Extending function from hyperplane segment to ball, estimating integral by integral on manifold












0












$begingroup$


Let $B:=B_R (0) subset mathbb{R}^d$ be the ball with radius $R$ at $0$ and $H subset mathbb{R}^d$ a hyperplane that satisfies $H cap B neq emptyset$ and $0 notin H$. Furthermore, let $f in C^1 (H)$ with $f geq 0$.



Consider the function $g : , B to mathbb{R}$ given by
begin{equation*}
g (x) =
begin{cases}
f(xi), & xi = (0,x) cap H neq emptyset \
0, & text{otherwise}
end{cases}
end{equation*}



where $(0,x)$ denotes an open line-segment. Note that $g$ is piecewise constant in $x-$direction. Basicly, $g$ extends $f$ from $H$ to $B$ by assigning $f(xi)$ along any $x-$direction from $H$ towards the boundary of $B$.



I am interested in deriving an estimate of the form
begin{equation*}
int_B g(x) , dx leq c , R int_{H cap B} f(xi) dxi ,
end{equation*}



where $c$ is a constant only depending on the dimension $d$, but am having trouble proving it (nicely). Here is my approach so far:




  1. Transform integral to spherical coordinates with transformation $Psi$:
    begin{equation*}
    int_B g(x) , dx
    = int_{S^{d-1}} int_{0}^{R} g (Psi^{-1}(r, s)) , r^{d-1} , dr , ds
    end{equation*}


  2. Parametrize $H cap B$ over $S^{d-1}$: Let $U = lbrace s in S^{d-1}: , (0, 2 R s) cap H cap B neq emptyset rbrace$ and $h: , U to mathbb{R}$ a suitable $C^1 (U)$ function, such that $gamma :, U to H$ defines a parametrization of $H$ over $U subset S^{d-1}$ by $gamma (s) = Psi^{-1} (h(s), s)$. $H$ is the graph of $h$, so its first fundamental form satisfies $g^{gamma} (s) = 1 + Vert nabla h (s) Vert^2 geq 1$. Thus,
    begin{align*}
    & phantom{{}={}} int_{S^{d-1}} int_{0}^{R} g (Psi^{-1} (r, s)) , r^{d-1} , dr , ds
    leq int_{S^{d-1}} frac{1}{d} R^{d} f left(Psi^{-1}(h (s), s) right) , ds \
    & leq frac{1}{d} R int_{U} f (Psi^{-1} (h(s),s)) , sqrt{g^{gamma}} , ds
    = frac{1}{d} R int_{H cap B} f (xi) , dxi
    end{align*}



Any hints or comments are appreciated.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let $B:=B_R (0) subset mathbb{R}^d$ be the ball with radius $R$ at $0$ and $H subset mathbb{R}^d$ a hyperplane that satisfies $H cap B neq emptyset$ and $0 notin H$. Furthermore, let $f in C^1 (H)$ with $f geq 0$.



    Consider the function $g : , B to mathbb{R}$ given by
    begin{equation*}
    g (x) =
    begin{cases}
    f(xi), & xi = (0,x) cap H neq emptyset \
    0, & text{otherwise}
    end{cases}
    end{equation*}



    where $(0,x)$ denotes an open line-segment. Note that $g$ is piecewise constant in $x-$direction. Basicly, $g$ extends $f$ from $H$ to $B$ by assigning $f(xi)$ along any $x-$direction from $H$ towards the boundary of $B$.



    I am interested in deriving an estimate of the form
    begin{equation*}
    int_B g(x) , dx leq c , R int_{H cap B} f(xi) dxi ,
    end{equation*}



    where $c$ is a constant only depending on the dimension $d$, but am having trouble proving it (nicely). Here is my approach so far:




    1. Transform integral to spherical coordinates with transformation $Psi$:
      begin{equation*}
      int_B g(x) , dx
      = int_{S^{d-1}} int_{0}^{R} g (Psi^{-1}(r, s)) , r^{d-1} , dr , ds
      end{equation*}


    2. Parametrize $H cap B$ over $S^{d-1}$: Let $U = lbrace s in S^{d-1}: , (0, 2 R s) cap H cap B neq emptyset rbrace$ and $h: , U to mathbb{R}$ a suitable $C^1 (U)$ function, such that $gamma :, U to H$ defines a parametrization of $H$ over $U subset S^{d-1}$ by $gamma (s) = Psi^{-1} (h(s), s)$. $H$ is the graph of $h$, so its first fundamental form satisfies $g^{gamma} (s) = 1 + Vert nabla h (s) Vert^2 geq 1$. Thus,
      begin{align*}
      & phantom{{}={}} int_{S^{d-1}} int_{0}^{R} g (Psi^{-1} (r, s)) , r^{d-1} , dr , ds
      leq int_{S^{d-1}} frac{1}{d} R^{d} f left(Psi^{-1}(h (s), s) right) , ds \
      & leq frac{1}{d} R int_{U} f (Psi^{-1} (h(s),s)) , sqrt{g^{gamma}} , ds
      = frac{1}{d} R int_{H cap B} f (xi) , dxi
      end{align*}



    Any hints or comments are appreciated.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Let $B:=B_R (0) subset mathbb{R}^d$ be the ball with radius $R$ at $0$ and $H subset mathbb{R}^d$ a hyperplane that satisfies $H cap B neq emptyset$ and $0 notin H$. Furthermore, let $f in C^1 (H)$ with $f geq 0$.



      Consider the function $g : , B to mathbb{R}$ given by
      begin{equation*}
      g (x) =
      begin{cases}
      f(xi), & xi = (0,x) cap H neq emptyset \
      0, & text{otherwise}
      end{cases}
      end{equation*}



      where $(0,x)$ denotes an open line-segment. Note that $g$ is piecewise constant in $x-$direction. Basicly, $g$ extends $f$ from $H$ to $B$ by assigning $f(xi)$ along any $x-$direction from $H$ towards the boundary of $B$.



      I am interested in deriving an estimate of the form
      begin{equation*}
      int_B g(x) , dx leq c , R int_{H cap B} f(xi) dxi ,
      end{equation*}



      where $c$ is a constant only depending on the dimension $d$, but am having trouble proving it (nicely). Here is my approach so far:




      1. Transform integral to spherical coordinates with transformation $Psi$:
        begin{equation*}
        int_B g(x) , dx
        = int_{S^{d-1}} int_{0}^{R} g (Psi^{-1}(r, s)) , r^{d-1} , dr , ds
        end{equation*}


      2. Parametrize $H cap B$ over $S^{d-1}$: Let $U = lbrace s in S^{d-1}: , (0, 2 R s) cap H cap B neq emptyset rbrace$ and $h: , U to mathbb{R}$ a suitable $C^1 (U)$ function, such that $gamma :, U to H$ defines a parametrization of $H$ over $U subset S^{d-1}$ by $gamma (s) = Psi^{-1} (h(s), s)$. $H$ is the graph of $h$, so its first fundamental form satisfies $g^{gamma} (s) = 1 + Vert nabla h (s) Vert^2 geq 1$. Thus,
        begin{align*}
        & phantom{{}={}} int_{S^{d-1}} int_{0}^{R} g (Psi^{-1} (r, s)) , r^{d-1} , dr , ds
        leq int_{S^{d-1}} frac{1}{d} R^{d} f left(Psi^{-1}(h (s), s) right) , ds \
        & leq frac{1}{d} R int_{U} f (Psi^{-1} (h(s),s)) , sqrt{g^{gamma}} , ds
        = frac{1}{d} R int_{H cap B} f (xi) , dxi
        end{align*}



      Any hints or comments are appreciated.










      share|cite|improve this question











      $endgroup$




      Let $B:=B_R (0) subset mathbb{R}^d$ be the ball with radius $R$ at $0$ and $H subset mathbb{R}^d$ a hyperplane that satisfies $H cap B neq emptyset$ and $0 notin H$. Furthermore, let $f in C^1 (H)$ with $f geq 0$.



      Consider the function $g : , B to mathbb{R}$ given by
      begin{equation*}
      g (x) =
      begin{cases}
      f(xi), & xi = (0,x) cap H neq emptyset \
      0, & text{otherwise}
      end{cases}
      end{equation*}



      where $(0,x)$ denotes an open line-segment. Note that $g$ is piecewise constant in $x-$direction. Basicly, $g$ extends $f$ from $H$ to $B$ by assigning $f(xi)$ along any $x-$direction from $H$ towards the boundary of $B$.



      I am interested in deriving an estimate of the form
      begin{equation*}
      int_B g(x) , dx leq c , R int_{H cap B} f(xi) dxi ,
      end{equation*}



      where $c$ is a constant only depending on the dimension $d$, but am having trouble proving it (nicely). Here is my approach so far:




      1. Transform integral to spherical coordinates with transformation $Psi$:
        begin{equation*}
        int_B g(x) , dx
        = int_{S^{d-1}} int_{0}^{R} g (Psi^{-1}(r, s)) , r^{d-1} , dr , ds
        end{equation*}


      2. Parametrize $H cap B$ over $S^{d-1}$: Let $U = lbrace s in S^{d-1}: , (0, 2 R s) cap H cap B neq emptyset rbrace$ and $h: , U to mathbb{R}$ a suitable $C^1 (U)$ function, such that $gamma :, U to H$ defines a parametrization of $H$ over $U subset S^{d-1}$ by $gamma (s) = Psi^{-1} (h(s), s)$. $H$ is the graph of $h$, so its first fundamental form satisfies $g^{gamma} (s) = 1 + Vert nabla h (s) Vert^2 geq 1$. Thus,
        begin{align*}
        & phantom{{}={}} int_{S^{d-1}} int_{0}^{R} g (Psi^{-1} (r, s)) , r^{d-1} , dr , ds
        leq int_{S^{d-1}} frac{1}{d} R^{d} f left(Psi^{-1}(h (s), s) right) , ds \
        & leq frac{1}{d} R int_{U} f (Psi^{-1} (h(s),s)) , sqrt{g^{gamma}} , ds
        = frac{1}{d} R int_{H cap B} f (xi) , dxi
        end{align*}



      Any hints or comments are appreciated.







      integration manifolds differential-forms integral-transforms






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 7 at 13:46







      user404633

















      asked Jan 7 at 9:12









      user404633user404633

      63




      63






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064800%2fextending-function-from-hyperplane-segment-to-ball-estimating-integral-by-integ%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064800%2fextending-function-from-hyperplane-segment-to-ball-estimating-integral-by-integ%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna