Extending function from hyperplane segment to ball, estimating integral by integral on manifold
$begingroup$
Let $B:=B_R (0) subset mathbb{R}^d$ be the ball with radius $R$ at $0$ and $H subset mathbb{R}^d$ a hyperplane that satisfies $H cap B neq emptyset$ and $0 notin H$. Furthermore, let $f in C^1 (H)$ with $f geq 0$.
Consider the function $g : , B to mathbb{R}$ given by
begin{equation*}
g (x) =
begin{cases}
f(xi), & xi = (0,x) cap H neq emptyset \
0, & text{otherwise}
end{cases}
end{equation*}
where $(0,x)$ denotes an open line-segment. Note that $g$ is piecewise constant in $x-$direction. Basicly, $g$ extends $f$ from $H$ to $B$ by assigning $f(xi)$ along any $x-$direction from $H$ towards the boundary of $B$.
I am interested in deriving an estimate of the form
begin{equation*}
int_B g(x) , dx leq c , R int_{H cap B} f(xi) dxi ,
end{equation*}
where $c$ is a constant only depending on the dimension $d$, but am having trouble proving it (nicely). Here is my approach so far:
Transform integral to spherical coordinates with transformation $Psi$:
begin{equation*}
int_B g(x) , dx
= int_{S^{d-1}} int_{0}^{R} g (Psi^{-1}(r, s)) , r^{d-1} , dr , ds
end{equation*}Parametrize $H cap B$ over $S^{d-1}$: Let $U = lbrace s in S^{d-1}: , (0, 2 R s) cap H cap B neq emptyset rbrace$ and $h: , U to mathbb{R}$ a suitable $C^1 (U)$ function, such that $gamma :, U to H$ defines a parametrization of $H$ over $U subset S^{d-1}$ by $gamma (s) = Psi^{-1} (h(s), s)$. $H$ is the graph of $h$, so its first fundamental form satisfies $g^{gamma} (s) = 1 + Vert nabla h (s) Vert^2 geq 1$. Thus,
begin{align*}
& phantom{{}={}} int_{S^{d-1}} int_{0}^{R} g (Psi^{-1} (r, s)) , r^{d-1} , dr , ds
leq int_{S^{d-1}} frac{1}{d} R^{d} f left(Psi^{-1}(h (s), s) right) , ds \
& leq frac{1}{d} R int_{U} f (Psi^{-1} (h(s),s)) , sqrt{g^{gamma}} , ds
= frac{1}{d} R int_{H cap B} f (xi) , dxi
end{align*}
Any hints or comments are appreciated.
integration manifolds differential-forms integral-transforms
$endgroup$
add a comment |
$begingroup$
Let $B:=B_R (0) subset mathbb{R}^d$ be the ball with radius $R$ at $0$ and $H subset mathbb{R}^d$ a hyperplane that satisfies $H cap B neq emptyset$ and $0 notin H$. Furthermore, let $f in C^1 (H)$ with $f geq 0$.
Consider the function $g : , B to mathbb{R}$ given by
begin{equation*}
g (x) =
begin{cases}
f(xi), & xi = (0,x) cap H neq emptyset \
0, & text{otherwise}
end{cases}
end{equation*}
where $(0,x)$ denotes an open line-segment. Note that $g$ is piecewise constant in $x-$direction. Basicly, $g$ extends $f$ from $H$ to $B$ by assigning $f(xi)$ along any $x-$direction from $H$ towards the boundary of $B$.
I am interested in deriving an estimate of the form
begin{equation*}
int_B g(x) , dx leq c , R int_{H cap B} f(xi) dxi ,
end{equation*}
where $c$ is a constant only depending on the dimension $d$, but am having trouble proving it (nicely). Here is my approach so far:
Transform integral to spherical coordinates with transformation $Psi$:
begin{equation*}
int_B g(x) , dx
= int_{S^{d-1}} int_{0}^{R} g (Psi^{-1}(r, s)) , r^{d-1} , dr , ds
end{equation*}Parametrize $H cap B$ over $S^{d-1}$: Let $U = lbrace s in S^{d-1}: , (0, 2 R s) cap H cap B neq emptyset rbrace$ and $h: , U to mathbb{R}$ a suitable $C^1 (U)$ function, such that $gamma :, U to H$ defines a parametrization of $H$ over $U subset S^{d-1}$ by $gamma (s) = Psi^{-1} (h(s), s)$. $H$ is the graph of $h$, so its first fundamental form satisfies $g^{gamma} (s) = 1 + Vert nabla h (s) Vert^2 geq 1$. Thus,
begin{align*}
& phantom{{}={}} int_{S^{d-1}} int_{0}^{R} g (Psi^{-1} (r, s)) , r^{d-1} , dr , ds
leq int_{S^{d-1}} frac{1}{d} R^{d} f left(Psi^{-1}(h (s), s) right) , ds \
& leq frac{1}{d} R int_{U} f (Psi^{-1} (h(s),s)) , sqrt{g^{gamma}} , ds
= frac{1}{d} R int_{H cap B} f (xi) , dxi
end{align*}
Any hints or comments are appreciated.
integration manifolds differential-forms integral-transforms
$endgroup$
add a comment |
$begingroup$
Let $B:=B_R (0) subset mathbb{R}^d$ be the ball with radius $R$ at $0$ and $H subset mathbb{R}^d$ a hyperplane that satisfies $H cap B neq emptyset$ and $0 notin H$. Furthermore, let $f in C^1 (H)$ with $f geq 0$.
Consider the function $g : , B to mathbb{R}$ given by
begin{equation*}
g (x) =
begin{cases}
f(xi), & xi = (0,x) cap H neq emptyset \
0, & text{otherwise}
end{cases}
end{equation*}
where $(0,x)$ denotes an open line-segment. Note that $g$ is piecewise constant in $x-$direction. Basicly, $g$ extends $f$ from $H$ to $B$ by assigning $f(xi)$ along any $x-$direction from $H$ towards the boundary of $B$.
I am interested in deriving an estimate of the form
begin{equation*}
int_B g(x) , dx leq c , R int_{H cap B} f(xi) dxi ,
end{equation*}
where $c$ is a constant only depending on the dimension $d$, but am having trouble proving it (nicely). Here is my approach so far:
Transform integral to spherical coordinates with transformation $Psi$:
begin{equation*}
int_B g(x) , dx
= int_{S^{d-1}} int_{0}^{R} g (Psi^{-1}(r, s)) , r^{d-1} , dr , ds
end{equation*}Parametrize $H cap B$ over $S^{d-1}$: Let $U = lbrace s in S^{d-1}: , (0, 2 R s) cap H cap B neq emptyset rbrace$ and $h: , U to mathbb{R}$ a suitable $C^1 (U)$ function, such that $gamma :, U to H$ defines a parametrization of $H$ over $U subset S^{d-1}$ by $gamma (s) = Psi^{-1} (h(s), s)$. $H$ is the graph of $h$, so its first fundamental form satisfies $g^{gamma} (s) = 1 + Vert nabla h (s) Vert^2 geq 1$. Thus,
begin{align*}
& phantom{{}={}} int_{S^{d-1}} int_{0}^{R} g (Psi^{-1} (r, s)) , r^{d-1} , dr , ds
leq int_{S^{d-1}} frac{1}{d} R^{d} f left(Psi^{-1}(h (s), s) right) , ds \
& leq frac{1}{d} R int_{U} f (Psi^{-1} (h(s),s)) , sqrt{g^{gamma}} , ds
= frac{1}{d} R int_{H cap B} f (xi) , dxi
end{align*}
Any hints or comments are appreciated.
integration manifolds differential-forms integral-transforms
$endgroup$
Let $B:=B_R (0) subset mathbb{R}^d$ be the ball with radius $R$ at $0$ and $H subset mathbb{R}^d$ a hyperplane that satisfies $H cap B neq emptyset$ and $0 notin H$. Furthermore, let $f in C^1 (H)$ with $f geq 0$.
Consider the function $g : , B to mathbb{R}$ given by
begin{equation*}
g (x) =
begin{cases}
f(xi), & xi = (0,x) cap H neq emptyset \
0, & text{otherwise}
end{cases}
end{equation*}
where $(0,x)$ denotes an open line-segment. Note that $g$ is piecewise constant in $x-$direction. Basicly, $g$ extends $f$ from $H$ to $B$ by assigning $f(xi)$ along any $x-$direction from $H$ towards the boundary of $B$.
I am interested in deriving an estimate of the form
begin{equation*}
int_B g(x) , dx leq c , R int_{H cap B} f(xi) dxi ,
end{equation*}
where $c$ is a constant only depending on the dimension $d$, but am having trouble proving it (nicely). Here is my approach so far:
Transform integral to spherical coordinates with transformation $Psi$:
begin{equation*}
int_B g(x) , dx
= int_{S^{d-1}} int_{0}^{R} g (Psi^{-1}(r, s)) , r^{d-1} , dr , ds
end{equation*}Parametrize $H cap B$ over $S^{d-1}$: Let $U = lbrace s in S^{d-1}: , (0, 2 R s) cap H cap B neq emptyset rbrace$ and $h: , U to mathbb{R}$ a suitable $C^1 (U)$ function, such that $gamma :, U to H$ defines a parametrization of $H$ over $U subset S^{d-1}$ by $gamma (s) = Psi^{-1} (h(s), s)$. $H$ is the graph of $h$, so its first fundamental form satisfies $g^{gamma} (s) = 1 + Vert nabla h (s) Vert^2 geq 1$. Thus,
begin{align*}
& phantom{{}={}} int_{S^{d-1}} int_{0}^{R} g (Psi^{-1} (r, s)) , r^{d-1} , dr , ds
leq int_{S^{d-1}} frac{1}{d} R^{d} f left(Psi^{-1}(h (s), s) right) , ds \
& leq frac{1}{d} R int_{U} f (Psi^{-1} (h(s),s)) , sqrt{g^{gamma}} , ds
= frac{1}{d} R int_{H cap B} f (xi) , dxi
end{align*}
Any hints or comments are appreciated.
integration manifolds differential-forms integral-transforms
integration manifolds differential-forms integral-transforms
edited Jan 7 at 13:46
user404633
asked Jan 7 at 9:12
user404633user404633
63
63
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064800%2fextending-function-from-hyperplane-segment-to-ball-estimating-integral-by-integ%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064800%2fextending-function-from-hyperplane-segment-to-ball-estimating-integral-by-integ%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown