabla c)}epsilon nabla phi
right] mathrm{d}^3 r
+
oint_{partialOmega} left[
g(c)
+ g'(c)epsilonphi)
right] mathrm{d}^2 r
;.
end{align}
We thus obtain for the first variation
begin{align}
delta F &=
int_Omegaleft[
frac{partial f}{partial c}delta c
+ frac{partial f}{partial (nabla c)} nabla delta c
right] mathrm{d}^3 r +
oint_{partialOmega} !!! g'(c)delta c , mathrm{d}^2 r
end{align}
Using integration by parts
begin{align}
delta F &=
int_Omegaleft[
frac{partial f}{partial c}delta c
- delta cnablafrac{partial f}{partial(nabla c)}
right] mathrm{d}^3 r
+
oint_{partialOmega}left[
frac{partial f}{partial (partial_alpha c)} n_alpha delta c
+ g'(c)delta c
right] mathrm{d}^2 r
;,
end{align}
where $n_alpha$ is the normal vector of the boundary.
In particular, the associated Euler-Lagrange equations read
begin{align}
0 &= frac{partial f}{partial c} - nablafrac{partial f}{partial (nabla c)}
\
0 &= frac{partial f}{partial(partial_alpha c)} n_alpha + g'(c)
label{eqn:stationary_point_boundary}
end{align}
$endgroup$
The problem can be solved by calculating the first variation of the functional from scratch.
Here, the first variation reads $delta F
= lim_{epsilon rightarrow 0}(F[c + delta c] - F[c])$ with $delta c =epsilon phi$ and $phi$ is a arbitrary function.
We thus have
begin{align}
F[c + epsilon phi] &=
int_Omega f(c + epsilonphi, nabla c + epsilon nabla phi) mathrm{d}^3 r
+
oint_{partialOmega} g(c + epsilonphi) mathrm{d}^2 r
end{align}
which can be expanded to first order in $epsilon$,
begin{align}
F[c + epsilon phi] &=
int_Omegaleft[
f(c, nabla c)
+ frac{partial f}{partial c}epsilonphi
+ frac{partial f}{partial (nabla c)}epsilon nabla phi
right] mathrm{d}^3 r
+
oint_{partialOmega} left[
g(c)
+ g'(c)epsilonphi)
right] mathrm{d}^2 r
;.
end{align}
We thus obtain for the first variation
begin{align}
delta F &=
int_Omegaleft[
frac{partial f}{partial c}delta c
+ frac{partial f}{partial (nabla c)} nabla delta c
right] mathrm{d}^3 r +
oint_{partialOmega} !!! g'(c)delta c , mathrm{d}^2 r
end{align}
Using integration by parts
begin{align}
delta F &=
int_Omegaleft[
frac{partial f}{partial c}delta c
- delta cnablafrac{partial f}{partial(nabla c)}
right] mathrm{d}^3 r
+
oint_{partialOmega}left[
frac{partial f}{partial (partial_alpha c)} n_alpha delta c
+ g'(c)delta c
right] mathrm{d}^2 r
;,
end{align}
where $n_alpha$ is the normal vector of the boundary.
In particular, the associated Euler-Lagrange equations read
begin{align}
0 &= frac{partial f}{partial c} - nablafrac{partial f}{partial (nabla c)}
\
0 &= frac{partial f}{partial(partial_alpha c)} n_alpha + g'(c)
label{eqn:stationary_point_boundary}
end{align}
answered Jan 7 at 9:49
David ZwickerDavid Zwicker
488
488
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2981503%2ffunctional-derivative-of-integral-with-boundary-contribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown